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We discuss problems of best approximation with constraints in (a) an abstract 
Hilbert space setting and (b) a concrete form involving polynomial approximation. 
One problem is to compute the Hilbert space distance from a fixed vector h to the 
set of vectors Ad such that 11 Bdll < M, where A, B are given linear operators and M 
is a positive constant. A related concrete problem is to find the L2(p)-distance from 
a fixed function h to the set of polynomials p that satisfy I IpI2 dv < M*, where p, v 
are nonnegative, finite Bore1 measures on the unit circle and M is a positive con- 
stant. In particular, the dependence of this distance on the singular components of p 
and v is investigated. 0 1988 Academic Press. Inc. 

1. INTRODUCTION 

A classical problem is to approximate a given vector h in a Hilbert space 
by vectors in a linear manifold. In another view, one can think of h as data 
to be extrapolated, and approximants as the result of extrapolation. The 
imposition of constraints on approximants is sometimes helpful in making 
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the extrapolation process stable [4, 221. Problems can be posed in abstract 
or concrete settings; both types are considered in this paper. 

Let Hi, HZ, K be Hilbert spaces, and let A, B be closed, densely defined, 
linear operators on K to Hi, H,, respectively. Let h be a fixed vector in 
H, , and let M, 2 be positive constants. Set 

I, :=inf{ ~Ih--.4dl12: dED(A)nD(B), I/BdI~*6M2}, (1.1) 

I, :=inf{ I~ZZ--A~~/~:~ED(A)) 

= IV-kl12; (1.2) 

here h, is the projection of h on (R(A)) -. We also consider 

JI :=inf{ Ilh-Adl12+~~IIBdl12:dED(A)nD(B)}, (1.3) 

J,:=inf{~Ih-Adl/2:d~D(A)) 

= Ilh-h,l12. (1.4) 

Appropriate technical conditions are specified in Section 2. For M -+ a 
and Jb JO, 

Z!wlZ, and J, 1 JO 
It will be shown that I, always has an extremal vector e,,,, and eM is 
unique if I, > I,. The inlimum Jj. has a unique extremal fj.. If M and 3. are 
suitably connected, then e,,,, = f>. We exhibit the required connection and 
compute the extremal vectors (Section 2). Special cases of these results are 
given in Rosenblum [lS], Shapiro [22], and elsewhere in the literature 
such as [2, 131. The results are abstract generalizations of a method of 
Davis [S]. 

In Sections 3-5 we take up related problems of polynomial 
approximation. Let ZJ, v be nonnegative, finite Bore1 measures on the unit 
circle Z= I?,‘: Ill = l}. Let h be a given function in Z,‘(p), and let M, /I be 
positive constants. Set 

S,(p, v) := inf Ih-p12d~:p~~,jlp12dv~M2 (1.5) 

Ih-pl*dp:pEY (1.6) 

and 

Tj.(p,v):=inf ~Ih-p12d~+iSlp12dv:p~~ (1.7) 

T,(p):=inf /lh-pl’dp:p~P (1.8) 
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Under suitable hypotheses, these quantities are independent of the 
absolutely continuous components of p and v. In the case of absolutely 
continuous measures, the abstract theory of Section 2 is applicable; we 
interpret the abstract results in this concrete setting. 

The unconstrained inlimum S,(p) = T,(p) is computed in Rosenblum 
and Widom [20]. The best known case, of course, is h(i) = & Then we 
have the classical Szego infimum (Grenander and Szegij [S] ). Constrained 
infimum problems of the type that we study were first treated by Krein and 
Nudel’man [ 11, 121 in connection with an engineering problem. See also 
[ 1, 201. A different type of problem is obtained by imposing constraints on 
the degree of a polynomial [23,24]. 

NOTATION 

D 
r 

; 

i-? 
c.3 .> 

D( .I 
Rt.1 

c., .I’ 
.- .- 

open disk in C, 
unit circle (boundary of D), 
normalized Lebesgue measure on r, 
set of polynomials, 
Hardy class on D or r (as required by context), 
norm, 
inner product, 
domain of an operator, 
range of an operator, 
column vector; t denotes matrix transpose, 
this indicates a definition. 

2. BEST APPROXIMATION IN HILBERT SPACE 

Throughout this section, A, B are closed, densely defined linear 
operators on a Hilbert space K to Hilbert spaces Hi, H,, respectively. Let 
h be a fixed vector in Hi, and let h, be the projection of h on (R(A))-. 

Define I,, I, and J,, Jo by (1.1 )-( 1.4) for any positive constants M and 
1. We adopt the following conditions as standing hypotheses. 

(Cl) The set 9 := D(A) n D(B) is dense in K. 
(C2) There is a 6>0 such that IIAdll’+ IIBd(12>6/ldl12 for all dE9. 

(C3) The set A9 is dense in (R(A))-. 

(C4) The vector h, is not of the form h, = Ad, where dE 9 and 
Bd=O. 

No use of (C4) is made until Theorem 2.6. Its use there is to eliminate a 
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trivial case: if (C4) fails, then I,,,, = I, and Jj. = J,, for all positive constants 
A4 and A. 

