
A
p

E
a

b

c

a

A
R
R
A
A

K
C
P
A
M
C
X

1

p
c
h
o
t
n
u
w

p
m
m
a
i
m
r
b
c

d
1

0
d

y COREView me

er Connector 
Applied Surface Science 257 (2011) 8038–8043

Contents lists available at ScienceDirect

Applied Surface Science

journa l homepage: www.e lsev ier .com/ locate /apsusc

nalyses of residual iron in carbon nanotubes produced by camphor/ferrocene
yrolysis and purified by high temperature annealing

.F. Antunesa,b,∗, V.G. de Resendeb, U.A. Menguib, J.B.M. Cunhac, E.J. Coratb, M. Massib

Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, CEP 12.228-900, São José dos Campos, SP, Brazil
Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, São José dos Campos, SP, Brazil
Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP 91.501-970, Porto Alegre, RS, Brazil
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a b s t r a c t

A detailed analysis of iron-containing phases in multiwall carbon nanotube (MWCNT) powder was carried
out. The MWCNTs were produced by camphor/ferrocene and purified by high temperature annealing
in an oxygen-free atmosphere (N2 or VC). Thermogravimetric analysis, Mössbauer spectroscopy, X-ray
diffraction and X-ray photoelectron spectroscopy enabled the evaluation of the residual iron in MWCNTs
after purification. The VC treatments provided MWCNTs with a purity degree higher than 99%. Moreover,
Raman spectroscopy revealed a significant improvement in graphitic ordering after thermal annealing.
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A brief description of the mechanism of iron removal was included. We highlight the mobility of iron
atoms through graphitic sheets and the large contact angle of iron clusters formed on MWCNT surfaces
at high temperatures.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.
PS

. Introduction

High temperature annealing in nonoxidative atmospheres has
roven to be an efficient way to remove metal nanoparticles from
arbon nanotubes (CNTs). CNTs have a graphite structure, which
as a thermal stability of up to 3000 ◦C, while metal particles evap-
rate at lower temperatures, especially in vacuum (VC) [1]. Thus,
reatment at temperatures over 1800 ◦C yields multiwall carbon
anotubes (MWCNTs) with a high degree of purity [2]. However, the
se of temperatures higher than 2000 ◦C for treatments of single-
all or doubled-wall CNTs may cause tube coalescence [3].

It is well known that even the best purification methods do not
rovide 100% purity, although in practice, an analysis of residual
etal is seldom performed. Analyses of metal residue can identify
etal phases and location of the residue sites. In addition, they may

lso be used to describe removal mechanisms. Knowledge of the
mpurities is extremely important for some applications of CNTs,

ainly for biomaterials. Some tests in biological environments

eport that, depending on the media, metal particles encapsulated
y carbon shells can be mobilized even for purified CNTs, which is
alled bioavailability [4–6].

∗ Corresponding author at: Instituto Nacional de Pesquisas Espaciais (INPE), Av.
os Astronautas, 1758, CEP 12.227-010, São José dos Campos, SP, Brazil. Tel.: +55
232 086558; fax: +55 1232 086717.

E-mail addresses: ericafa@las.inpe.br, ericafa2009@hotmail.com (E.F. Antunes).

169-4332 © 2011 Elsevier B.V. 
oi:10.1016/j.apsusc.2011.04.090

Open access under the Elsevier OA license.
This paper reports on a study of iron particles, a very common
contaminant of MWCNTs produced with ferrocene [7]. It presents
a detailed analysis of iron residues, in its solid phase, in MWCNTs
purified by high temperature annealing in inert atmosphere (N2)
or under VC. Mössbauer spectroscopy (MS), X-ray diffraction (XRD)
and X-ray Photoelectron Spectroscopy (XPS) allowed the monitor-
ing of the residual iron in MWCNT samples. Moreover, the Raman
spectra results show improvements in graphitic ordering after ther-
mal annealing.

