FINITE FIELDS
AND THEIR APPLICATIONS

Crooked maps in $\mathbb{F}_{2^{n}}$

Gohar M. Kyureghyan

Department of Mathematics, Otto-von-Guericke University of Magdeburg, Universitätsplatz 2,
39106 Magdeburg, Germany
Received 22 July 2005; revised 8 March 2006
Available online 24 April 2006
Communicated by Gary L. Mullen

Abstract

A map $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is called crooked if the set $\left\{f(x+a)+f(x): x \in \mathbb{F}_{2^{n}}\right\}$ is an affine hyperplane for every fixed $a \in \mathbb{F}_{2^{n}}^{*}$ (where $\mathbb{F}_{2^{n}}$ is considered as a vector space over \mathbb{F}_{2}). We prove that the only crooked power maps are the quadratic maps $x^{2^{i}+2^{j}}$ with $\operatorname{gcd}(n, i-j)=1$. This is a consequence of the following result of independent interest: for any prime p and almost all exponents $0 \leqslant d \leqslant p^{n}-2$ the set $\left\{x^{d}+\right.$ $\left.\gamma(x+a)^{d}: x \in \mathbb{F}_{p^{n}}\right\}$ contains n linearly independent elements, where γ and $a \neq 0$ are arbitrary elements from $\mathbb{F}_{p^{n}}$. © 2006 Elsevier Inc. All rights reserved.

Keywords: Almost perfect nonlinear map; Crooked map; Bent functions; Quadrics

1. Introduction

A map $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is called almost perfect nonlinear if for every $a \in \mathbb{F}_{2^{n}}^{*}:=\mathbb{F}_{2^{n}} \backslash\{0\}$ the set

$$
D(a):=\left\{f(x+a)+f(x): x \in \mathbb{F}_{2^{n}}\right\}
$$

contains 2^{n-1} elements, i.e. it is as large as possible. We call $D(a)$ the differential set of f at a. Almost perfect nonlinear maps provide the best resistance against the so-called differential cryptanalysis [7]. All known almost perfect nonlinear maps, with the exception of some sporadic examples [11], can be obtained from the almost perfect nonlinear power maps. The known exponents of almost perfect nonlinear power maps (up to factor 2^{i}) are

[^0]\[

$$
\begin{array}{ll}
& 2^{k}+1, \quad \operatorname{gcd}(k, n)=1 \quad(\text { Gold's exponent }[1,12]), \\
& 2^{2 k}-2^{k}+1, \quad \operatorname{gcd}(k, n)=1 \quad(\text { Kasami's exponent }[15]), \\
\text { if } n=5 k \quad & 2^{4 k}+2^{3 k}+2^{2 k}+2^{k}-1 \quad(\text { Dobbertin's function }[10]), \\
\text { if } n=2 m+1 \text { also } \quad 2^{m}+3 \quad(\text { Welch's exponent }[5,9,14]), \\
& 2^{m}+2^{\frac{m}{2}}-1 \quad \text { if } m \text { is even, and } \\
& \left.2^{m}+2^{\frac{3 m+1}{2}}-1 \quad \text { if } m \text { is odd } \quad \text { (Niho's exponent }[8,14]\right), \\
& 2^{n}-2 \quad(\text { field inverse [22]). }
\end{array}
$$
\]

The characterization of almost perfect nonlinear power maps is open and seems to be a very difficult problem.

In $[1,24]$ the almost perfect nonlinear maps with the differential sets being the complements of hyperplanes are studied. Such maps are called crooked. Crooked maps exist only if n is odd. Crooked maps can be used to construct many interesting combinatorial objects [1,23,24]. The only known crooked maps are polynomials with exponents of binary weight 2 . We study here the question whether other crooked maps exist. Using combinatorics in the cyclic group of order n, we show that in a class of maps including power maps only the ones with exponents of binary weight 2 can be crooked. This is a generalization of a result in [17]. There are some indications that the complete characterization of crooked maps is difficult. For example, the characterization of crooked binomials is more difficult [3]. Also it was believed that any almost perfect nonlinear polynomial with exponents of binary weight 2 is affinely equivalent to a Gold power map [2]. This was recently disproved [11]. In [11] it is shown that $f(x)=x^{3}+u x^{36}$ for a suitable $u \in \mathbb{F}_{2^{10}}$ defines an almost perfect nonlinear map from $\mathbb{F}_{2^{10}}$ into $\mathbb{F}_{2^{10}}$, which is not affinely equivalent to any power map.