2.1. THEOREM. (i) For any positive constant M, I,,, has an extremal vec- 
tor eM. If et, eZ, are two extremal vectors for I,, then Ae’ = Aek. M 

(ii) For any positive constant ;i, JL has a unique extremal vector f,. 

For now eM denotes any extremal vector for I,, the choice being 
immaterial. We will see later that if I,,, > I,, then eM is itself unique. By the 
definition of I,,,,, for any ME (0, co), 

eMEgT ItBeM~126M2, and Ilh-Ae,~~2=ZM. 

By the definition of J,, for any A E (0, co), 

fj. E 9 and Il~~~f~l12+~I/~f~.l12~J~; 

Proof (i) It is sufficient to show that 

C,,,:=(Ad:d~9, IIBdl12,<M2j 

is a closed convex set in H,, since once this is known the assertions of (i) 
follow from well-known properties of closed convex sets in a Hilbert space. 

It is clear that C, is convex. If a is in the closure of CM, then Ad,, + a 
strongly for some sequence {d,} ;” in 9 such that II Bd,II ’ < M2 for all n > 1. 
By weak compactness we can assume that Bd, --* h weakly for some h in 
H,. By replacing {d,, } 7 by a suitable sequence of convex combinations, we 
can in fact assume that Bd, + b strongly in H,. By (C2), for all m, n 2 1, 

Therefore d,, + d strongly for some d in K. Since A and B are closed, d E 
D(A) n D(B) = 9, Ad= a, and Bd= b. It follows that a EC,, and so CM is 
closed and (i) follows. 

(ii) We view H, x H, as a space of column vectors. Define a closed 
linear operator C, on K to H, x H, by 

D(Cj.) = ~ 

For any dE 9, 

and C, d= [Ad, L”‘Bd]‘, dE%, 

Ilh - Adl12 + l~I/Bdl12 = II [h, O]‘- C, dl12. 

For some sequence {d,,};” in 9, 

lim II[h,O]‘-C,d,l12=Jj,. 
n-m 



86 ANDERSON ET AL 

A standard application of the parallelogram law shows that C1 d, + [u, u]’ 
strongly, where u E H, , o E H,, and Ilh - uJI 2 + llu112 = J,. An application of 
(C2) as in the proof of(i) shows that d, + fj, strongly for somef;. E K. Since 
C, is closed, fi E 9 and C,f~ = [u, u]‘. Thus fr is an extremal vector for J,. 
The uniqueness off, follows from another application of the parallelogram 
law and (C2). 1 

2.2. THEOREM. For M-+ co, I,JZ, and Ilh,,, -Ae,ll -0. For iJO, 
J>.lJo and llha-Af,:Il +O. 

Proof: By (C3) and the definitions of I, and J,, 

I,=J,=inf{Ilh-Adl12:d~5?}. 

The rest is elementary and left to the reader. 1 

2.3. LEMMA. Fix ME (0, co). 

(i) Let dE 9, and suppose that there is an E > 0 such that 

IIB(cte, + jd)II * < M2 (2.1) 

for all CC, /?EC satisfying I~.~~+~~~~61 and IpI 6~. Then h-Ae,IAd 
in H,. 

(ii) Zf dE9 and Be,,,, I Bd in H,, then h-Ae, I Ad in H,. 
(iii) We have (h - Ae,, Ae,) >, 0. 

Proof: As a preliminary, note that if dE 9 and ~1, p are any numbers 
satisfying (2.1), then 

llh - AeMIl < Ilh - A(cte, + Bd)ll’ 

= Ilh-Ae,-A((cr-l)e,+/3d)~12. 

Expanding and simplifying, we obtain 

0<2Re(l-a)(Ae,,,,h-Ae,,,-2Re/I(Ad,h-Ae,) 

+llA((~-1)eM+B4112. (2.2) 

To prove (i), in (2.2) set CI = 1 - t and p = (2t - t2)‘12 e”, where t is a 
small positive number and 8 is chosen so that 

e’“(Ad,h-Ae,)=I(Ad,h-Ae,)I. 
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This yields 

06 -2(2t-t2)1’2 I(Ad,h-Ae,)l +&(t) 

for t LO. Hence (Ad, h - Ae,) = 0, and this proves (i). 
We obtain (ii) in a routine way from (i). 
To prove (iii), consider any real 8 with cos 0 > 0. Set c( = 1 - te’“, where 

t > 0. Then for all sufficiently small t, 1x1 < 1. Applying (2.2) with fi = 0, we 
get 

0 d 2 Re te”(Ae,+,, h - Ae,) + 0(t’) 

for t 10. Hence Re ei”( Ae,,,,, h - Ae, ) > 0. By the arbitrariness of 0, (iii) 
follows. 1 

2.4. LEMMA. Fix ME (0, co) and assume I,,,, > I,. Then 

(i) IIBe,/12 = M2 and 

(ii) there is a unique positive real number A(M) such that 

(h-k,, Ad) = L(M)( Be,, Bd) (2.3) 

for all d E 9. 

Proof. The inequality 1) Be,)12 d M2 is automatic. If this inequality is 
strict, then by 2.3(i), 

h-Ae,,,,IAQ in H,. (2.4) 

Then by (C3), h - Ae, I R(A), and so Ae, = h,. However, this implies 
I,,,, = I,, contrary to assumption. This proves (i). 

