The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge

W. A. Hing, A. F. Sherwin, J. M. Ross and C. A. Poole
Division of Anatomy with Radiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand

Summary

Objective: To examine whether differences in the pericellular microenvironment of different chondron preparations influence the chondrocyte volume regulatory response to experimental osmotic challenge.

Design: Mechanically extracted chondrons (MC), enzymatically extracted chondrons (EC) and isolated chondrocytes (IC) were seeded into agarose and sampled at 1, 3 and 7 days. Samples mounted in a perfusion chamber were subjected to osmotic challenge. The cross-sectional areas of the chondrocyte and pericellular microenvironment were measured under isotonic, hypertonic and hypotonic conditions, and percentage change calculated. Separate samples were immunolabeled for type VI collagen and keratan sulfate.

Results: Initially, the microenvironment of MC represented 60% of the chondron area and was occupied by type VI collagen and keratan sulfate. In EC, the microenvironment comprised 18% of the chondron area with narrow bands of type VI collagen and keratan sulfate present. All preparations sequestered additional pericellular macromolecules during culture. Under isotonic conditions, the EC and IC chondrocytes were larger than those of MC. All chondrocytes shrank under hypertonic conditions and swelled under hypotonic conditions. MC were the least responsive, displaying the most efficient volume regulation. IC showed the largest response initially but this decreased with time. EC exhibited intermediate responses that decreased as the microenvironment increased in size.

Conclusions: The composition and structural integrity of the pericellular microenvironment do influence the cellular response to experimental osmotic challenge. This suggests that the microenvironment functions in situ to mediate the chondrocyte response to physicochemical changes associated with joint loading. © 2002 OsteoArthritis Research Society International

Key words: Changes associated with joint loading. © 2002 OsteoArthritis Research Society International

Introduction

The chondrocyte and its pericellular microenvironment form the chondron, the primary structural, functional and metabolic unit of articular cartilage. The chondron is thought to be osmotically robust with the pericellular microenvironment acting to protect the chondrocyte from deformation under load. However, the role of the pericellular microenvironment in protecting the cell and regulating the chondrocyte response to osmotic challenge has not been extensively investigated.

Articular cartilage is uniquely structured to resist a range of non-uniform compressive, tensile and shear forces by redistributing fluid, regulating volume and minimizing osmotic fluctuations. The interaction between water and ions in the matrix influences the load bearing performance of cartilage. Mechanical loading results in changes in the ionic and osmotic environment of chondrocytes, since it causes the expression of interstitial fluid from the matrix thus increasing the local proteoglycan concentration and the local osmotic pressure. The properties of the tissue are largely dependent on the composition and organization of the extracellular matrix and tissue fluid that form 90–95% of the tissue volume. The remainder comprises the chondrocytes, the cells responsible for the synthesis, assembly, maintenance and repair of the extracellular matrix.

The ability of articular cartilage to resist load is not only dependent on the composition and organization of the extracellular matrix but also on the relationship between the chondrocyte and its pericellular microenvironment. The pericellular microenvironment of the chondron comprises two integrated parts: the pericellular glycocalyx, which is rich in hyaluronan, aggrecan, fibronectin and laminin. The chondrocyte is intimately linked to the pericellular microenvironment via a range of cell-specific receptors that include several integrins and CD44. These receptors are closely linked to the chondrocyte cytoskeleton and play a major role in signaling matrix changes to the cell. It has been argued that the high concentration of aggrecan in the pericellular microenvironment increases the fixed charge density close to the cell, creating a large osmotic potential and swelling tendency within the chondron. This is counteracted by the tightly woven...
network of pericellular collagens which forms an isotropic capsule around the chondrocyte, entrapping proteoglycans within the microenvironment and limiting their expansion to create an osmotically robust chondron10,23. The aim of this study was to establish whether the pericellular microenvironment regulates the cellular response to the biomechanical and physicochemical matrix changes which occur under load24,25.

