
Ain Shams Engineering Journal (2014) 5, 515–523

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej
www.sciencedirect.com
ENGINEERING PHYSICS AND MATHEMATICS
Optimal harvesting strategy and stochastic analysis

for a two species commensaling system
* Corresponding author. Tel.: +91 9566814517.

E-mail addresses: mnsrinivaselr@gmail.com (M.N. Srinivas), shivar-

eddy.konda@gmail.com (K. Shiva Reddy), sabarmathi.a@gmail.com

(A. Sabarmathi).

Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier

2090-4479 � 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

http://dx.doi.org/10.1016/j.asej.2013.10.003
M.N. Srinivas a,*, K. Shiva Reddy b, A. Sabarmathi a
a School of Advanced Sciences, Department of Mathematics, VIT University, Vellore, Tamil Nadu 632 014, India
b Department of Mathematics, Anurag Group of Institutions, Venkatapur (V), Ghatkesar (M), R.R. District, Hyderabad, India
Received 5 July 2013; revised 15 September 2013; accepted 2 October 2013
Available online 20 November 2013
KEYWORDS

Commensal;

Routh–Hurwitz criteria;

Bionomic harvesting;

Optimal harvesting;

Pontriyagin’s principle;

Stochastic perturbation
Abstract In this paper, we have considered a mathematical model of commensalism between two

species (S1 and S2) with a limited resource of food, in addition the paper also highlights how the

commensal and host species are harvested. The model is characterized by a couple of first order

non-linear differential equations. Here, the stable equilibrium point is identified and its stability

(both local and global) criteria are discussed (both analytical and numerical). An optimal harvesting

strategy is being conversed using Pontriyagin’s maximum principle. We have explored the stochastic

stability by finding the corresponding variances. Finally numerical simulations illustrate the effec-

tiveness of our results.
� 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

Ecology is the study of relationships between living organisms
and their environment. Research in the area of theoretical ecol-
ogy was started by Lotka [10] and Volterra [19]. Since then

many mathematicians and ecologists have contributed to the
growth of this area creating awareness as reported in the
dissertations of Meyer [11], Cushing [4], Paul Colinvaux [14],
Kapur [5,6], etc. The ecological interactions can be extensively

classified as ammensalism, neutralism, commensalism,
competition, predation, and so forth. Srinivas [17] deliberated

competitive eco-system of two species and three species with
limited and unlimited resources. Later, Lakshminarayan and
Pattabhiramacharyulu [8,9] premeditated prey predator eco-
logical models with a partial cover for the prey and alternate

food for the predator. In recent times stability analysis of com-
petitive species was carried out by Archana Reddy et al. [1] and
Sharma and Pattabhiramacharyulu [2], whereas Ravindra

Reddy [16] investigated mutualism between two species. In
1996, Mesterton-Gibbons [12] described the skills to find the
finest harvesting strategy for a Lotka–Volterra eco-system of

two independent inhabitants. He also advocated that the tech-
nique may be extensively applicable in ecological modeling and
other recent claims. In 2009, Phanikumar et al. [15] inspected
the stability conditions for a mathematical model of commen-

salism between two species S1 and S2 with limited resources;
the linearized disturbed equations are solved and the trajecto-
ries are illustrated. In 2005, Kar and Swarnakamal [7] pro-

posed a prey predator model in a two patch environment: 1.
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Nomenclature

x biomass density of commensal species

y biomass density of host species
S1 commensal species
S2 host species
ai, i= 1, 2 natural growth rates of Si

aii, i = 1, 2 of decrease in Si due to limitations of natural

resources
a12 commensal coefficient
q1 represents the catchability coefficient of S1 species
E1 effort applied to harvest the S1 species
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Accessible to both prey and predators (patch 1) and 2. Being a
refuge for the prey (patch 2). They assumed that the prey ref-

uge (patch 2) constitutes a reserve zone of prey and fishing is
not permitted, while the unreserved area is an open-access fish-
ery zone. The existence of possible steady state points along

with their local and global stability is discussed. They also
examined the possibilities of the existence of bionomic equilib-
rium. Phanikumar et al. [15], Kar and Swarnakamal [7], and