To prove (ii), consider any dE 9, and set 

a= IIBe,ll’d- (Bd, Be,) eM. 

Then a E 9 and Be,,,,lBa in H,. By 2.3(ii), 

0= (h-Ae,, Aa) 

= IIBe,J2 (h-Ae,, Ad)- (h-Ae,, Ae,)(Be,,,, Bd). 

Thus (2.3) holds with 

A(M)= <h-k,, AeMMlBeMI12 
= (h-Ae,, Ae,) MP2. 
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By 2.3(iii), A(M) 2 0. If L(M) = 0, then by (2.3), (2.4) holds. As above this 
implies (via (C3)) that I, = I,, a contradiction. So A(M) > 0. The 
uniqueness of A(M) is clear. [ 

We next introduce a certain family {T,},,, of selfadjoint operators on 
K. Formally we would like to set 

T, = A*A + IB*B 

for any ,I E (0, co). The rigorous definition is 

T, :=C:C,, (2.5) 

where Ci := [A, 2”‘B]’ is as in the proof of Theorem 2.l(ii). Thus C, is a 
closed, densely defined linear operator on K to H, x H, viewed as a space 
of column vectors. It follows that T, is a selfadjoint operator (Riesz and 
Sz.-Nagy [15, p. 312]), and D( T,) G D(C).) = 9. By (C2) the spectrum of 
T2 has a positive lower bound. Therefore T; l and TF’/~ exist as 
everywhere defined and bounded linear operators on K. It is easy to see 
that the range of C,, R(C),) = Ci.9, is a closed linear manifold in H, x H,. 

2.5. LEMMA. Fix AE(O, co). 

(i) The operators 

A, := AT,-“’ and B, := BT,- Ii2 

are everywhere defined and bounded on K with II AAll d 1 and (I Bill < 2 ~ I’*. In 
fact, the operator on K to H, x H, defined by 

W, := [Ai, 2”‘B,]’ 

maps K isometrically onto C,9. Hence 

AXA,+IBfBL= W:W,=Z, 

is the identity operator on K, and 

is the projection of H, x H, onto C,9. 

(ii) The operators AT;’ and B(ATy’)* are everywhere dejned and 
bounded on K and Hi, respectively. 

(iii) For each dE 9 there exist vectors {d,}, ,O in D( T,) such that 
d, + d strongly in K and C1 d, + C, d strongly in H, x H, as E JO. 
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Proof: Let Ci = VH be the polar decomposition of CL (von Neumann 
[ 141). Then H = (C:C,)“2 = Tjj2. Hence D(H) = D( Tj.j2./’ = O(Cj,) = 9. The 
operator V is an isometry on K to H, x H, with range Cj.9. Since T,:’ ? 
exists as an everywhere defined and bounded operator on K, 

I/= C,T,r”‘= [A;., j.“2Bj~]‘. 

In other words, V= Wj.. The assertions of (i) now follow. 
It is easy to deduce (ii) from (i). 
To prove (iii), given d E 9 set 

d, = (I+ ET;.)-’ d, E > 0. 

Then d, E D( T,) for all E > 0. In a straightforward way we obtain d, + d 
strongly in K, and 

C,d,= W,(Z+ETj.)~’ T~,12dj W;.T~.i2d=C,d 

strongly in H, x H, as E LO. 1 

We are now ready to state and prove the main result of this section. 

2.6. THEOREM. Define 

m(t) := IIE(AT,-I)* hJ12, o<t<cc, (2.6) 

m(0) := sup m(t) (< 00). (2.7) 
o<r<m 

Then m( .) is a positive, strictly decreasing, continuous function on (0, a) 
with limit 0 at co. Let M be a positive constant. 

(i) ZfM’>m(O), then Z,=I,. 
(ii) If 44’ < m(O), then I,,,, > I,. In this case, M2 = m(3.) for a unique 

1 E (0, co). Then I,,, and J, have the unique extremal vector 

e,=f;.= (AT;‘)* h (2.8) 

and 

~M2+I,=J; (2.9) 

The condition (C4) will put in its first appearance in the proof of 
Theorem 2.6. It is not used in either of the following two lemmas. 

2.7. LEMMA. For any t E (0, co), 

B(AT,-‘)* =FE &(I+ tl?,*B,)-’ A: (2.10) 

in the operator norm. 
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2.8. LEMMA. Define m(t) for t E (0, co) by (2.6). There is a nonnegative, 
finite Bore1 measure p on [0, co) such that p([O, 00))~ llh112 and 

m(t) = [ s*( 1 + ts*) ~’ dp(s) (2.11) 
C0.a) 

for all t E (0, 00 ). 