The mechanisms by which chondrocytes respond to changes in their environment have been investigated using isolated chondrocytes subjected to a range of biomechanical or physicochemical forces in vitro. For example, mechanical loading26–30, changes in extra- and intra-cellular pHi31,32 and hydrostatic pressure33–35 have been shown to promote changes in matrix synthesis. Moreover, alterations to the osmotic and ionic properties of the culture media not only influence matrix synthesis36,37, but also the chondrocyte volume regulatory response38,39,40. The volume regulatory mechanisms of the chondrocyte are mediated through a number of transmembrane fluxes that include voltage-activated ion channels, passive exchangers, and ATP-dependent ion pumps41–47. It is therefore possible to study the physiological response of cultured chondrocytes to osmotic challenge by manipulating the properties of the nutrient medium.

This study utilized three chondrocyte preparations that differed markedly in the integrity and composition of their pericellular microenvironments: mechanically isolated chondrons (MC)50, enzymatically isolated chondrons (EC)51 and enzymatically isolated chondrocytes (IC)52. All three preparations were subjected to osmotic challenges to determine whether differences in the integrity of the pericellular microenvironment mediate the chondrocyte response to physicochemical changes designed to mimic joint loading.

Materials and methods

MATERIALS

Dulbecco’s phosphate-buffered saline (DPBS), Dulbecco’s Modified Eagle’s Medium (DMEM), foetal calf serum (FCS), Earle’s Balanced Salt Solution, ascorbic acid and dispase were obtained from Life Technologies Inc., New Zealand. Agarose (Type IX-A Ultra-low gelling temperature), penicillin and streptomycin sulfate were obtained from Sigma Chemical Co., Australia. Collagenase CLS-2 was obtained from Worthington Biochemical Corp., U.S.A. Pronase was obtained from Boehringer Mannheim NZ Limited. 5-chloromethylfluorescein diacetate (CMFDA) and biotinylated secondary antibodies and streptavidin-linked Texas Red were used for immunohistochemistry. CMFDA and ethidium homodimer-1 were obtained from Molecular Probes Inc., U.S.A.

ISOLATION AND PREPARATION OF CHONDRODYS AND CHONDROCYTES

Tissue preparation

Articular cartilage was resected from the medial and lateral tibial plateau of four mature, healthy, cross-bred dogs (2–5 years) euthanased by the Auckland City Pound under veterinary supervision. Canine tibial cartilage was used in this study since more than 95% of the chondrons and chondrocytes originate from the middle and deep layers53, where the chondron microenvironment is most highly differentiated22,54. The cartilage was diced, washed and stored in DMEM plus 20% FCS at 37°C until processing.

Mechanically isolated chondrons (MC)

Chondrons were extracted by low speed serial homogenization, as previously described55. Diced cartilage was homogenized at 4000 rpm for 1 min and large chips collected by gravity sedimentation. The supernatant was decanted and the remaining cartilage chips re-homogenized. The process was repeated until the cartilage sample was completely disrupted. Supernatants were pooled and filtered to remove fragments >500 μm2, producing a heterogeneous mixture of single chondrons, chondron columns and cartilage microchips which was resuspended in DMEM plus 20% FCS in preparation for agarose plating.

Enzymatically isolated chondrons (EC)

Chondrons were enzymatically isolated using a mixture of dispase and collagenase51. EC were collected and washed by centrifugation, and resuspended in DMEM plus 20% FCS in preparation for agarose plating.

Isolated chondrocytes (IC)

Chondrocytes were isolated using sequential digestion with pronase and collagenase52. Cells were collected and washed by centrifugation, and resuspended in DMEM plus 20% FCS in preparation for agarose plating.

Preparation of agarose gel constructs

MC, EC and IC preparations were mixed 1:1 with an 8% solution of low melting point agarose prepared in Earle’s Balanced Salt Solution52. These solutions were cast to a depth of 5 mm and gelled at 4°C for 20 min. Plugs, 5 mm diameter, were cored from the agarose constructs and cultured for up to 7 days in DMEM supplemented with FCS (20%), penicillin (100 U/ml), streptomycin sulfate (100 μg/ml) and ascorbate (50 μg/ml). Plugs were monitored daily and media replaced on alternate days.

