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Evidence for a BRCA1 Founder Mutation in Families
of West African Ancestry

To the Editor:

Inherited mutations in the BRCA1 gene (MIM 113705;
GenBank U14680) (Miki et al. 1994) are less common
among breast cancer patients of African American an-
cestry than among those of white ancestry. For example,
in a population-based series of breast cancer patients
from North Carolina, the prevalence of BRCA1 muta-
tions was 3.3% among white women and 0% among
African American women (Newman et al. 1998). None-
theless, inherited BRCA1 mutations have been identified
in families of African and African American ancestry at
high risk of breast cancer (Gao et al. 1997; Stoppa-
Lyonnet et al. 1997; Panguluri et al. 1999 [in press]).
To provide effective genetic testing for African American
families at high risk for breast and ovarian cancer, it
would be helpful to identify ancient BRCA1 mutations
of African origin analogous to ancient mutations in
other populations (Simard et al. 1994; Peelen et al. 1997;
Petrij-Bosch et al. 1997). Here we have described one
apparently ancient, African BRCA1 mutation.

BRCA1 mutation 943ins10 was detected in breast
cancer patients from the Ivory Coast (Stoppa-Lyonnet
et al. 1997), the Bahamas, and the United States
(Arena et al. 1997; Panguluri et al. 1999 [in press])
(fig. 1). To confirm the identity of the mutation for
the five probands and their relatives, the critical region
of BRCA1 was genotyped by fluorescent sequencing
with dRhodamine-dye terminators (Applied Biosys-
tems). Primers 5-GGAATTAAATGAAAGAGTATG-
AGC-3' and 5'-CTTCCAGCCCATCTGTTATGTTG-
3’ revealed the heterozygous frameshift mutation
943ins10, a 10-bp insertion in exon 11, leading to a
stop at codon 289. The mutation is a tandem dupli-
cation, in a repeated-sequence motif, that could have
occurred at any site between BRCA1 nucleotides 926
and 943 (fig. 2). The notation “943ins10” designates
the most-3’ site of insertion possible (Antonarakis et
al. 1998). The 943ins10 variant can be easily detected
on agarose gel by amplification of genomic DNA or
c¢cDNA with BRCA1 primers 5-CTGCTTGTGAAT-
TTTCTGAGACGG-3' and 5-TGCTGTAATGAGC-
TGGCATGAG-3' under standard conditions. Wild-
type BRCA1 sequence yields a product of 184 bp, and
943ins10 yields a product of 194 bp.

Genotypes of relatives in these five families were con-
sistent with BRCA1 943ins10 being a founder muta-
tion of African origin. Nine markers within and flank-
ing BRCA1 were genotyped (Genome Database):
D1751325, D1751326, and D1751327 (5’ of BRCA1);
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D17S1323 (intron 12), D1751322 (intron 19), and
D17S855 (intron 20); and D1751321, D1751320, and
D1751185 (3’ of BRCA1) (Neuhausen et al. 1996; Smith
etal. 1996). The 943ins10 mutation occurred on a single
haplotype spanning D1751320-D1751326 (fig. 1), a dis-
tance of ~700 kb.

The families inheriting BRCA1 943ins10 were from
widespread locales of Africa and the African diaspora:
the Ivory Coast, the Bahamas, the southeastern United
States, and Washington, DC. The families are not re-
cently related, and the four families in North America
can trace their history in this hemisphere to the slavery
period. The length of the 943ins10 nonrecombinant
BRCAT1 region is similar to the length of the shared
region flanking the BRCA1 mutation 185delAG. Hence,
the ages of these mutations may be comparable (Bar-
Sade et al. 1998). The shared BRCA1 region flanking
943ins10 is shorter than the BRCA1 regions flanking
5382insC or 2800delAA, so the African mutation is
probably older than these European mutations (Neu-
hausen et al. 1996; Friedman et al. 1995). West Africans
were brought to North America as slaves between 1619
and 1808. Hence, the social history of the families stud-
ied indicates that the mutation is >200 years old and
could be much more ancient.

Figure 1 indicates additional, known cases of breast
and ovarian cancer in each family. In families UM 94003
and UM95027, mothers of probands were affected. In
families UM96034 and HU003, in which mothers were
not affected, the 943ins10 allele was inherited from the
father. Age at breast and ovarian cancer diagnosis was
<50 years for all probands and affected relatives. Family
IC564 includes four women with breast or ovarian can-
cer, all of whom live in the Ivory Coast, where breast
and ovarian cancer are rare (Parkin et al. 1997). In this
family, the mother of a patient with ovarian cancer re-
mains unaffected at age 83 years, though she is likely
to carry the mutation. That there are elderly carriers
without cancer suggests that nongenetic factors may in-
fluence the penetrance of BRCAT1 alleles in geographic
regions with a low background risk for breast cancer.