Proof of 2.7. We first show that for any E > 0, 

T;‘- T,~~,=ET,~‘I*B:B,,,T~~/~ I+.? (2.12) 

and 

T;,‘,= TF”~(I+ tB,*B,)-’ TC-l12. (2.13) 

All of the operators appearing in (2.12) and (2.13) are everywhere defined 
and bounded. It is enough to check (2.12) on a dense set; a convenient 
choice for this is R( T,,,). Thus the proof of (2.12) reduces to showing that 

for all u E D( T, + ,) and a dense set of g’s in K. The identity is easily verified 
for g E R( T,), and so (2.12) follows. We similarly reduce (2.13) to showing 
that 

((I+tB,*B,) T~J2u,g)=(T,-‘/*TtcEu,g) 

for all u E D( T, + ,) and a dense set of g’s in K. A convenient choice now is 
g E R( T,“‘). The details are straightforward, and (2.13) follows. 

BY (2.13), 

B(AT;,‘,)* = B(ATC-1’2(Z+ tB,“B,)-’ TEp1’2)* 

= B,(Z+ tB,*B,)-’ A:. 

Hence by (2.12), 

B(AT;‘)*-B,(Z+tB:B,)-‘A,*=B(A(T;’- T;;J)* 

= B(ATE-1/2B:B,+,T;+‘;2)* 

=&Br+e BT+ AA:. 

We obtain (2.10) from this, because by 2.5(i), /All\ < 1, I(B,(\ < tp112, 
ll~t+,ll < (t+E)-“2. I 
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Proof of 2.8. By Lemma 2.7, for all t E (0, cc ), 

m(t) = IIB(AT;l)* hII 

= FK IIB,(z+ tB$B,)-’ ABhl12. 

Let B, = V,H, be the polar decomposition of B,. Let 

be the spectral representation of H,. The spectral measure E,( .) is com- 
pactly supported, but we make no use of this fact. Thus, 

m(r)=!: lIH,(Z+rH;))’ A,*hlj2 

= lim i‘ s2( 1 + ts2) -’ &,(S), 
cl0 [O,n;) 

where 

PA.)= (-%(.)A,*k A,*h) 

is a nonnegative Bore1 measure on [IO, co) with 

P,(CO> a))= IIwl12~ IVl12 

by 2.5(i). The existence of a measure p having the required properties now 
follows from a routine compactness argument. 1 

Proof of Theorem 2.6. The heart of the argument is in the proof of 
assertion (A) below. 

(A) Let 0 < M < cc be given, and assume I,,,, > I,. Let ,I = I.(M) be 
the positive constant of Lemma 2.4. Then the extremal vector e,,., for I,,, is 
unique, M2 =m(,l), and (2.8) and (2.9) hold. 

Proof of (A). Consider any UEK. We apply (2.3) with d := T,:‘u. We 
have dED(TJc9, and so 

(h, AT,:‘u) = (Ae,, AT,:(u) +A(Be,, BT,;‘u) 

= (Cj.e.44, C;.T,:‘u) = (e,, u). 

The last equality is by (2.5). Therefore e,+, is unique and e,,,, = (AT,:‘)* h. 

640/52:1-7 
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We show that eM is also extremal for Jj,, that is, the choice d = eM 
minimizes 

~~h-Ad~~2+~~~Bdl12= II[hy O]‘-Cj, dl12 

among all vectors d in 9. A sufficient condition for this is that 

[h, O]‘- C,,e, I C.93. (2.14) 

By 2S(iii) it is enough to prove that 

[A, Ol’- C,e,+, -L Ci. d 

for any d E D( r,). If d E D( T,), then 

< Ck Ol’- CneM, C,d)= (h, Ad)- (e,, T,d) 

= (h, Ad)- (h, (ATE’) Tj. d) 

= 0. 

Therefore (2.14) holds, and we have shown that e,,, is extremal for JL. Since 
Ji, has the unique extremalf, by Theorem 2.l(ii), (2.8) holds. 

The rest is immediate. By Lemma 2.4(i), M2 =m(l). To prove (2.9) 
evaluate I,,,, and Jj. by setting d = e,,,, in ( 1.1) and d = fi, in (1.3). This com- 
pletes the proof of (A). 

We finish the proof of Theorem 2.6. By (C4) there is at least one 
ME (0, co) such that Z,,,, > I,. By (A) there is a positive constant J.(M) 
such that m(l(M)) = M2 > 0. Therefore the measure p in Lemma 2.8 is not 
trivial: ~((0, co)) > 0. Hence by the representation (2.1 I), m( .) is a positive, 
strictly decreasing, continuous function on (0, co) with limit 0 at co. 

Define M, := sup{ M: Z, > Z, }. In view of (A), we will be done if we can 
show: 

(B) M; = m(0). 

Proof of(B). By (A), the positive constant A(M) of Lemma 2.4 satisfies 

M2 = m(A(M)) (2.15) 

for O<M< M,. As Mf M,, Jlh- Ae,lJ +O (if M,= co this follows from 
Theorem 2.2; the case M, < cc is handled by a separate argument). Hence 
as Mf MO, 

A(M) = (h - Ae,, Ae,) iW2 --+ 0. 