Immunohistochemistry

Samples were collected for immunohistochemistry on days 1 and 7 and labeled with CMFDA to identify viable cells56 prior to fixation in 4% paraformaldehyde plus 2% sucrose in DPBS (15 min, 37°C). Immunolabeling was performed using 5D4, a monoclonal antibody raised against keratan sulfate9 and a polyclonal antibody raised against type VI collagen57. Biotinylated secondary antibodies and streptavidin-linked Texas Red were used for detection. Slides were examined on a Leica TCS 4D confocal microscope (Leica, Germany) and a series of optical sections collected through the entire depth of the selected chondrons and chondrocytes. Images were processed using Adobe Photoshop 4.0 and assembled into plates using Adobe Pagemaker 6.5.

Environmental perfusion chamber and imaging system

Functional studies were performed using a new environmental perfusion chamber which provides a narrow viewing...
cavity for imaging dynamic cellular behavior. Agarose plugs containing MC, EC or IC sampled at 1, 3 and 7 days were placed in the perfusion chamber and this was mounted on the stage of a Zeiss Axioplan-2 microscope (Zeiss, Germany) equipped with Differential Interference Contrast (DIC) objectives and a Newvicon VE1000 video camera (Dage-MTI Inc., U.S.A.). Media perfusion through the viewing cavity was maintained at 5000 μl/h using Melsungen AG syringe pumps (B. Braun, Germany) and temperature maintained at 37°C. All preparations were examined at high magnification (100×/1.30NA) using time-lapse, computer-enhanced video microscopy (CEVM). Images were captured, processed and analysed using MetaMorph software (Universal Imaging Corp., U.S.A.).

OSMOTIC PERFUSION PROTOCOLS

Preparation of media

Supplemented DMEM (316.2±14.9 mOsm) was used as the isotonic medium for all experiments. This was rendered hypertonic by the addition of NaCl and hypotonic by dilution with distilled water. The osmolality of each solution was measured using a Wescor 550 Vapour Pressure Osmometer (Wescor Inc., U.S.A.) and averaged 170.8±17.4 mOsm for hypotonic media and 633.2±55.4 mOsm for hypertonic media.

Perfusion protocol

Initially, samples of each preparation were equilibrated in isotonic medium for 30 min. Single chondrons or chondrocytes were selected, mapped relative to one another and the first DIC images captured at their largest cross-sectional profile. One selected cell was monitored throughout the procedure using time-lapse CEVM. Hypertonic perfusion was performed for 45 min and then all mapped cells were imaged. The selected cell was monitored again as the sample was perfused with isotonic medium for 30 min until equilibrium and the mapped cells imaged for the third time. Hypotonic medium was then perfused through the chamber for 45 min and the mapped cells imaged. The selected cell was monitored for a further 30 min while isotonic conditions were restored to equilibrium before the final images were recorded for all mapped cells. Multiple plugs were analysed at each time point.

ANALYSES

Cell viability

To ensure that imaged chondrocytes remained viable throughout the perfusion protocol, ethidium homodimer-1 was added to the final isotonic perfusate. Viable cells exclude this dye, and data from cells showing positive nuclear fluorescence were not included in the analyses.

Area analysis

Perimeter lines were drawn around both the chondrocyte and the chondron at their largest cross-sectional profile using Metamorph [Fig. 1(D)]. The pixel area was calibrated using precision graticules, and the cross-sectional areas
calculated for the chondron and the chondrocyte, and by subtraction, the pericellular microenvironment. The cross-sectional areas of MC, EC and IC were measured under isotonic, hypertonic and hypotonic conditions after 1, 3 and 7 days of culture and the percentage change in cross-sectional area calculated.

