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I. SUMMARY AND PRELIMINARIES

Let D be a domain in the s-plane bounded by a piecewise smooth Jordan
curve C. We assume that the #? elements a;,(z) gf the matrix 4(z) == (a;(2))7
are analytic functions which are regular in D and we consider there the
vector differential equation

w'(z) = A=) w(z). (1.1

Here w(2) is the column vector {w(2)...., 0,(2)). Llach component w,(z),
i = 1,..., n, maps D onto a domain D, == w{D) and we denote the diameter

of D; by d;. Theorem 1 states that the norm | d| of the diameter vector
d ={d,,..,d,) is not larger than half the product of the line integral
[T Al | d | and max | w()], { & C. This follows from an inequality of
Nehari, which we state as Lemma 1, and from the basic properties of
absolute vector norms and matrix norms consistent with them. If the above
line integral is not larger than 2, then the system (1.1) is disconjugate in D
(Theorem 2). We conclude with a modification of Theorem | dealing only
with the maps C; == w,(C) of a piecewise smooth Jordan curve C (Theorem 3).

It seems to be convenient for our applications to quote Nebart’s result
[4, formula (16)] in two forms:

LemMa 1. (a) Let the analytic function f(2) be regular in the closed region
D whose boundary is a piecewise smooth Jordan curve C. Then

FO)—S@) <[ 5@ (1.2)

holds for all &, B D.

(b) Let the analytic function f(z) be regular and single valued on the
piecewtse smooth Jordan curve C. Then (1.2) holds for all o, B C.
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For the proof [4] one notes that if « and 8 lie on C then f(«) and f(B)
divide the image f(C) of C into two arcs. The length of either of these
arcs cannot be smaller than the distance | f(a) — f(B)| and their combined
length is [¢ | ()] 1dl . In case (a) the maximum principle shows that
| f(a) — f(B)!, attains its largest value for o, B € D if both « and 8 are on C.

Yor completeness we now quote the definitions of vector and matrix
norms and give also the basic properties of the absolute vector norms [, 3].
A vector norm | w {f is a real valued function defined for all column vectors
@ == (&, ,..., ,) with complex elements z; satisfving

w =40 implies el = 0,
Pewil = {clllwi ¢ scalar, (1.3)
lw+ol <lwl+lzl].
If w=(w,.,w,) then |wl|=(w |,..,{w,i); jw|<{|v| means

[w, | < v, | for all 2. A vector norm is called absolute or monotonic if the
following two properties hold:

el =1 w ], (1.4)
and

lw| < lw]  implies [jew] <[ wl; (149

moreover, these two properties are equivalent. The Holder norms

n 1‘/1)
lep:(ZIwz-lﬂ’) , 1 <=p oo, (1.5)

i=1

are absolute norms and the cases p = 1, 2 and oo, i.e.,

) n n 1/’2 ‘ ‘

ol =Yl Gl (Y w ) el — maxie (16)
i=1 ‘=1 !

are the most frequently used norms.
A matrix norm || 4 |} is a real valued function defined for all # > # matrices
A = (a;)] with complex elements a;;, satisfying

A+0 implies || 4 >0,
Nedll =|ec|l| 4], ¢ scalar,
A4 -+ Bil <[4+ B,
ABl <[ Al BY.

(1.7)
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If a matrix norm || 4 || and a vector norm " | arc related in such a way
that always the condition

, Aw i{

A e (1.8)

holds, then the two norms are said to be consistent.

From a given vector norm | z | a matrix norm | .4 | can be obtained by

defining

A == sup L Aw) . (1.9

w0 }‘ w ‘\

This induced norm (bound) ;| A is consistent with the given vector norm
['ep|'; moreover, if || 4| is any matrix norm consistent with || fi and || 4 || is
the norm induced by

Vev |l then, for any matrix A4, "' .4 | < | Al. We denote
the norms induced by the Hélder norms ' w i, by | A !, ; i.e., we set

b, .
A, = sup——':»lyfu, P p L o (1.5")

m
w0 1 W In

For p = 1, 2 and 0, these norms are explicitly given by
p Vg )

7 k3

d Al = max Z lag |, 1A, = A2(44%), 1A, = max Z | @ |-
i1 =1

(1.6")

(Here A% -= (@)} , and A(AA*) is the maximal characteristic value of 4.4*.)