Therefore we obtain Mi = m(0) on letting Mf M, in (2.15). This completes 
the proof of (B) and, with (B), the theorem. 1 
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3. POLYNOMIAL APPROXIMATION: 
REDUCTION TO THE ABSOLUTELY CONTINUOUS CASE 

Let p, v be nonnegative, finite Bore1 measures on r, and let h be a given 
function in L*(p). Define S,(p,v), S,(p), and T,(p, v), T,(p) by 
(1.5)-( 1.8) for any positive constants M and A. Let 

ll=Pll+P,, dp,, = udo, 

v=v,,.+v,, dv,, = vdu 
(3.1) 

be the Lebesgue decompositions of p, v. 
It is known that S,(p)=S,(pL,,.), or, what is the same thing, 

T,(p) = T,(P~,,). See Rosenblum and Widom [ 191; the special case 
h(c) = c is a classical theorem of Kolmogorov and Krein (Grenander and 
Szegij [S] ). 

3.1. THEOREM. If pL, I v,~, then for any positive constants M and i., 

s,d/A v) = SM(PU< 2 vu,.) (3.2) 

and 

TJ.(P> v) = Ti(Puc 2 vuc). (3.3) 

The following lemma isolates the essential content of the theorem. 

3.2. LEMMA. Assume pL,Iv,. Given P E 9 and E > 0, there exists P E 9 
such that 

j Ih-Pl’dw j Ih-PI*d&,.+E, (3.4) 

j IP12dv< j 1PI’dv,,.+E. (3.5) 

Proof of Theorem 3.1 (granting Lemma 3.2). It is clear that for any 
positive constants M and A, 

SMM(cL, VI 2 sA4bL 3 v,,.), 

ThL, VI b TI.(A,,., vu,.). 

Given E > 0 we can choose P E 9 so that 

s Ih - PI2 dp,,. < ~,,.,h,~r v,,.) + E, 
5 1 P( * dv,,. d M2. 
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By making a small adjustment, we can assume that the last inequality is 
strict. Then by Lemma 3.2 there exists P E 9 so that 

s v - w d/J < ~M(PL,,., v,,) + E, 

s la)2dv<M2. 

Hence S,(P, v) < S,+hacy v,,) + E. By the arbitrariness of E, (3.2) follows. 
Similarly, given E > 0 we can choose P E 9 so that 

Then by Lemma 3.2 there exists P E B so that 

and so T,(p, v) < T,(p,,, v,,) + E. Since E is arbitrary, we obtain (3.3). [ 

Proof of Lemma 3.2. Fix E > 0. We write .sr , E*, . . . for small positive 
numbers to be chosen in the course of the argument. Set 

CI := 
I 

Ih- PI2 dp,,, fi := j lPl* dv,,. 

We proceed in a number of steps. 

(i) Choose disjoint, closed subsets E, F of r such tha’t 
o(E) = o(F) = 0 and 

M-\a < El and 

Such sets exist because ,u~, v, are singular measures with .u~ 1 v,, and every 
finite Bore1 measure on r is regular. 

(ii) Let C(T) be the set of continuous, complex-valued functions on 
I’, and let & := H” n C(T) be the disk algebra. By a theorem of Rudin 
and Carleson (see Garnett [7, pp. 125-126, Ex. Id]), there exists qE ZZI 
such that ~~q~~co = 1 and qlE= 1 and q[F 0. 

(iii) Choose sequences {p,}~ and (~~1;” in 9 such that 
(a) 1~~1 < 1 and Irnl < 1 on B for all na 1, 
(b) lim,, m J P,, dp, = ,~~(r) and lim, _ a, J rn dv, = v,(T), and 
(c) lim,, a3 p,(i) = lim,, 5 z,(c) = 0 e-a.e. on f. 
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Concerning the existence of such polynomials, see Garnett [7, p. 126, 
Ex. 21. 

(iv) Choose HEC(Z-) such that j(H-hl’dp<~~. See Rudin [21, 
p. 681. 

(v) Choose QEJZZ such that IlQll, = IIHII, and Ql,=HJ, (Garnett 
[7, pp. 1255126, Ex. Id]). 

(vi) Define {I’,,}? E d by 

P,,=f’(l -~,,)(l--~,)+QP,A n3 1. 

For all n 3 1, 

lIPnIl m G 4llPII x + IIHII x. 

The idea of the proof is to show that for some function P,, E S construc- 
ted in this way, 

s Ih-P,,12dp<x+E, (3.6) 

s IP,I%</3+&. (3.7) 

Every function in d is the uniform limit of the Cesaro means of the partial 
sums of its Fourier series (Hoffman [9]). Therefore from (3.6), (3.7) we see 
that there exists a P, ,!Y satisfying (3.4), (3.5); that is, the result follows 
from (3.6), (3.7). 

We estimate the integrals 

Put 

.a:= Ih-P,12dp s and & :=I IP,l%. 

& := I lh - RI2 &u, and A := /P,,12 dtt,,, 3 I 

,a, := lh-P,l" Lip,, s and A. := j- IPA dv.\. 