2. Methodology

The iron-containing phases in MWCNT samples are inherent to
the production process. Samples produced by pyrolysis of camphor
[8] mixed with 16% of ferrocene, at 850 ◦C in atmospheric pressure,
provided the MWCNTs, as previously described elsewhere [9]. This
is a very efficient production method, providing a mass yield around
30%, related to the pyrolysis of its initial mass.

Thermal annealing at high temperatures (1500–1800 ◦C) was
performed with an ASTRO graphitic furnace by 2 h, in oxygen-free
atmospheres, using N2 (68.9 kPa) or VC (0.4 kPa), to remove the
iron content from the MWCNTs. Thermogravimetric analyses (TGA)

were used to determine the iron proportion in MWCNT samples
after each treatment [10]. The TGA equipment was a Perkin Elmer,
model 7HT, operating at temperatures ranging from 25 to 1100 ◦C
at a heating rate of 10 ◦C/min in air.

https://core.ac.uk/display/81119871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.apsusc.2011.04.090
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annealing in N2 at 1500 ◦C (Fig. 5b), the iron atoms in Fe3C dif-
fuse through nanotube walls. Consequently, the concentration of
�-Fe is much higher (86%). In the treatment under VC at 1500 ◦C
(Fig. 5c), most of the �-Fe evaporated, but is still responsible for

Table 1
Relative spectral areas got from adjusting the MS graphs of all samples.

Samples Relative spectral area – RA (%)

Fe3C �-Fe �-Fe–C Fe1−xOx
E.F. Antunes et al. / Applied Sur

Raman spectrums, recorded from 1000 to 3500 cm−1, by using
f a Renishaw 2000 system equipped with Ar laser (514.5 nm),
howed improvement of the MWCNT crystalline structure after
ach treatment. The reduction in the relative intensity of bands
nd full width at half maximum (FWHM) [11] corroborate this
mprovement.

The MS was performed at room temperature with a 57Co (Rh)
ource in constant acceleration mode used a triangular reference
ignal. The spectrums were computer analyzed in terms of model-
ndependent distributions of hyperfine-parameter values.A study
ased on XPS evaluated the presence of iron and its oxidation
tate on MWCNT surfaces. The XPS analyzer was a commercial
pectrometer (UNI-SPECS UHV), with a Mg K� line (h� = 1253.6 eV)
nd a pass energy set at 10 eV. The inelastic background of the
1s, O1s, and Fe2p electron core-level spectrums subtraction using
hirley’s method prepared the spectrums for curve fitting. The cali-
ration of binding energies was performed taking the hydrocarbon
eak at 285.0 eV. Multiple Voigt profiles without constraints fit-
ed the spectrums’ features. The composition of the surface layer
as determined from the ratio of the relative peak areas corrected

y Scoffield sensitivity factors of the corresponding elements. The
idth at half maximum (FWHM) varied between 1.0 and 2.0 eV and

he accuracy of the peak positions was ±0.1 eV.
A high resolution X-ray diffractometer (Philips X’Pert), equipped

ith a Cu K� radiation tube, recorded XRD patterns in the 2� scans
anging from 38◦ to 50◦ with grazing incidence angle of 3◦.

An XL30 FEG scanning electron microscope (SEM), and a CM120
ransmission electron microscope (TEM) from Philips enabled
xamining iron clusters and sites.

. Results and discussion

The pyrolysis of camphor and ferrocene synthesized MWCNTs
ith diameters ranging from 15 to 50 nm and length of ∼100 �m,
ith iron clusters inside the tubes and inside the structure of tube
alls. Therefore, the contaminants to be extracted were essentially

ron or iron carbide nanoparticles. Fig. 1 shows TEM images of as-
rown MWCNTs and MWCNTs after thermal annealing at 1800 ◦C
nder VC by 2 h. In Fig. 1(a), for as-grown MWCNT, the dark points
hown are iron nanoparticles in the nanotubes interior and inside
heir walls. However, Fig. 1b shows that, even at thermal annealing
t 1800 ◦C under VC, a few iron particles remain inside nanotube
alls.