Statistical analysis

The data were subjected to three-way analyses of variance (ANOVA) using the general linear model procedure within the SAS software package (SAS Institute, Cary, NC, U.S.A.). Type I error rate was set at \(\alpha = 0.05 \). The significance of differences among means were examined post-hoc, at the 95% Confidence Level (\(P < 0.05 \)), using an appropriate set of contrast coefficients.

Results

STRUCTURE AND COMPOSITION

DIC images from MC, EC and IC preparations under isotonic conditions are shown in Fig. 1. At day 1, MC showed chondrocytes surrounded by an extensive and clearly defined pericellular microenvironment [Fig. 1(A)], while in EC, the chondrocytes appeared larger with a narrower microenvironment [Fig. 1(B)]. In IC, no pericellular microenvironment was observed around the chondrocytes [Fig. 1(C)]. Cell viability was evident by the intracellular movement of cytoplasmic organelles throughout the experiment, and the majority of cells were viable at the end of the perfusion protocol.

The distribution of type VI collagen and keratan sulfate in the pericellular microenvironment of each preparation is shown in Fig. 2. In MC at day 1, both type VI collagen [Fig. 2(A)] and keratan sulfate [Fig. 2(C)] were circumferentially organized around the chondrocyte with staining also evident in the tail region of the microenvironment. By day 7, staining for type VI collagen had increased at the cell surface [Fig. 2(B)], while the intensity of keratan sulfate increased throughout the microenvironment [Fig. 2(D)].

In EC at day 1, both type VI collagen [Fig. 2(E)] and keratan sulfate [Fig. 2(G)] formed a narrow band around the chondrocyte but few tails were evident. Increased pericellular sequestration of both molecules had occurred by day 7 [Fig. 2(F),(H)], with filaments of keratan sulfate extending outwards from the pericellular region [Fig. 2(H)].

In IC preparations at day 1, small punctate deposits of type VI collagen [Fig. 2(I)] were evident over the cell surface while keratan sulfate [Fig. 2(K)] formed a thin calyx around the chondrocyte. By day 7, pericellular staining for both molecules had increased, with some granular...
CROSS-SECTIONAL AREA ANALYSIS UNDER ISOTONIC CONDITIONS

The mean values for the cross-sectional area of the chondrocyte, the pericellular microenvironment and the chondron for all three preparations over the 7 day culture period are summarized in Table I. The area of chondrocytes in MC decreased from days 1 to 3 with no further change by day 7. At all three time points, the chondrocytes of MC were significantly smaller than the chondrocytes of EC and IC. No significant differences were found between the size of EC and IC chondrocytes at any time point, despite these cells increasing in area by 41% and 49% respectively, between days 3 and 7.

At day 1, the pericellular microenvironment in MC was significantly larger than EC or IC, and represented 60.5±2.9% of the chondron cross-sectional area. In contrast, the microenvironment in EC represented only 17.8±1.9% of the chondron area. During the first 3 days in culture, the microenvironment of MC and EC showed no change. However, between day 3 and 7 the microenvironment of MC increased by 19% while that of EC increased by 98%.

In IC, no microenvironment could be detected by DIC microscopy at days 1 and 3 of culture, but by day 7, the chondrocyte had elaborated a new microenvironment that was similar in area to that of EC.

The chondron area of MC decreased slightly from days 1 to 3, but showed no statistical difference when analysed over the whole culture period. EC showed no difference in chondron cross-sectional area between days 1 and 3, but had increased by 49% at day 7. The cross-sectional area of IC at day 7 was similar to that of EC. Comparisons of chondron area showed that MC were significantly larger than EC at day 1, but not statistically different at day 3. By day 7, increases in both the microenvironment and the cell size in EC and IC resulted in a significantly larger chondron cross-sectional area compared to MC.