If the analytic functions w,(2), 7 -= 1,..., s, are regular in a domain D,
then every norm || z(z)| of the vector w(z) = (w,(2),..., w,(%)) is a continuous
subharmonic function in D. The analogous statement holds for every norm
I A(2)i| of a matrix A(z) with regular analytic elements [6, Lemma 2].

2. A Bounp rForR THE NORM OF THE DIAMETER VECTOR

Taeorem 1. Let the analytic functions a;(z), i, k = 1,..., n, be regular in
the closed region D whose boundary is a piecewise smooth Jordan curve C.
Let the matrix norm | A || be consisient with the absolute vector norm | w ).
Let w(z) = (2,(2),..., w,(2)) be a solution of the system

2'(2) = A(z) w(z) (r.n
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(A(z) = (a,(2))7) in D and denote the diameter of the image region D; = w /(D)
by d;, i = 1,...,n. Let d be the diameter vector (d, ..., d,). Then

L1 < bmax @) [ AQ) @D

As l| w(z)|| is subharmonic it follows that max,.c | @w({)| = max,j || w(z)!.
Furthermore, as the matrix norm induced by | w |} is never larger than any
matrix norm consistent with || @, it would suffice to state this theorem
for absolute vector norms and the matrix norms induced by them.

Proof. Let o; and B,, 7 = I,...,n, be points on C such that
d; = [ wio) — wi{B)].

Lemma 1 (part (a)) implies that

/

4 <1 J w11 dLl, =1, 2.2)
C
We denote
l, :f Lo/ (O)1dL], i1, (2.3)
C

For the two nonnegative vectors d == (d, ,..., d,) and [ = (I, ,..., [,)) it thus
follows that

d < il (2.4)

A

Applying successively (2.3), (1.3), (1.4), (1.1), and (1.8), we obtain

= e < [ e@ndc = | e

(2.5)
= [ 1 A@ w1 ds < [ 1AQN @@l
Equations (2.4), (1.4') and (2.5) give
[l <3 1AQ e (2.6)

which implies the assertion (2.1) of the theorem.

We do not know whether the constant 1/2 on the right side of (2.1) is
the best possible and this constant may, perhaps, be slightly lowered. If
we consider specific cases—i.e., specify the norms, the order n of the
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differential systems, and the region D—then each case will have its specitic
best possible constant which thus depends on the choice of the norms and
on 7 (but, as we shall see, not on the choice of D). With respect to the Hélder
norms || @li, and the matrix norms | A, induced by them the following
statement holds. For any given p, 1 < p <. 2, for any given n, n = 2, and
Jor any given region D, the constant 1]2 in the assertion

vy bmaxi (@l | 1 AQ, 4 @1,

cannot be replaced by any constant smaller than \/2jw == 0.450. For p satisfying
2 < p < w, the constant § in (2.1), cannot be veplaced by any constant smaller
than 2477,

To prove this we first assume that # is even, # == 2m, and we consider
the constant coeflicient matrix A == (a,;)?™ whose elements are defined as
follows: a, ;. == 1,7 == 1,..., 2Zm — 1, ay,, ; = (—1)"; all other elements of 4
are zero [5, p. 343]. Equations (1.5) and (1.5") imply

LA, =1, I slp< > 2.7)
The system w'(z) == Aw(z) is equivalent to the differential equation
p@m L (—1)"*1 4 = 0, and has thus the solution w(z) with the components
wy(2) = sin(z—m/4), wy(2) = cos(z—m/4),..., Wy (2) == (—1)"* L cos(z—mn/4).
For any ¢ > 0 we consider the region D, bounded by the ellipse C, having
its vertices at the points = ({(z/4) - €) and +-ze. As ¢ — 0, C, tends to the
segment of the real axis bounded by -f-n/4. It follows that d, = | 4- O(e),
i = 1,..., 2m. Hence,

dl, = Qmpr o O), 1l p o 2.8)