SEM images reveal forming iron clusters on MWCNT surfaces
uring annealing at 1500 ◦C in N2, as shown in Fig. 2a. However,
he evaporation rate is higher under VC and no iron cluster can be
een in Fig. 2b and c, at 1500 ◦C and 1800 ◦C, respectively.

Fig. 3 shows TGA (a) and DTG (b) curves for the as-grown MWC-
Ts and annealed samples. The thermal stability of the MWCNTs

n air improved considerably after annealing. As-grown MWCNTs
howed oxidation peaks at a temperature of 615 ◦C, while treated
amples showed peaks at 750 ◦C and 900 ◦C, after annealing at
500 ◦C and 1800 ◦C, respectively. The residual mass for samples
reated at 1800 ◦C under VC indicated 0.3% of total mass, which
nfers that is possible reaching a high degree of purity (higher than
9.7%). Notice that iron residue is an oxide, because of the presence
f air during the TGA measurement; therefore, the iron content is
ctually lower than indicated.

Changes in thermal stability behavior can be correlated with
mproving the MWCNT crystalline quality after high temperature
nnealing. This improvement can be inferred from the notice-

ble narrowing in G band in Raman spectrum (Fig. 4) of samples
reated at 1800 ◦C. The Raman spectrums of graphite-like materi-
ls present four main bands: D (∼1352 cm−1), G (∼1582 cm−1), D′

∼1600 cm−1) and G′ (∼2700 cm−1), when analyzed by an Ar laser
Fig. 1. TEM images of the iron located inside the nanotubes and into their walls: (a)
as-grown MWCNT powder; (b) after purification at 1800 ◦C in VC.

(514.5 nm). Generally, the ratio between the intensities of G and
D bands (ID/IG) is used to evaluate the disorder degree of graphitic
materials [12–17]. G′ band with high intensity is indicative of highly
ordered nanographites, composed of few graphene sheets or 3D
structures with defects on the lattice parameter because of curva-
ture effect [18–20].

Fig. 5 shows MS plots of the as-grown sample (a), and samples
treated at: 1500 ◦C in N2 (b), 1500 ◦C under VC (c), and 1800 ◦C
under VC (d). Table 1 summarizes the relative spectral areas (RA)
of all components, as determined by the adjustment of the spec-
trums. The analysis of the as-grown MWCNTs spectrum indicated
the presence of Fe3C (56%), �-Fe (16%), Fe1−xOx (6%) and �-Fe–C
(22%), phases also observed by de Resende et al. [21]. Seventy
eight percent of the iron phases detected in these samples have
carbon in their structure (Fig. 5a). These phases are the result of
MWCNT growth mechanisms, in which the metal particles are sat-
urated by carbon until nanotubes nucleate [22,23]. During thermal
As-Grown MWCNT 56 16 22 6
N2-1500 ◦C-2 h – 86 9 5
VC-1500 ◦C-2 h – 27 25 48
VC-1800 ◦C-2 h – – 32 68
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intense for samples treated at 1500 ◦C in N2, and it becomes weaker
for samples treated under VC. The peak area of �-Fe–C is higher than
�-Fe after annealing under VC. The iron carbides also appear in the
sample treated at 1800 ◦C under VC for 1 h. The sample annealed
ig. 2. SEM images of MWCNT powder after treatment at: (a) 1500 C under N2

tmosphere, (b) 1500 ◦C under VC, and (c) 1800 ◦C under VC.

7% of all iron phases. The �-Fe removal is completed at 1800 ◦C
nder VC (Fig. 5d). Fe1−xOx was the most stable iron phase, and it
as not eliminated even with thermal annealing at 1800 ◦C under
C. However, the signal got for this sample was rather lower com-
ared to other samples (Fig. 5a–c), indicating that it has a very low

ron content. This explanation is corroborated by its TGA curve,
hich showed a small amount of iron as residual mass (see Fig. 3).