CHONDROCYTE RESPONSE TO OSMOTIC CHALLENGE

The shrinking and swelling responses of the chondrocytes of MC, EC and IC under isotonic, hypertonic and hypotonic conditions are presented in Fig. 3, where direct comparisons of the different preparations and their responses to osmotic media are illustrated. The mean percentage changes in cross-sectional areas are presented in Fig. 4. Dynamic intracellular movement of lipid droplets, Golgi vesicles and the nucleus were observed in all chondrocytes under isotonic and hypertonic conditions. This dynamic behavior was reduced or stopped as the chondrocytes shrank under hypertonic conditions, but returned to normal as the cells re-equilibrated to isotonic conditions.

CROSS-SECTIONAL AREA ANALYSES UNDER HYPERTONIC CONDITIONS

All chondrocytes shrank in hypertonic medium [Fig. 4(A)]. The chondrocytes of MC showed the least degree of shrinkage and IC the greatest, with the response of EC chondrocytes intermediate between the two. MC and EC showed no change in response between days 1 and 7, but IC displayed significantly less shrinkage at day 7 in comparison to day 1. The percentage change in chondron cross-sectional area of MC was minimal in hypertonic media at all time points [Fig. 4(B)]. Although EC shrank slightly in size, the responses were not significantly different over the culture period.
period. In IC however, the newly formed chondron evident at 7 days shrank markedly under hypertonic conditions.

CROSS-SECTIONAL AREA ANALYSES UNDER HYPOTONIC CONDITIONS

All chondrocytes swelled significantly in hypotonic medium. The response was greatest in IC, less in EC, and least in MC preparations [Fig. 4(C)]. The response of chondrocytes in MC did not change over time in culture, while the chondrocytes in both EC and IC showed a reduced swelling response at day 7 when compared to day 1.

The percentage change in the chondron cross-sectional area of MC was minimal in response to hypotonic media at all time points [Fig. 4(D)]. EC swelled more than MC at day 1, but this response reduced over 7 days in culture. The newly formed chondron in IC preparations at day 7 swelled significantly under hypotonic conditions.

Discussion

Structural, immunohistochemical and functional studies have been used to characterize the influence of the pericellular microenvironment in mediating the chondrocyte response to osmotic challenge. The dynamic behavior of chondrocytes within chondrons isolated by mechanical homogenization or enzymatic extraction was compared with isolated chondrocytes under isotonic, hypertonic and hypotonic conditions. The results show that differences in the size, structure, composition and integrity of the pericellular microenvironment can markedly influence the chondrocyte response to osmotic challenges designed to mimic cartilage loading.

MC preparations differ fundamentally from EC and IC since no enzymatic digestion is used during the extraction procedure. The distribution patterns for type VI collagen and keratan sulfate are consistent with previous chondron studies\(^{55,58,59}\), and correlate closely with chondron structure *in situ*\(^{1}\). Moreover, the pericellular microenvironment of
MC represents the major proportion (60%) of the chondron cross-sectional area, and most accurately represents the chondrons observed in adult canine articular cartilage.

In contrast, enzymatic chondron extraction uses a mixture of dispase and collagenase to release the chondrocyte and its microenvironment from the matrix. Previous studies on mature human cartilage showed strong retention of collagenase-resistant type VI collagen, but reduction or loss of other critical matrix macromolecules including aggrecan and fibronectin. Adaptation of these methods for use on adult canine cartilage produced EC preparations which retained a narrow microenvironment containing type VI collagen and keratan sulfate, but lacked type II collagen and fibronectin (unpublished data). These structural and compositional differences in the EC microenvironment reduced its size to 18% of the chondron area, and provided a markedly different chondron preparation for comparative studies.

Chondrocytes isolated by sequential pronase and collagenase digestion showed no evidence of a pericellular microenvironment at the time of isolation. However, pericellular type VI collagen and keratan sulfate were evident by confocal immunohistochemistry within 24 h of culture, and the new microenvironment which formed around IC was consistent in structure and organization with that reported in other studies. In terms of size, structure and composition, the pericellular microenvironment of IC and EC preparations shared similarities by the end of the culture period, but still varied markedly from the pericellular microenvironment of MC preparations.