Carletti [3] inspired us to consider a commensalism model,
incorporating harvesting in commensal species with a stochas-
tic term. The present exploration is devoted to the analytical
and numerical comparisons of commensalism with harvesting

for commensal species. This also includes stochastic immov-
ability. Two species commensalism is an ecological relation-
ship between two species where one species S1 derives benefit

from the other species S1 which would not get affected by it.
S1 may be referred as the commensal species, while S1 is the
host. Some of the examples are cattle Egrat, Anemonetish,

Barnacles, etc. The host species S1 supports the commensal
species S1 and has its own natural growth rate in spite of a sup-
port apart from S2. The commensal species S1 in spite of the
limitation of its natural resources flourishes drawing strength

from the host species S2. The model is characterized by a cou-
ple of first order non-linear differential equations. All the four
steady state points of the system are recognized and their sta-

bility analysis is carried out. It is detected that the co-existence
state is the only stable state that pertains to specified clauses.
However, the other three steady states are unstable.

2. Basic mathematical model

ðdxÞ=ðdtÞ ¼ x½ða1 � q1E1Þ � a11xþ a12y� ð2:1Þ

ðdyÞ=ðdtÞ ¼ y½a2 � a22y� ð2:2Þ

where x(t) represents the biomass density of commensal species
S1, y(t) represents the biomass density of host species S2. ai,

i= 1, 2 represents the natural growth rates of Si. aii, i= 1,
2 represents the rate of decrease in Si due to limitations of nat-
ural resources. a12 represents the commensal coefficient. q1 rep-
resents the catchability coefficient of S1 species. E1 represents

the effort applied to harvest the S1 species. Throughout our
analysis, let us assume that

a1 � q1E1 > 0 ð2:3Þ
3. Analysis of steady states

The possible equilibrium points are E1 (0,0), E2ð�x; 0Þ, E3ð0; �yÞ,
and E4 (x

*,y*).
Case (i): E1 (0,0): This equilibrium point always exist.
Case (ii): E2ð�x; 0Þ:
Here �x, is the positive solution of (dx)/(dt) = 0, which gives

�x ¼ ½1=ða11Þ�ða1 � q1E1Þ ð3:1Þ

Clearly we observe that (3.1) is positive due to inequality
(2.3).

Case (iii): E3ð0; �yÞ:
Here �y is the positive solution of (dy)/(dt) = 0, which gives

�y ¼ a2=ða22Þ ð3:2Þ

Case (iv): E4 (x
*,y*) (The interior equilibrium):

Here x* and y* are positive solutions of (dx)/(dt) = 0 and
(dy)/(dt) = 0, which gives

y� ¼ a2=ða22Þ ð3:3Þ

x� ¼ ½1=ða11Þ�½ða1 � q1E1Þ þ ½ða2a12Þ=a22�� ð3:4Þ

Clearly we have identified that (3.4) is positive due to the

inequality (2.3).

4. Local stability

To determine the local stability character of the interior equi-
librium E4(x

*,y*), we compute the variational matrix about E4.

Jðx; yÞ ¼
a1 � 2a11xþ a12yþ a13z� q1E1 a12x

0 a2 � 2a22y

� �
ð4:1Þ

The characteristic equation of (4.1) at the interior equilibrium

E4 (x
*,y*) is

ða11x� þ kÞða22y� þ kÞ ¼ 0 ð4:2Þ

The roots k1 = �a11x*; k2 = �a22y* of the Eq. (4.2) are both
negative. Hence the steady state is stable. Since

k1 + k2 = �(a11x* + a22y
*) < 0 and k1k2 = �a11a22x*y* > 0,

E4 (x
*,y*) is locally asymptotically stable.

5. Global stability

Theorem: The equilibrium point E4 (x
*,y*) is globally asymp-

totically stable.