Fig. 6 shows the MS graphs of a sample treated during 1 h dura-
ion at 1800 ◦C, carried out to check what occurs during the iron
vaporation under VC. The fitting parameters showed one dou-
let due to wustite (Fe1−xOx) and three sextets with low values
f hyperfine fields (8.7, 9.6, and 12.7 T). The three sextets suggest

he presence of iron carbides [24,25]. The relative spectral area of
he wustite was equal to 25%, whereas the three sextets due to the
ron carbide phases composed 75% of the total spectrum.
Fig. 3. Curves of TGA (a) and DTG (b) for the as-grown MWCNT powder, and samples
treated by thermal annealing at 1500 ◦C and 1800 ◦C in N2 atmosphere and under
VC.

Fig. 7 shows the high resolution XRD pattern around the most
intense iron diffraction peaks (38–50 ◦C), taken for all samples.
The XRD diffractograms are in total accordance with MS graphs,
showing diffraction peaks characteristic of Fe3C, �-Fe, and �-Fe–C
[26–28]. Notice that the diffraction peak due to �-Fe phase is more
Fig. 4. Raman spectra at 514.5 nm for the as-grown MWCNT powder and samples
treated by thermal annealing at 1500 ◦C and 1800 ◦C in N2 atmosphere and under
VC.
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ig. 5. MS graphs at room temperature for: (a) as-grown sample; and samples afte
ormalized and corresponds to transmission.

t 1800 ◦C under VC for 2 h, show the C(1 0 0) XRD peak of graphite
lmost totally free of iron.

Surface analyses carried out with XPS produced the plots shown
n Figs. 8 and 9. Fig. 8 shows extended XPS graphs of: as-grown sam-
les (a), and samples after treatment at: 1500 ◦C in N2 atmosphere
b), 1500 ◦C under VC, (c), and 1800 ◦C under VC (d). They are very
imilar, showing 98.4 to 99.3% of carbon (∼284.5 eV), and the rest
s oxygen (∼532 eV) and iron (710 eV) [29]. In fact, iron appeared
nly in the as-grown MWCNTs. In treated samples the iron content

as below the detection limit (0.05 at%). Fig. 9 shows a comparison

f high resolution C1s core level spectra for all samples in (a) and
he deconvolution of Fe2p of the as-grown MWCNTs in (b).

ig. 6. MS graphs of the sample obtained from the treatment at 1800 ◦C during 1 h.
he y-axis corresponds to transmission and it is normalized.
ment at (b) 1500 ◦C in N2, (c) 1500 ◦C under VC, and (d) 1800 ◦C under VC. Y-axis is

Notice that as-grown MWCNT spectrum in Fig. 9(a) is
slightly broader than the purified ones. The C1s curve fit-
ting was not presented here, but it usually is deconvoluted
into six components: C–C (∼284.57 eV), C–H (∼285.19 eV), C–O
(∼286.00 eV), C=O (∼287.38 eV), O–C=O (∼288.88 eV) and plasmon
� − �*(∼291.02 eV). When iron carbides are present, a component
at ∼283.8 eV can be also included [30].

The iron spectrum (Fe 2p3/2) of the as-grown MWCNTs, mea-
sured at the detection limit, showed Fe0 (707.0 eV) and minor
contributions of iron oxides and carbides. The other peaks iden-
tified were: Fe3C (708 eV), FeO2 (709.8 eV), and Fe2O3 (711.0 eV)
[31].
Fittings of O1s spectrums are shown in Fig. 9(c–f), for as-
grown MWCNTs (c), and for samples treated by 2 h at: 1500 ◦C
in N2 (d), 1500 ◦C in VC (e), and at 1800 ◦C in VC (f). The O1 s

Fig. 7. XRD patterns for samples before and after thermal annealing.
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Fig. 8. Extended XPS graphs of: (a) as-grown sample; and samples after treatment
at (b) 1500 ◦C in N2 atmosphere, (c) 1500 ◦C under VC, and (d) 1800 ◦C under VC.