We make repeated use of Minkowski’s inequality. 
To begin, 

112 

IP(p,+r,,-p,,r,,)-Qep,q12d~,, 
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By (iii) and the Lebesgue dominated convergence theorem, the second term 
on the right tends to 0 as IZ -+ co. Therefore 

(&y2 < cc”2 +&q (3.8) 

for all sufficiently large n, say n > n 1. 
For & we have, 

+ j IP(1 -~n)(l -pn)l*dcl.s 
( > 

II2 

= (& p2 + (&)“’ + (.a,,y2, 

say. BY (~1, 

(.a,.,)““=(jl(h-H)+(H-Q)12d~~) 
112 

Hence by (iv), (v), and (i), 

(4, P2 < E;‘~ + 2l)Hll~ E;“, 

From (v), (iii), and (ii), 

jIQ(l-~,)+Q~,(l-q)l~d~.L, 
> 

112 

d IIHII m I1 -p..~‘L,)“‘+?i/“]. 

By (iii), 

p,(f)-Rejp,dp, -0. 1 

(3.9) 

Hence J 11 - pn12 dp,s < .s5 for all sufficiently large n, say n > n,. So for 
n>n2, 

(,a;,2)“2 G /lHll =(E;‘~ + 2&f’*). (3.10) 
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Also for n > n,, 

l/2 

($p2 6 2ll~ll 5 11 -pn12dp, <211Pll,4’2. (3.11) 

Combining (3.9), (3.10), and (3.11), we obtain 

(cYy’2 < vy,.,p2 + (..f,,2)“2 + (4,)” 

< E:‘~ + 211H311 cc E;” + IIHII r (E:‘~ + 2~;‘~) + 2llPll a E:‘* 

= 4llH/I riD E;‘* + &;I2 +(lIHll,+211~IIx)~:‘2 (3.12) 

for n > n,. By (3.8) and (3.12) 

.f = Yac + <$ 

< (di2 + e4)’ + [4llHII 2 ~~‘2+~:‘2+~Il~lI,,+~ll~II,~~:i212 

for n > max(n,, n2). If E,, Ed, .Q, s5 are small enough, this yields (3.6) for all 
n>max(n,, n2). 

For yUao,. we have 

I 2 
IP(p,+z.-p,r,)-Qp,,ql’dv,,, 

By (iii) and the Lebesgue dominated convergence theorem, the second term 
on the right tends to 0 as n -+ co. Hence 

(yy’ < p + &2’2 (3.13) 

for all sufliciently large n, say n > n3. Also, 

(A)1’2=(/ IQ1 -~n)(l -d+QPn412@) 
I/? 

)li2+ IlQllx (j-,Fdv,)“2. 

An argument similar to one given above shows that 1 ( 1 - ~,,l’ dv,, < E, for 
all sufficiently large n, say n > n4. Recalling also (i), we obtain, for n > n4, 

LA)“’ d 2llPll az E:‘~ + IIQII m C2 
= 2jlPl\ ~ E:” + IlHIl a E;‘*. (3.14) 
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By (3.13) and (3.14), 

< t/3”* + E:‘*)* + (2llPll x E;‘* + IlHll 3c E;“)* 

for n > max(n,, n,). If s2, se, E, are small enough, we obtain (3.7) for all 
n > max(n,, ~2~). 

We have shown that (3.6) and (3.7) hold for some P, EJZZ, and so the 
result follows. 1 

4. POLYNOMIAL APPROXIMATION: ABSOLUTELY CONTINUOUS MEASURES 

Notation is as in Section 3. We have seen that (1.5)-(1.8) are indepen- 
dent of the singular components of p and v (at least when P,~ I vA). The 
unconstrained infimum S,&,), or, what is the same thing, T&,,.), is 
computed in Rosenblum and Widom [19]. In this section we apply the 
abstract theory of Section 2 to compute SM&,., v,,.) and T,(p,, , v,,.) for 
any positive constants M and A. 

We exclude certain trivial cases in order to simplify the discussion. 

Case 1. ,ua,=O or v,,.=O. 

In the former case, S,,,&,., v,,) = T,(p,,, v,,.) = 0 for any positive con- 
stants M and 1, and in the latter, S,,,o(lar, v,,.)= T,(p,,., vUC)=S,(pU,) = 
r&,,) for any positive constants M and II. 

Case 2. h 19 in LL(p,,.). 

In this case, SM(pUaC, v,,.) = T,&, , v,,.) = J IhI* d,u,,. for any positive 
constants A4 and A. 

The discussion is also simplified if polynomials are replaced by Hardy 
class functions. Recall from (3.1) that dp,, = udo and dv,, = vdo. We assert 
that for any positive constants A4 and 1, 

SM(pLuC, v,,)=inf (h-kj2uda:kEH2, 

SIk12(21+v)d~<~,Slk12vda4M2 , (4.1) 
I 

SIh-kl*ud~:k~H*,J^(kl*ud~<no (4.2) 
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and 

Tj.(pL,,.,vO,,.)=inf IIh-kl’u~~+ir~lkl’u~~: 
i 

keH2, ~k12(u+u)do<m , 
i I 

(4.3) 

Slh-kl’u~~:k~H’,Slkl’y~~<~/_ (4.4) 

The advantage of (4.1)-(4.4) over (1.5))(1.8) is that H2 is a Hilbert space 
whereas 9 is not. This is crucial for applying the results of Section 2. The 
formulas (4.1)-(4.4) are immediate consequences of 