Proof: Let us consider the following Lyapunov function

Vðx; yÞ ¼ ½ðx� x�Þ � x� lnðx=x�Þ� þ l1½ðy� y�Þ � y� lnðy=y�Þ�

where l1 is the positive constant.
(dV)/(dt) = [(x � x*)/x][dx/dt] + l1[(y � y*)/y][dy/dt];
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(dV)/(dt) = (x � x*)[(a11x
* � a12y

*) + (�a11x + a12y)] +
l1(y � y*)(a22y

* � a22y);

(dV)/(dt) = (x � x*)[�a11(x � x*) + a12(y � y*)] +

l1(y � y*)[�a22(y � y*)].

By choosing l1 = 1/(a22), we get,
(dV)/(dt) =�a11(x� x*)2 + a12(x� x*)(y� y*)� (y� y*)2;

(dV)/(dt) =�[a11(x� x*)2� a12(x� x*)(y� y*) + (y� y*)2],
which is in the form of�XT AX, where XT = (x� x* y� y*);

A ¼
a11 �ða12Þ=2

�ða12Þ=2 1

� �
:

The equilibrium point E4 (x
*,y*) is globally asymptotically

stable when (dV)/(dt) < 0. This is possible only when the ma-
trix A is positive definite, i.e. all principal minors of Ashould be

positive. Obviously the principal minors M1 = Œ1Œ and
M2 = Œa11Œ of A are positive. Hence the equilibrium point E4

is globally asymptotically stable.

6. Bionomic equilibrium

In Section (2), we have already discussed about the biological

equilibrium. Now, we discuss about the bionomic equilibrium
which is the combination of biological and economic equilib-
ria. Let c1 be the constant fishing cost per unit effort and p1
be the constant price per unit biomass of commensal species.
Then the economic rent (or) net revenue at any time is given by

R ¼ ðp1q1x� c1ÞE1 ð6:1Þ

The bionomic equilibrium ((x)1, (y)1, (E1)1) is obtained from
the equations

a1ðxÞ1 � a11ðxÞ21 þ a12ðxÞ1ðyÞ1 � q1E1ðxÞ1 ¼ 0 ð6:2Þ

a2ðyÞ1 � a22ðyÞ21 ¼ 0 ð6:3Þ

R ¼ ðp1q1ðxÞ1 � c1ÞðE1Þ1 ¼ 0 ð6:4Þ

If c1 < p1q1(x)1, i.e. if fishing cost is less than the revenue, i.e.
if the net revenue is positive, then the fishery will be in
operation.

From (6.2)–(6.4) we get,

ðxÞ1 ¼ c1=ðp1q1Þ ð6:5Þ

ðyÞ1 ¼ a2=ða22Þ ð6:6Þ

ðE1Þ1 ¼ ½1=q1�½a1 � ½ða11c1Þ=ðp1q1Þ� þ ½ða12a2Þ=a22�� ð6:7Þ

For (E1)1 to be positive, we must have

a1 þ a12ðyÞ1 > a11ðxÞ1 ð6:8Þ

The non-trivial bionomic equilibrium point ((x)1, (y)1, (E1)1)
exists if (6.8) hold. If (E1) > (E1)1, then the total cost utilized
in harvesting the fish population would exceed the total reve-

nues obtained from the fishery. Hence some of the fisherman
would be in loss and naturally they would withdraw their par-
ticipation from the fishery. Hence (E1) > (E1)1 cannot be

maintained indefinitely. If (E1) < (E1)1, then the fishery is
more profitable, and hence in an open access fishery, it would
attract more and more fisherman. This will have an increasing

effect on the harvesting effort. Hence (E1) < (E1)1 also cannot
be maintained indefinitely.