These marked differences in the structure and extent of the microenvironment influenced chondrocyte behavior under isotonic conditions. The chondrocytes of IC and EC remained similar in size to each other throughout the culture period, and were consistently larger than those of MC.

The large increase in size of both IC and EC chondrocytes at day 1 represents a direct volume regulatory response to isotonic media, since isolated chondrocytes have previously been reported to increase in size after isolation due to changes in ambient osmolality. The larger size of both IC and EC chondrocytes could perhaps be explained by their comparative lack of constraint since MC chondrocytes have a more structurally complex microenvironment.

Fig. 4. Relative percentage changes in cross-sectional areas of the chondrocyte (A), (C) and the chondron (B), (D), at days 1, 3 and 7, under hypertonic (A), (B) and hypotonic (C), (D) challenge. MC (black), EC (striped), IC (white). Values represent sample means±S.E.M. Statistically significant differences (P<0.05) have been indicated for post-hoc comparisons between days (*) and between preparations (**). The N values for MC, EC and IC respectively are: 14, 31, 14 (day 1); 17, 14, 17 (day 3); 18, 24, 32 (day 7).
pericellular microenvironment surrounding them1,2. The fact that EC chondrocytes behaved in a similar manner to IC suggests that the presence of some pericellular macromolecules is not sufficient to protect the chondrocyte. Furthermore, the increase in size of both IC and EC chondrocytes by day 7 correlated with the increased size and complexity of the newly elaborated microenvironment. Previous research has shown that isolated chondrocytes increase in size over 7 days of culture in agarose and that this increase is thought to be related to a higher level of metabolic activity5,7,62. In contrast, the chondrocytes of MC preparations decreased slightly in size as new macromolecules were added into the existing microenvironment. One explanation may be that the low maintenance requirements of an intact pericellular microenvironment cause the MC chondrocytes to have a lower metabolic activity than EC or IC, and hence a slower rate of synthesis in culture. The presence of a pericellular microenvironment has previously been suggested to down-regulate chondrocyte metabolism in vitro63.

Taken together, all these observations indicate that it is not merely the presence or absence of specific matrix macromolecules, but the nature of their structural integration which provides the physical restraint of the pericellular microenvironment and contributes to the chondrocyte volume regulatory response under isotonic conditions. This suggests that the chondrocytes of MC and EC also respond according to classical osmotic principles by swelling in hypotonic media and shrinking in hypertonic media. More recently, investigation of the osmotic response of chondrocytes in situ under hypo-and hypertonic conditions56 has shown that chondrocytes respond to varying degrees depending on which layer they are in (superficial, middle or deep), and that this can be attributed to the influence of their extracellular matrix.

The most efficient response to osmotic challenge was observed in MC where minimal change in chondrocyte cross-sectional area occurred under all experimental conditions. This suggests that the structural and compositional integrity of the MC microenvironment forms an osmotic buffer between the chondrocyte and the extracellular medium. High concentrations of hyaluronan and aggrecan are retained within the MC microenvironment1 and these, together with intact fibrillar and microfibrillar collagens, are likely to maintain the mechanical stiffness of the microenvironment and its osmotic buffering capacity. Similarly, the relationship between the chondrocyte and its pericellular microenvironment, and the signaling mechanisms involved in their dynamic interaction, should also be minimally affected in these preparations. Our observations are also consistent with biomechanical compression studies in agarose in which MC showed negligible deformation when compressed to 20\% strain indicating an estimated pericellular stiffness in excess of 25 kPa64. The osmotic responses of the MC preparations were therefore consistent with the hypothesis that cell-matrix and matrix-matrix interactions in the microenvironment are minimally disrupted during mechanical extraction, and that this chondrocyte model can maintain a physicochemical responsiveness in vitro which is likely to mimic its behavior in intact tissue.