As || w(Q)|l, = (m(} sin?({ — =/4) -+ | cos?({ — 7/4)))/?, it follows that
mas| (@), = @ 2L 0@, 1Sps2 @9)
Equation (2.7) gives
J P AL, AL = Oe), b p oo, (2.10)
Ce

Inserting (2.8)—(2.10) into

iy < cmax | w@l, [ 11AQ@, |, @.11)
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-

we obtain, for any p, 1 < p < 2,

Qm)li? 4 O(e) < c(2m)P .\% = Oe). (2.12)

1t follows that if, for given p, 1 < p <C 2, we choose ¢ < v/2/m, then we can
find a small enough €, ¢ = ¢ p, ¢), such that (2.11) is not valid for the
region D, . But this implies that—keeping p and ¢ fixed—(2.11) is not valid
for any region D. This follows from the invariance of each term in (2.11),
or in (2.1), under conformal mapping. (See [6, p. 556]; let » == ¢(z*) map
the region D* of the 3*-plane bounded by C* onto D. Equation (1.1) trans-
forms into

v'(2%) = B(z7) v(z%), (1.1)*

where o(z*) = w($(2*)) and B(z*) = ¢'(z*) A(d(z*)). Clearly, d = d*,
masee | ()] = maxpees [ w(*)]and [ AQ | = [ou | BE | dCF 1)

Forodd n(23), n = 2m + 1, we add a last zero row and zero column to the
above matrix 4 of order 2m and we add the component #,,,,,(2) = 0 to
the above solution vector (w(2),..., 2,,(%)). Equations (2.8)-(2.10) remain
valid and we have thus proved the part of the italicized statement referring
to the case 1 < p <Z 2. For 2 <{ p < o0, (2.9) has to be replaced by

rgé%xll w(), = m'/? + Oe), 2 << p oo (2.9

3. NorMm CONDITIONS FOR DISCONJUGACY

Let D be a simply connected domain in the z-plane not containing & = o0
and let the #? analytic functions a;(2) be regular in D. The system (1.1) is
called disconjugate in D if, for every choice of # (not necessarily distinct) points
2y 5oy 2y In D, the only solution w(z) == (w,(2),..., w,(2)) of (1.1) satisfying
w(z;) = 0,7 = 1,..., n, is the trivial one w(z) == 0. Using the maps D; = w,(D),
1 = 1,...,,n, disconjugacy of (1.1) in D means that, for every nontrivial
solution w(z), 0 ¢ ﬂ?:l D; . Theorem | now yields the following result.

THEOREM 2. Let the analytic functions a,,(z), i, k = 1,..., n, be regular in a

simply connected domain D not containing z == . Let C be the boundary of D
and let the matrix norm | A'| be consistent with an absolute vector norm \| w||. If

[ naoia <2 (3.1)
C
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(A(z) = (ayl2))Y), then the systeri

w'(z) = A=) w(z) (1.1
1s disconjugate in 1.

We remark again that it would suffice to statc this theorem for matrix
norms induced by absolute vector norms.

Proof. We prove the theorem first in the special case where the boundary
C of D is a piecewise smooth curve and the #? analytic functions a;,(z) are
regular in J). Assume, to the contrary, that there exist points &, € 1), 7 = 1,..., n,
and a nontrivial solution #(z) = (w(2),..., w,(2)) such that z,(z,) -0,
7 = I,..., n. Let {* be a point on C such that

(LY, - max I 2(Q) . (3.2
If d; > 0, then
L) = w(l*) —wlz) < d;. (3.3)

There exists thus a constant ¢, ¢ > 1, such that

el < d (3.4)
holds for all 7 (i.e., also if d; == 0). As | @({*)] > 0, equations (3.2), (3.4)
with ¢ > 1, (1.3), and (1.4") give

max [l w(El <[ d]. (3.5
Equation (3.5) and the assertion (2.1) of Theorem 1 imply

2< [ LA,

which contradicts (3.1). We thus proved the validity of Theorem 2 in the
special case.