7. Optimal harvesting policy

In this section, we study optimal harvesting policy of the sys-
tem (2.1) and (2.2). We employ the Pontryagin’s maximum

principle to obtain the path of optimal harvesting policy.
We consider the following present value Jof a continuous

time-stream

J ¼
Z 1

0

Pðx; y; E1Þe�dtdt ð7:1Þ

where P is the net revenue given by

Pðx; y; E1Þ ¼ ðp1q1x� c1ÞE1 ð7:2Þ

Here, d is the instantaneous annual discount rate. The aim of

this section is to maximize Jsubject to the state Eqs. (2.1) and
(2.2). Firstly, we construct the following Hamiltonian function

H ¼ e�dtðp1q1x� c1ÞE1 þ k1½a1x� a11x
2 þ a12xy

� q1E1x� þ k2½a2y� a22y
2� ð7:3Þ

where k1, k2, k3 are adjoint variables.
E1 is the control variable satisfying the constraint

0 6 E1 6 ðE1Þmax ð7:4Þ

and the switching function is given by

/ðtÞ ¼ e�dtðp1q1x� c1Þ � k1q1x ð7:5Þ

Now, we aim to find an optimal equilibrium ((x)1, (y)1,

(E1)1) to maximize the Hamiltonian H. Since the Hamiltonian
H is linear in the control variable E1, the optimal control can
be extreme control (or) the singular control, thus we have

ðE1Þ ¼ ðE1Þmax where /ðtÞ > 0 i:e: k1e
dt < p1 � ðc1Þ=ðq1xÞ

ð7:6Þ

E1 ¼ 0 where /ðtÞ < 0 i:e: k1e
dt > p1 � ðc1Þ=ðq1xÞ ð7:7Þ

when /ðtÞ ¼0;
k1e

dt ¼ p1 � ðc1Þ=ðq1xÞ ðorÞ ð@HÞ=ð@E1Þ ¼ 0 ð7:8Þ

In this case, the optimal control is called the singular control
and (7.8) is the necessary condition for the maximization of
Hamiltonian H.

By Pontryagin’s maximum principle, the adjoint equations
are

ðdk1Þ=ðdtÞ ¼ �ð@HÞ=ð@xÞ
¼ �½e�d tp1q1E1 þ k1ða1 � 2a11xþ a12y� q1E1Þ�

ð7:9Þ

ðdk2Þ=ðdtÞ ¼ �ð@HÞ=ð@yÞ
¼ �½k1ða12xÞ þ k2ða2 � 2a22yÞ� ð7:10Þ

Now we seek to find the optimal equilibrium solution of the

problem so that x, y and E1 can be treated as constants.
Eq. (7.10) can also be written as
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ðdk2Þ=ðdtÞ þ A1k2 ¼ �A2e
�d t ð7:11Þ

where A1 = a2 � 2a22y
*; A2 = a12x

* (p1 � (c1)/(q1x
*)) and

whose solution is given by

k2 ¼ �A2=ðA1 � dÞe� d t ð7:12Þ

Eq. (7.9) can also be written as

ðdk1Þ=ðdtÞ þ A3k1 ¼ �A4e
�d t ð7:13Þ

where A3 = a1 � 2a11x
* + a12y

* � q1E1; A4 = p1q1E1 and
whose solution is given by

k1 ¼ �A4=ðA3 � dÞe� d t ð7:14Þ

From (7.8) and (7.14), we get the singular path

p1 � ðc1Þ=ðq1x�Þ ¼ �A4=ðA3 � dÞ ð7:15Þ

Using (3.3) and (3.4), Ai, i= 1, 2, 3, 4 can also be written as
follows:

A1 = �a2; A2 ¼ p1a12
a11
ða1 � q1E1Þ þ a2a12

a22

h i
� c1a12

q1
;

A3 ¼ �ða1 � q1E1Þ � a2a12
a22

; A4 = p1q1E1

Thus (7.15) can also be written as

Fðx�Þ ¼ ðp1 � ðc1Þ=ðq1x�ÞÞ þ A4=ðA3 � dÞ ¼ 0 ð7:16Þ

There exists a unique positive root x* = xd of F(x
*) = 0 in

the interval 0 < (x)1< K, if the following inequalities hold.
F(0) < 0;F(K) > 0;F0(x*) > 0, for x* > 0,whereK= a1/(a11).