Fig. 9. XPS graphs of: (a) C1s core level of all samples, and (b) Fe2p core level of only as-g
samples treated at: (d) 1500 ◦C-N2, (e) 1500 ◦C-VC, (f) 1800 ◦C-VC.
cience 257 (2011) 8038–8043

curves (Fig. 9 (c–f)) were fitted with three components, referent
to C–O (∼533.3 eV), –OH/C=O (∼532 eV), and O−2 (∼530.2 eV) [32].
Although the iron spectrums (Fe 2p3/2) have not been identified
on purified sample surfaces, the component referent to O−2 at the
O1s core level is strongly indicative of iron presence in oxide forms.
The O−2 component decreased with treatments at 1500 ◦C, but at
1800 ◦C under VC it vanished completely.

Basically, purification of CNTs consists in removing metal par-
ticles without degradation of the graphitic structure. In particular,
for thermal annealing, the environment should be free of oxygen. In
high temperature annealing, oxygen can react with carbon form-
ing CO2 or CO and graphitic walls are eroded. Hence both inert
atmosphere and VC are appropriate for this treatment. The key in
successful thermal annealing is that metal nanoparticles acquire
mobility to diffuse through the graphitic structure without destroy-
ing C–C bounding. Graphite melts at temperatures around 3500 ◦C
under an inert atmosphere, while iron melts at ∼1536 ◦C. The iron

carbides formed during the MWCNT growth are clearly unstable
during the annealing. Probably, over 1500 ◦C, the graphitic struc-
ture can dilate by increasing the vibration amplitude of carbon
atoms of its hexagonal lattice. Meanwhile, iron nanoparticles are

rown MWCNT. Deconvolution of O1s core level for: (c) as-grown samples; and for
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lose to melting. Because of the higher spacing between C–C bound-
ng [33–35] and the high mobility of iron in its liquid state the
ron may diffuse to outside the tubes through their walls. The TEM
mages of Fig. 1b may indicate that diffusion occurred through the

WCNT walls. Outside the tubes, the iron may evaporate or diffuse
nto MWCNT surface to form larger clusters. Higher temperatures
ead to higher vapor pressures [36]. Under VC the evaporation rate
s maximized because the pumping rate is higher than the evapo-
ation rate. Under inert gas atmosphere the evaporation rate may
ecrease due to the increase of Fe partial pressure.

Treatments for only 2 h were insufficient to eliminate iron at
500 ◦C in N2, and spherical iron clusters can be found in some
egions of CNT powder. These spheres most probably result from
he iron diffusion with high mobility on the surface followed by
ondensation in larger clusters. From the near spherical form of
hese clusters, it can be inferred the contact angle between liquid
ron and CNT surface is close to 180◦ under N2 at the atmospheric
ressure. That is, the MWCNT surface is super iron-phobic. This
eans that pure iron does not adhere to MWCNT, and their surface

an be completely cleaned of iron residues.
Removal of iron oxide, on the other hand, needs complementary

reatments in hydrogen environments or by acidic treatments in a
iquid phase.

. Conclusions

The high temperature thermal annealing successfully purified
WCNTs produced from camphor and ferrocene mixtures with
15% of iron in their composition, achieving a purity degree higher

han 99%. Heating under inert atmosphere or VC were essential to
mprove ordering of graphitic structures without significant carbon

ass loss.
MS and XRD were effective in discriminating the sequence of

ron removal, revealing key mechanisms of phase transformations.
ven without specific treatment to open CNT tips, the iron atoms
igrated from the nanotube core to the outside surface. Iron phases

ontaining carbon (�-Fe or Fe3C) were removed more efficiently
t higher temperatures and with VC pumping. XPS analyses also
emonstrated very efficient iron removal from MWCNT surfaces.

These analyses have shown that only iron oxides remain stable
fter thermal annealing. Consequently, an increase in the degree
f purity would only be achieved by oxide removal in longer treat-
ents at higher temperature, or by a combination between higher

emperature annealing and liquid-phase acidic treatments.
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