For the general case, of arbitrary boundary C and regularity of the functions
a;(z) only in D, the integral [ || A({)| | d{ | has to be interpreted as the limit,
for r — 1, of integrals taken along the level lines C,, 0 <7 <1, of the
function ¢(z) which maps 1 onto [¢ | << 1. To prove the gencral case from
the special one, it is convenient to establish first the validity of the theorem
for the case of the open unit disk, and then to obtain the general result
for an arbitrary domain by conformal mapping [6, pp. 557-560].
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Theorem 2 improves a former result stating that

J rA@icar < 21052

imphes disconjugacy of (1.1) in D [6, Theorem 2']; it also improves a result
due to Kim [2, Theorem 2.5} and the author [6, p. 561] stating that

[RECREIES

implies disconjugacy.

With regard to the best possible constant on the right side of (3.1), the
following statement holds for the norms | 4, induced by the Holder
norms || wll, : For any given p, 1 < p =l oo, for any given n, n = 2, and
Sfor any given domain D, the constant 2 on the right side of the sufficient norm
condition

[ 1A rac) <2 31,
C

cannot be replaced by any constant larger than w. This follows from the
example of the last section (see (2.10)). For systems defined on an interval,
Nehari obtained, for || A(x)l, , a sharp theorem [5, Theorem 3.3].

4, MaprpriNGs OF CURVES BY COMPONENTS

We now consider solutions of (1.1) along a piecewise smooth curve C
and thus assume that the elements of the coefficient matrix A(2) and of
the solution #(z) are regular and single valued on C. Equation (2.1) remains
valid in this case and we also add some of its immediate consequences to
the statement of our final result.

THEOREM 3. Let the analytic functions a;(3), i,k == 1,..., n, and wyz),
1 = 1,..., n, be regular and single valued on the piecewise smooth Jordan curve C.
Let the matrix norm || A|| be consistent with the absolute vector norm || w |
and let w(z) = (w(3),..., w,(2)) be a solution of the system

w'(2) = A(z) w(z) (LD
(A(z) = (ay(2))}) on C. Let d; be the diameter of the image C; = wy(C),
t = 1., n and set d = (d, ..., d,). Then (a)

< pax )] [ 1AW aC . 2.1
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| rA@ud <2 0-c2, (4.1)

and if w(2) == 0, then there exists at least one component w,(z) such that

d; < ¢ max. w, (D). (4.2)

(c) 1If w(z)==0 and if for each component wiz), i == 1,...,n, exist fwo
points L and L on C such that

L L) = fw (L))l = max jw({), (4.3)

and
w(l]) = —w({), (4.4)

then
[RECAEIE (45)

Proof. 'The proof of part (a) is the same as the proof of Theorem |, but
we now use part (b) of Lemma 1. If d; > ¢ max, | w({), holds for all
components, then | di = ¢ max, | w({}] > 0. This and (2. 1) contradict
(4 l) and part (b) is thus proved. (4.3) and (4.4) imply d; = 2 max... | w{{)],
i = 1,...,n, and part (¢) follows from the case ¢ - 2 of part (b)

The statement on best possible constants in the assertion (2.1), of
Section 2 remains valid. The constant 2, appearing on the right side of (4.1),
cannot be replaced by any constant larger than =, but this may be possible
for specific norms and specific values of ¢. We note that the assumptions
(4.3) and (4.4) of part (c) are satisfied if each image ; = w,(C) is symmetric
with regard to the origin. If C is a circle with center at the origin, then
this symmetry of the images (; is assured if each component w,(z) is an
odd function of = or is of the form 2% n - 1, -1-2,.... The differential
system

w(e) - (ST)u(z), L G

has @(2) == (2,..., ) as onc of its solutions. For any matrix norm | 4,
induced by an absolute vector norm,
I

A
“‘151-\,7‘ 1z’
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and it follows that [{| (1/)] ||| d{ | = 2 if the integral is taken along a circle
with center at the origin. This proves that for any given curve C and for
any given matrix norm || A |\, induced by an absolute vector norm, the constant 4
tn (4.5) cannot be replaced by any constant lavger than 2.
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