For x* = xd, y
* = yd, we get (E1)d = 1/(q1)[a1 � a11xd +

a12yd].
Here, (E1)d > 0 if a1 + a12yd > a11xd.
From (7.12) and (7.14), we observe that kie

dt, i= 1, 2 is

independent of time and is an optimum equilibrium. Hence
they satisfy the transversality condition at1. That is, they re-
main bounded as t fi1. From (7.15), we also have
p1q1x

* � c1 = �A4/(A3 � d) fi 0 as d fi1. Thus the net eco-

nomic revenue R((x)1, (y)1, (E1)1) = 0. This implies that an
infinite discount rate leads to the net economic revenue tending
to zero and the fishery would remain closed.

8. Stochastic model

The foremost notion that leads us to broaden the determinis-
tic model (2.1) and (2.2) to a stochastic matching part is that

it is practical to imagine the open sea as deafening surround-
ing. There are a number of ways in which the located ’noise’
may be included in the system (2.1) and (2.2). This reminds

that the environmental noise should be discriminated from
demographic (or) internal noise, for which the variation over
time is due. External noise may arise either from random
fluctuations of one or more model parameters around some

known mean values or from stochastic fluctuations of the
population densities around some constant values. In this
segment, we compute the population intensities of fluctua-

tions (variances) around the positive equilibrium E4 due to
noise, according to the method introduced by Nisbet and
Gurney [13] in 1982. A similar method was also successfully

applied in Tapaswi and Mukhopadhyay [18] in 1999. Now
we assume the presence of a randomly fluctuating driving
force on the deterministic growth of the species S1 and S2

(commensal and host species) at time t, so that the system
(2.1) and (2.2) results in the stochastic system with additive
noise as follows:

ðdxÞ=ðdtÞ ¼ a1x� a11x
2 þ a12xy� q1E1xþ a1n1ðtÞ ð8:1Þ

ðdyÞ=ðdtÞ ¼ a2y� a22y
2 þ a2n2ðtÞ ð8:2Þ

where x(t) stand for commensal species, y(t) stand for host spe-
cies. a1, a2 are real constants and n(t) = [n1(t),n2(t)] is a two

dimensional Gaussian white noise process agreeable

E½niðtÞ� ¼ 0; i ¼ 1; 2

E½niðtÞnjðt0Þ� ¼ dijdðt� t0Þ; i ¼ j ¼ 1; 2

where dij is the Kronecker symbol; d is the Dirac-delta
function.

Let

x1ðtÞ ¼ u1ðtÞ þ S�; x2ðtÞ ¼ u2ðtÞ þ P�;

dx1

dt
¼ du1ðtÞ

dt
;

dx2

dt
¼ du2ðtÞ

dt
ð8:3Þ

Using (8.3), Eq. (8.1) becomes

u01ðtÞ ¼ a1u1ðtÞ þ a1S
� � a11u

2
1ðtÞ � a11ðS�Þ2

� 2a11u1ðtÞS� þ a12u1ðtÞu2ðtÞ þ a12u1ðtÞP�

þ a12u2ðtÞS� þ a12S
�P� � q1E1u1ðtÞ � q1E1S

�

þ a1n1ðtÞ ð8:4Þ

The linear part of (8.4) is

u01ðtÞ ¼ �a11u1ðtÞS� þ a12u2ðtÞS� þ a1n1ðtÞ ð8:5Þ

Using (8.3), Eq. (8.2) becomes

u02ðtÞ ¼ a2u2ðtÞ þ a2P
� � a22u

2
2ðtÞ � a22ðP�Þ2

� 2a22u2ðtÞP� þ a2n2ðtÞ ð8:6Þ

The linear part of (8.6) is

u02ðtÞ ¼ �a22u2ðtÞP� þ a2n2ðtÞ ð8:7Þ

Taking the Fourier transform on both sides of (8.5) and

(8.7) we get,

a1
~n1ðxÞ ¼ ðixþ a11S

�Þ~u1ðxÞ � a12S
�~u2ðxÞ ð8:8Þ

a2
~n2ðxÞ ¼ ðixþ a22P

�Þ~u2ðxÞ ð8:9Þ

The matrix form of (8.8) and (8.9) is

MðxÞ~uðxÞ ¼ ~nðxÞ ð8:10Þ

where

M xð Þ ¼
AðxÞ BðxÞ
CðxÞ DðxÞ

� �
; ~uðxÞ ¼

~u1ðxÞ
~u2ðxÞ

� �
;