4.1. LEMMA. Suppose that k belongs to H’ on the circle f and 
j Ikl 2 wda < a, where 0 < w E L’(a). Then there exist polJlnomials { p,,) ; 
such that 

lim /k-p,,l* wda=O. 1 ,1 4 cc (4.5) 

Proof By replacing w by w + 1, we can assume that log M: E L’(o). Then 
H’ = I gl 2 o - a.e. for some outer function g E H*. We have kg E HZ because 
kgEH’ and 

Therefore by Beurling’s theorem (Duren [6]) there exist polynomials 
{p,,} T such that p,g + kg in the metric of H2. Since IV= lgl’ g - a.e., this 
implies (4.5). 1 

4.2. THEOREM. Exclude Cases 1 and 2 above and assume further that 
u + v 3 6 rs - a.e. $or some 6 > 0. For any t E (0, co) define,functions c, andf, 
on D b? 

c,(z) := exp - 
(i 
; F logC4i) + Mi)l MC) > z ! 

f,(z) := C,(Z)- ’ j” ‘(‘) ‘;‘TJr ’ ‘(‘) do([). 
z (4.7) 
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Then for any t E (0, CX), c,, f, E HZ and l/c, E H”. Further define 

m(t) := j If,12 vdo, o<t<co, 

m(0) := sup m(t)( <co). 
ocrczc 

Then m( .) is a finite-valued, positive, strictly decreasing, continuous function 
on (0, co) with limit 0 at 00. Let M be a positive constant. 

0) ZfM*bdO), then Sdy,,., vu,.)= S,(p,,.). 
(ii) Zf M2 <m(O), then S,+,(pLuC, v,,.) > S,(pL,,.), and M* = m(n) for a 

unique Eti E (0, co ). Moreover, 

and S,+,(puC, v,,.) and T).(P,~, v,,.) each have the unique extremal function fi. 
It should be noted that it is only in the forms (4.1) and (4.3) that the 

inlima SICl&, v,,.) and T,(pc,,., v,,.) are attained. In the original forms (1.5) 
and (1.7) they are not attained, in general, even when p = pUc and v = v,,.. 

Proof. For each t E (0, co), c, is the unique outer function such that 
c,(O) > 0 and 

lc,(O12 = u(i) + tv(ih (T - a.e. on r. (4.8) 

It follows easily that c,, f, E H* and l/c, E H”. Set 

K=H*, H, = L2(uda), H, = L2(vdo). 

Let A, B be the inclusion mappings from K to H,, HZ, respectively. Thus 
D(A), D(B), and 9 := D(A) n D(B) consist of all k E H* for which 

s lkl* udo, i lk12 vda, and s lkl* (u + v) do, 

respectively, are finite. In the notation of Section 2, the formulas (4.1)-(4.4) 
take the form 

SdPu,,.? vu,.) = I.&f, Sm(PL,,.) = ICC 2 

TAP,,., ~a,.) = J,, Toh,,.) = Jo. 

The conditions (Cl)-(C4) of Section 2 are readily verified from our 
assumptions. We check only (C4). It is to be shown that there is no dE 2 
such that Ad = h, in L2(uda) and Bd = 0 in L2(vdo). Argue by contradic- 
tion. If d is such a function, then (dl’ v = 0 o-a.e. on I-. We have excluded 
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the possibility that v = 0 (T-a.e. (Case 1 at the beginning of Section 4), and 
so d = 0 on a set of positive measure. By the F. and M. Riesz theorem, 
d = 0 a-a.e. Hence h, = Ad = 0 in L2(uda). However, this possibility is also 
excluded (Case 2 at the beginning of Section 4). Therefore no such d exists, 
and (C4) holds. 

We will show that for each ZE (0, co), (AT;‘)* h coincides with the 
functionf, defined by (4.7). Once this is known, the remaining assertions of 
Theorem 4.2 follow as a special case of Theorem 2.6. 

Claim. For each t E (0, cc ) and c1 E D, 

T,‘: l/(1 -?[)+C,(U))’ c,([))‘/(l -Ccc). (4.9) 

To see this, fix CI E D and set 

g,(i)=cj,(a)p’ ct(i)F1/(l -“i). (4.10) 

To prove (4.9) is sufficient to show that g, is in the domain of T, = C,?C, 
(this is the definition of T,; see (2.5)) and 

T,: s,(i) --+ l/(1 - W 

Now g,EH” and so g,EGS = D(C,). It is therefore enough to show that 

(CA c,g> = (403 l/(1 -El)) (4.11) 

for every k E D(C,) = 9. The identity (4.11) is equivalent to 

s kg,uda + t 
s 

kg,vdo = f(a). 

By (4.8) and (4.9), this reduces to 

which holds by Cauchy’s theorem for H’. The claim follows. 
Finally, for any t E (0, co), by (4.9) we have 

((AT,‘)*h)(a)=(h(i),AT,’ {1/(1-W}) 

=c,(a)-‘J 40 F,(i)-’ u(i) da(i) 
1 -ra 

for all a ED. Thus (AT,- ‘)* h =f,, and as noted above the remaining 
assertions of Theorem 4.2 follow from Theorem 2.6. 1 
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Remark. The operator T, that appears in the proof of Theorem 4.2 is a 
Toeplitz operator (in general, unbounded). Formula (4.9) is equivalent to 
the generating formula for resolvents [3, 10, 16, 183. An alternative proof 
of (4.9) can be given along these lines, but when everything is considered, it 
is much more complicated in the unbounded case than the argument given 
above. In the bounded case, the proof of (4.9) via the generating formula 
for resolvents is prabably more transparent than the argument given above. 