The morphological differences between MC and EC preparations were also reflected in the response of EC to osmotic challenge. The chondrocyte response of EC gradually diminished as new matrix macromolecules were sequestered into the existing microenvironment. This indicates that a return towards structural and compositional integrity correlates directly with a more efficient response to osmotic challenge. Similar behavior was seen in IC preparations which showed the greatest change in chondrocyte response at day 1, but were able to regulate volume more efficiently as a new microenvironment was assembled. This data is consistent with biomechanical studies in which the behavior of EC and IC were shown to differ under load. Both preparations increased their biomechanical stiffness as further pericellular macromolecules were sequestered into the microenvironment66. Our results are also consistent with studies using micropipette aspiration to assess the deformation properties of the EC and IC microenvironments67. The Young’s modulus calculated for the pericellular microenvironment of human EC (1.29±1.06 kPa), was significantly greater than that estimated for IC (0.79±0.72 kPa), but still several orders lower than the cartilage extracellular matrix (1.4 MPa). Further studies have shown a relationship between cytoskeletal organization and the elaboration of a collagen-rich microenvironment in vitro68 suggesting a functional relationship between the intracellular and extracellular tensile network. Together, these results indicate that the chondrocytes of EC and IC resynthesize matrix macromolecules lost during the extraction procedures, sequester these macromolecules within the pericellular microenvironment, and finally organize their three-dimensional assembly to form a more functionally effective barrier against mechanical and osmotic forces resulting from joint loading.

Cell volume regulation in response to osmotic challenge is a complex process involving an array of membrane pumps, voltage-activated and mechanosensitive ion channels, passive exchangers and co-transporters that control the flux of osmotically active molecules, and are closely related to the cytoskeletal network47,69–72. Furthermore, the volume regulatory response of chondrocytes has been linked to alterations in tension of the actin cytoskeleton73 which is capable of signaling changes in chondrocyte volume to the cell nucleus in response to altered osmolarity17,9,73.

In addition to defining the physicochemical environment of the chondrocyte, the pericellular microenvironment interacts directly with the chondrocyte through cell-surface receptors such as integrins and CD44. These receptors bind to specific matrix macromolecules such as fibronectin, hyaluronan, and pericellular collagens74–76 and all play key roles in the integration of the matrix with intracellular components, including the cytoskeleton17–19,73,77. Cell–matrix interactions are involved with ‘outside-in signaling’ and the translation of forces acting on the cartilage matrix into signals which regulate chondrocyte function, cell shape78 and the volume regulatory response of the chondrocyte. It is likely that these cell–matrix linkages are compromised or lost in both EC and IC preparations during the extraction procedures. This disruption and loss of specific macromolecules must severely compromise normal signaling mechanisms and contribute to the changes in volume regulatory response observed in this study. The continued recovery of volume regulatory response during the culture period implies recovery of some of the signaling...
mechanisms as cells resynthesize receptors and matrix ligands responsible for pericellular matrix assembly.

Recent studies have suggested that the viscoelastic properties of the pericellular matrix play an important role in defining the mechanical environment of the chondrocyte and that theoretical models which lack pericellular microenvironment data are seriously flawed. Future models investigating chondrocyte deformation and physicochemical function should therefore include details of the structure and properties of the pericellular microenvironment. The responses to osmotic challenge reported in this study provide the first evidence that the pericellular microenvironment can influence the volume regulatory response of the chondrocyte. The data suggest that the composition and integrity of the microenvironment influence the ability of the chondrocyte to respond to osmotic challenge and indicate that the intact pericellular microenvironment functions efficiently in vivo to minimize the exposure of the chondrocyte to dynamic osmotic challenges that could compromise function.

Acknowledgments

The authors would like to thank Dr Denis Loiselle for his kind assistance with the statistical analyses. The research was funded by grants from the Arthritis Foundation of New Zealand (WH, CAP), the Health Research Council of New Zealand (CAP, JMR, AFS), and the Auckland University of Technology (WH).

References

26. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates...

64. Erickson G, Minkhorst R, Guilak F. The calcium transients elicited in chondrocytes as a result of exposure to osmotic pressure change are not due to simple membrane deformation (Abstract). Trans Orthop Res Soc 2001;26:0555.