~nðxÞ ¼ a1
~n1 xð Þ

a2
~n2 xð Þ

" #
;
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AðxÞ ¼ixþ a11S
�; BðxÞ ¼ �a12S�;

CðxÞ ¼ 0; DðxÞ ¼ ixþ a22P
� ð8:11Þ

Eq. (8.10) can also be written as ~uðxÞ ¼ ½MðxÞ��1~nðxÞ
Let ½M xð Þ��1 ¼ KðxÞ, then

~uðxÞ ¼ KðxÞ~nðxÞ ð8:12Þ

where

KðxÞ ¼
DðxÞ
jMðxÞj � BðxÞ

jMðxÞj

� CðxÞ
jMðxÞj

AðxÞ
jMðxÞj

" #
ð8:13Þ

If the function Y(t) has a zero mean value, then the fluctuation

intensity (variance) of its components in the frequency interval
[x, x + dx] is SY (x)dx, where SY(x) is spectral density of Y
and is defined as

SYðxÞ ¼ lim
~T!1

j ~YðxÞj2

T
� ð8:14Þ

If Y has a zero mean value, the inverse transform of SY(x) is
the auto covariance function
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Figure 2 The variation of population against time initially with x

populations for the parameters a1 = 1.5; a11 = 0.1; a12 = 0.5; q1 = 0
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Figure 1 The variation of population against time initially with

populations for the parameters a1 = 4; a11 = 0.01; a12 = 0.05; q1 = 0
CYðsÞ ¼
1

2p

Z 1

�1
SYðxÞeixsdx ð8:15Þ

The related variance of fluctuations in Y(t) is given by

r2
Y ¼ CYð0Þ ¼

1

2p

Z 1

�1
SYðxÞdx ð8:16Þ

and the auto correlation function is the normalized auto
covariance

PYðsÞ ¼
CYðsÞ
CYð0Þ

ð8:17Þ

For a Gaussian white noise process, it is

SninjðxÞ¼ lim
T!þ1

E½~niðxÞ~njðxÞ�
T

¼ lim
T!þ1

1

T

Z T
2

�T
2

Z T
2

�T
2

E ~niðtÞ~njðt0Þ
h i

e�ixðt�t
0 Þdtdt0 ¼ dij ð8:18Þ

From (8.12), we have
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~uiðxÞ ¼
X2
j¼1

KijðxÞ~njðxÞ; i ¼ 1; 2 ð8:19Þ

From (8.14) we have

SuiðxÞ ¼
X2
j¼1

aj jKijðxÞj2; i ¼ 1; 2 ð8:20Þ

Hence by (8.16) and (8.20), the intensities of fluctuations in the
variable ui; i= 1, 2 are given by

r2
ui
¼ 1

2p

X2
j¼1

Z 1

�1
ajjKijðxÞj2dx; i ¼ 1; 2 ð8:21Þ

and by (8.13), we obtain

r2
u1
¼ 1

2p

Z 1

�1
a1

DðxÞ
jMðxÞj

����
����
2

dxþ
Z 1

�1
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Figure 4 The variation of population against time initially with x

populations for the parameters a1 = 3; a 11 = 0.01; a12 = 0.05; q1 =
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Figure 3 The variation of population against time initially with x

populations for the parameters a1 = 1.5; a11 = 0.1; a12 = 0.5; q1 = 0
where

jMðxÞj ¼ RðxÞ þ iIðxÞ ð8:23Þ

RðxÞ ¼ �x2 þ a11a22S
�P� ð8:24Þ

IðxÞ ¼ xða11S� þ a22P
�Þ ð8:25Þ

Finally from (8.11), we get

jAðxÞj2 ¼x2 þ ða11S�Þ2; jBðxÞj2 ¼ ða12S�Þ2;
jCðxÞj2 ¼ 0; jDðxÞj2 ¼ x2 þ ða22P�Þ2 ð8:26Þ