5. CONSTRAINED FORMS OF SZEG~'S INFIMUM 

Let p be a nonnegative, finite Bore1 measure on r with Lebesgue decom- 
position as in (3.1). For any positive constants M and i set 

~,JI*) := inf 
iJ 

IC-p12dp:pE9T j Ip12dodM2 (5.1) 

g,(p) :=inf l%-p12dp:p~P (5.2) 

and 

F;(p) :=inf 1 le-pl’&+;j lp/2&7:pEY , 
i I 

f&) :=inf 1 lr-p12&pEP . 
i I 

By the classical Szegij inlimum (Grenander and Szegti [8]), 

(5.3) 

(5.4) 

S&) = fo(p) = 
L 
yp(llog uda), log ZJ E L’(a), 

log 244 L’(o). 

The infima (5.1))(5.4) correspond to (1.5)-(1.8) with h(i)= % and V= C. 
The results we state here strengthen and extend those of [ 11 on Sezgo’s 
inlimum with constraints. 

5.1. THEOREM. For any positive constants M and II, 

&f(P) = R&a,.) and LAP) = mL.). 

5.2. THEOREM. Assume that puC is not identically 0. For any t E (0, CD), 
define 

c,(z) := exp - 
( j- 

; g logC4i) + tl W)), (5.5) 

f,(z) := zP’[l - c,(O)/c,(z)] (5.6) 



BEST APPROXIMATION WITH CONSTRAINTS 103 

on D, and set 

m(t):=[(u+t))‘doexp 
(5.7) 

m(0) := sup m(t)( ,< co). 
O<fCl 

Then m( .) is a positive, strictly decreasing, continuous function on (0, a) 
with limit 0 at m. Let M and A be positive constants. 

(i) Is M2 3 m(O), then s,(p,, ) = 3, (p,,.). 
(ii) If M2 = m(2), then 

hW2 + sM(,uL,,.) = fj,(pL,,.) = exp 
( 

\ log(u + 1) da 
1 

- 2, (5.8) 

and s,,,,(u,,.) and ~j,‘;.(~~~) each have the unique extrema1.f.. 

Proofs. Theorems 5.1 and 5.2 are particular cases of Theorems 3.1 and 
4.2. We leave the straightforward calculations to the reader. [ 

Remark. As in [ 11, a little more can be said in Theorem 5.2. Namely, 
m(0) < m if and only if I/UE L’(o). In this case, assertion (ii) is true as 
stated for A= 0 if co and f. are defined by (5.5) and (5.6) with t = 0. We 
omit the proofs of these assertions. 

5.3. EXAMPLE. We have s,,,,(p) 1 s,(p) as M -+ co and pj.(p) J To(p) as 
JJO. It is natural to ask for the rates of convergence. We are unable to 
determine this in general, but we compute an example that may be instruc- 
tive. 

Let dp = udo, where u = xE is the characteristic function of a Bore1 set 
EGT with 0~ IEl < 1 (IEI =0(E)). Then s,(p)= po(p)=O, so s,,,,(~)lO 
as M -+ co, and p,,,(p) JO as ;1 JO. It turns out that the rates of convergence 
depend only on (El. We state this result in slightly more general form as 
follows. 

PROPOSITION. Let d,u = uda, where u = 0 o - a.e. on a Bore1 set E c r 
suchthatO<JE(<l andu#Oo-a.e.onA:=f\E, withJ,logudo> --co. 
Then 

(5.9) 

Tj,(u)=D2’E’( 1 + O(1)) as 210, (5.10) 

where C and D are positive constants depending only on IEl and jd log udo. 
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Proof: We apply Theorem 5.2. We are in the case m(O) = GO. Let A4 and 
1, be related by M2 = m(A), so A4 + co corresponds to A J 0. For 0 < I < m, 
by (5.7L 

m(i)=S(u+i))‘dr~exp 
(1 

log(u+A)da -1 
> 

=(J A-‘do+ (u+i)-‘d exp 
E s A 

0) ((ji+jA)log(u+i)i)-l 

= IEl I-‘+‘E’ 
( 

1 + 1El-I j A(u+ I.)-’ do 
A > 

x exp 
(I 

log(ufI)da -1 
A ) 

= p7l i-‘+IEI exp(jA*ogudo)(l+L(l)) 

as i J 0. Since M* = m(A), this yields 

i=(lt.,M-2exp(j~logud~))‘/(‘~1”‘(l+~(l)). (5.11) 

BY (5.81, 

zzz u(u+A))‘doexp log( u + A) da 

as A4 + co. Substituting (5.11) into this last expression, we obtain (5.9) 
with 
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Again by (5.8) and what we have just shown, 

as I. J 0. Hence (5.10) holds with D = exp(f, log uda). 1 
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