The geographic distribution of 943ins10 in North
America is intriguing and is not completely known.
BRCA1 943ins10 occurred in 3 of 96 African American
patients seen at the University of Miami, who had breast
cancer diagnosed at an early age, and in 1 of 55 African
American patients seen at Howard University in Wash-
ington, DC, who had breast cancer diagnosed at an early
age or who had families with a high incidence of breast
cancer. However, in the population-based Carolina
Breast Cancer Study, the mutation did not appear among
263 African American breast cancer patients, 50% of
whom were aged <50 years and 50% of whom were
aged =50 years at diagnosis (Newman et al. 1998). The
943ins10 allele has not been observed in any patients
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Figure 1 Pedigrees of families carrying the BRCA1 943ins10 mutation. Affected individuals are indicated by a blackened symbol, and
probands are denoted by an asterisk (*). The shared haplotype segregating with 943ins10 is boxed. Haplotypes of the fathers of probands in
families UM96034 and IC564 have been reconstructed.

with breast cancer who identify their ancestry as solely  ters, in the prevalence of the mutation. To determine,
European. among African American women, the proportion of in-

The migration patterns of African Americans and, herited breast or ovarian cancer attributable to
hence, the current areas of residence of African American  BRCA1 943ins10, we would like to encourage testing
families, may explain the difference, among clinical cen-  for this mutation among African American breast and
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GGGTAGITCTGT TICAARACTTG CATGI' GG AGCCA TG TGGAGCCA TG TGGCACAAATACTCATGC

926 943 944

Figure 2 Sequence of the BRCA1 943ins10 mutation. A dupli-
cation and insertion of 10 bp causes a frameshift and premature trun-
cation at amino acid 289.

ovarian cancer patients from various regions of the
United States. Given the increasing incidence of and
higher mortality from breast cancer among African
American women, it would be useful to obtain as much
information as possible about the roles of BRCA1 and
BRCA2 in this population.
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Power Comparisons of the Transmission/
Disequilibrium Test and Sib-Transmission/
Disequilibrium-Test Statistics

To the Editor:

Several recent papers have considered the extension of
the transmission/disequilibrium test (TDT) to families in
which parental DNA is not available but in which un-
affected siblings can be sampled. Each of these tests com-
pares the alleles in the affected offspring with those in
the unaffected offspring. The tests differ both in the pre-
cise statistics used and in the numbers of affected and
unaffected offspring included. Spielman and Ewens
(1998) have developed the sib TDT (S-TDT) for families
with an arbitrary number of affected and unaffected
members (including at least one of each). Curtis (1997)
has used families with a single affected offspring and an
arbitrary number of unaffected offspring but has ana-
lyzed only that unaffected offspring who has the geno-
type most different from that of the affected offspring.
Boehnke and Langefeld (1998) have used a discordant-
sib-pair approach. The S-TDT is a test of linkage, but
it is also valid as a test of allelic association in which
precisely one affected sibling and one unaffected sibling
are used, as is the case in the tests that have been de-
scribed by Curtis (1997) and Boehnke and Langefeld
(1998).

These authors have considered power in different con-
texts—for example, across offspring genotype configu-
rations (Spielman and Ewens 1998) and across genetic
models (Boehnke and Langefeld 1998)—but none of the
approaches used was intended to provide an overall as-
sessment of the power of a sibling-based TDT statistic
compared with that of the original formulation of the
TDT. Here we derive a relationship between power for
the S-TDT and the TDT, which shows that, to achieve
similar power, considerably more genotyping is required
for the S-TDT than for the TDT. This is intuitively clear,
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for the following reason. For both tests, a family is in-
formative only if at least one parent is heterozygous.
The S-TDT requires an additional condition to be true:
both alleles from the heterozygous parent must be pre-
sent in the offspring. This implies that the informative-
ness of the S-TDT statistic increases with the number of
siblings genotyped. Because of the variation associated
with the alleles inherited by the # unaffected siblings,
we expect that, for finite 7, the S-TDT will be less pow-
erful than the TDT, with the power of the S-TDT tending
toward that of the TDT as n — . Below we formalize
this argument. Our results extend the power calculations
of Spielman and Ewens (1998): in table 5 of their paper,
they give the power of both the S-TDT and the TDT,
for families with one heterozygous and one homozygous
parent, a single affected child, and two to four unaffected
children. Their power calculations are conditional on
both alleles from the heterozygous parent being present
in the offspring, which, as the authors acknowledge,
covers only a small proportion of possible family ge-
notype configurations. This conditioning on the off-
spring genotypes implies that all families are informative
for the S-TDT, and therefore it crucially affects the
power of the S-TDT. With this conditioning, the power
of the S-TDT is almost as great as that of the TDT;
without it, the power of the S-TDT may be considerably
reduced.

For the sake of simplicity, we consider a sample of k&
families, assuming that in each family there are a single
affected offspring and # unaffected offspring. All indi-
viduals have been genotyped at a diallelic marker locus
with alleles M and #; let the numbers of M alleles in
the offspring in the ith family be X, for the affected sib
and Y,, j € {1,2,...,n}, for the unaffected sibs. We con-
dition on the parental genotypes in the sample and com-
pare the TDT and S-TDT for this sample. The difference
between the two statistics can be summarized as follows.
The TDT compares X. = £, X,, with E (X.|H,), where
this expected value is calculated from the parental
marker information, under the assumption that the null
hypothesis is true—that is, either of the two alleles in a
heterozygous parent is equally likely to be transmitted
to an affected child. The S-TDT, however, is designed
for use when this parental information is unavailable;
instead, X. is compared with Y./n, where Y. =
I E7,Y, is the total number of M alleles in the unaf-
fected offspring.

Our test statistics for the TDT and the S-TDT (Trpr
and T, respectively) are obtained by the method de-
scribed, by Spielman and Ewens (1998), as the Z-score
procedure: test statistics are standardized to mean 0 and
variance 1 and are assumed to follow a standard normal
distribution. This gives Typr = (X. — uy)/o,, where p,
and o} are, respectively, the mean and variance of X,
under the null hypothesis of no linkage.
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