By substitution of (8.23) and (8.11) in (8.22), we get,
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Figure 5 The variation of population against time initially with x = 15; y = 20 and the variation between commensal and host

populations for the parameters a1 = 3; a11 = 0.01; a12 = 0.05; q1 = 0.2; E1 = 15; a2 = 3; a22 = 0.5.
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Figure 6 The variation of population against time initially with x = 15; y = 20 and the variation between commensal and host

populations for the parameters a1 = 3; a11 = 0.01; a12 = 0.05; q1 = 0.2; E1 = 15; a2 = 0.32; a22 = 0.2.
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Figure 7 The variation of population against time initially with x = 15; y = 20 and the variation between commensal and host

populations for the parameters a1 = 3; a11 = 0.01; a12 = 0.05; q1 = 0.2; E1 = 5; a2 = 0.32; a22 = 0.2.
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If we are interested in the dynamics of system (8.1) and (8.2)
with either a1 ¼ 0 or a2 ¼ 0.

If a1 = 0, then
r2
u1
¼ a2ða12S�Þ2

2p

Z 1

�1

1

R2ðxÞ þ I2ðxÞ
dx ð8:29Þ

r2
u2
¼ 0 ð8:30Þ
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If a2 = 0, then

r2
u1
¼ a1

2p

Z 1

�1

1

R2ðxÞ þ I2ðxÞ
x2 þ ða22P�Þ2
h i

dx ð8:31Þ

r2
u2
¼ a1

2p

Z 1

�1

1

R2ðxÞ þ I2ðxÞ
x2 þ ða11S

�Þ2
h i

dx ð8:32Þ

The expression in (8.22) gives two variances of the popula-

tions. The mergers over the real line can be judged which gives
the variances of the populations.
9. Numerical simulations

In this section, we assign numerical values to the parame-
ters of the model system (2.1) and (2.2) and compute some

simulations using those values. For the purpose of simula-
tion experiments we mainly used the software MATLAB
(7.2).
10. Conclusion

In this paper, a model of a distinctive two species syn eco-sys-
tem with a stochastic term was invented. Initially the model

was discussed without the stochastic term. The survival of
equilibrium points is discussed. The local stability by using
Routh–Hurwitz criteria and conniving global stability using

Lyapunov function are computed and analyzed. The idea of
bionomic equilibrium and optimal harvesting strategy through
Pontryagin’s maximum principle are computed. Later, we

introduced the stochastic term into the model and the popula-
tion intensities of fluctuations (variances) around the positive
equilibrium due to ’noise’ are computed and analyzed for

stability.
The numerical results agree with the analytical results of

two species eco-system model and this shows that the deter-
ministic two species eco-system model is stable. The stable

nature of the interior equilibrium point (870,100) is revealed
in Fig. 1, where the trajectory of the system for the chosen
parameters is converging to the interior equilibrium point.

From the Figs. 2 and 3, it is clear that the trajectories of
the model oscillate due to addition of noise and the oscilla-
tions are increases as increase in the amplitude of noise a.
Figs. 4 and 5 exhibit the periodic time series evolution of
populations and the limit cycles of phase-portraits confirm
the periodic behavior of the system due to increase in noise
effect. It is also observed that when we control the effect of

random noise by decreasing a, the mean square fluctuations
of populations are reduced and the stochastic stability with
the decreased intensity is shown in Figs. 6 and 7. Hence

we conclude that insertion of stochastic perturbation creates
a momentous change in the intensity of our dynamical sys-
tem due to amendment of the receptive parameters, which

cause huge environmental fluctuations leading to chaos in
realism.
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