This paper is organized as follows. In Section 2 we generalize the notion of crooked maps and give some properties of such maps. In Section 3 as an application of the results of Section 2 we give new proofs of some known properties of Gold power maps. In Section 4 we show that for any prime p the set $\left\{x^{d}+\gamma(x+a)^{d}: x \in \mathbb{F}_{p^{n}}\right\}$ contains n linearly independent elements almost for all exponents d. We also prove a similar result for more general class of maps. As a consequence we characterize the crooked maps in that class.

2. Crooked maps

Let $\mathbb{F}_{2^{n}}$ be the finite field with 2^{n} elements, which is also considered as a vector space over \mathbb{F}_{2}. If k divides n, then $\mathbb{F}_{2^{k}}$ denotes the subfield of 2^{k} elements in $\mathbb{F}_{2^{n}}$. The hyperplanes in $\mathbb{F}_{2^{n}}$ are the subspaces of dimension $n-1$. The affine hyperplanes are the subspaces of dimension $n-1$ and their complements. Let $\operatorname{tr}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ be the absolute trace map. Then the affine hyperplanes are the sets $\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha x)=c\right\}$ for some $\alpha \in \mathbb{F}_{2^{n}}^{*}$ and $c \in \mathbb{F}_{2}$.

In [1] a map $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is called crooked, if

$$
D(a)=\left\{f(x+a)+f(x): x \in \mathbb{F}_{2^{n}}\right\}
$$

is the complement of a hyperplane in $\mathbb{F}_{2^{n}}$ for every $a \in \mathbb{F}_{2^{n}}^{*}$. Crooked maps are necessarily bijective, since $0 \notin D(a)$ for all $a \in \mathbb{F}_{2^{n}}^{*}$. They exist only if n is odd. We extend the definition of crooked maps in the following way.

Definition 1. A map $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is called crooked, if for every $a \in \mathbb{F}_{2^{n}}^{*}$ the set

$$
D(a)=\left\{f(x+a)+f(x): x \in \mathbb{F}_{2^{n}}\right\}
$$

is an affine hyperplane of $\mathbb{F}_{2^{n}}$.
In this notion crooked maps exist also for even n. For example, every almost perfect nonlinear polynomial with exponents of binary weight 2 is crooked (see Section 3). Moreover, there are crooked maps for odd n, which are not bijective, as the example of $x^{2^{i}+1}+x, \operatorname{gcd}(i, n)=1$, shows.

The maps $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ and $g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are called affinely equivalent if there are affine maps B_{1}, B_{2} and $b: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ such that B_{1}, B_{2} are bijective and $f=B_{1} \circ g \circ B_{2}+b$. A map that is affinely equivalent to a crooked map is also crooked.

Given a map $g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, the Fourier transform of g is the map $\mathcal{F}_{g}: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \rightarrow \mathbb{C}$ defined by

$$
\mathcal{F}_{g}(\alpha, \beta)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}(\alpha g(x)+\beta x)}, \quad(\alpha, \beta) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}
$$

A map $g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is called almost bent, if $\mathcal{F}_{g}(\alpha, \beta) \in\left\{-2^{\frac{n+1}{2}}, 0,2^{\frac{n+1}{2}}\right\}$ for all $\alpha \in \mathbb{F}_{2^{n}}^{*}$, $\beta \in \mathbb{F}_{2^{n}}$. Obviously, almost bent maps exist only for odd n.

Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be crooked. Consider

$$
\begin{align*}
\mathcal{F}_{f}(\alpha, \beta)^{2} & =\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}(\alpha f(x)+\beta x)} \sum_{y \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}(\alpha f(y)+\beta y)} \\
& =\sum_{x, y \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}(\alpha f(x)+\beta x+\alpha f(y)+\beta y)} \\
& =\sum_{a \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}(\beta a)} \sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}(\alpha(f(x)+f(x+a)))} \\
& =2^{n} \sum_{a \in T_{f}(\alpha)}(-1)^{\operatorname{tr}(\beta a)}-2^{n} \sum_{a \in \bar{T}_{f}(\alpha)}(-1)^{\operatorname{tr}(\beta a)}, \tag{1}
\end{align*}
$$

where

$$
T_{f}(\alpha)=\left\{a \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha(f(x)+f(x+a)))=0 \text { for all } x \in \mathbb{F}_{2^{n}}\right\}
$$

is the set of all a for which $D(a)$ coincides with the hyperplane $\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha x)=0\right\}$ and

$$
\bar{T}_{f}(\alpha)=\left\{a \in \mathbb{F}_{2^{n}}^{*}: \operatorname{tr}(\alpha(f(x)+f(x+a)))=1 \text { for all } x \in \mathbb{F}_{2^{n}}\right\}
$$

is the set of all a with $D(a)$ equal to the complement of hyperplane $\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha x)=0\right\}$. Clearly, $0 \in T_{f}(\alpha)$ for any α.

Proposition 1. Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be crooked and $\alpha \in \mathbb{F}_{2^{n}}^{*}$, then $T_{f}(\alpha)$ is a subspace and $\bar{T}_{f}(\alpha)$ is either empty or is a coset of $T_{f}(\alpha)$.

Proof. Let $a, b \in T_{f}(\alpha)$ or $a, b \in \bar{T}_{f}(\alpha)$, then $a+b \in T_{f}(\alpha)$ too. Indeed,

$$
\operatorname{tr}(\alpha(f(x)+f(x+a)))=\operatorname{tr}(\alpha(f(x)+f(x+b))) \quad \text { for all } x \in \mathbb{F}_{2^{n}}
$$

which implies that

$$
\operatorname{tr}(\alpha(f(x+a)+f(x+b)))=\operatorname{tr}(\alpha(f(y)+f(y+a+b)))=0 \quad \text { for all } y \in \mathbb{F}_{2^{n}}
$$

Similarly, it can be shown, that if $a \in T_{f}(\alpha)$ and $b \in \bar{T}_{f}(\alpha)$ then $a+b \in \bar{T}_{f}(\alpha)$. Thus $\bar{T}_{f}(\alpha)$ is a coset of $T_{f}(\alpha)$ if it is not empty.

Theorem 1. The squared Fourier spectrum of a crooked map $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ consists of 0 and powers of 2 .

Proof. From (1)

$$
\mathcal{F}_{f}(\alpha, \beta)^{2}=2^{n} \sum_{a \in T_{f}(\alpha)}(-1)^{\operatorname{tr}(\beta a)}-2^{n} \sum_{a \in \bar{T}_{f}(\alpha)}(-1)^{\operatorname{tr}(\beta a)}
$$

Let $\operatorname{dim} T_{f}(\alpha)=k$. If $\bar{T}_{f}(\alpha)=\emptyset$, then

$$
\mathcal{F}_{f}(\alpha, \beta)^{2}=2^{n} \sum_{a \in T_{f}(\alpha)}(-1)^{\operatorname{tr}(\beta a)}= \begin{cases}2^{n+k} & \text { if } T_{f}(\alpha) \subset\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\beta x)=0\right\} \\ 0 & \text { otherwise }\end{cases}
$$

In the case $\bar{T}_{f}(\alpha) \neq \emptyset$, let $b \in \bar{T}_{f}(\alpha)$, then

$$
\begin{aligned}
\mathcal{F}_{f}(\alpha, \beta)^{2} & =2^{n} \sum_{a \in T_{f}(\alpha)}\left((-1)^{\operatorname{tr}(\beta a)}-(-1)^{\operatorname{tr}(\beta(b+a))}\right) \\
& =2^{n}\left(1-(-1)^{\operatorname{tr}(\beta b)}\right) \sum_{a \in T_{f}(\alpha)}(-1)^{\operatorname{tr}(\beta a)} \\
& = \begin{cases}2^{n+k+1} & \text { if } T_{f}(\alpha) \subset\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\beta x)=0\right\} \text { and } \operatorname{tr}(\beta b)=1, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

The Walsh transform of a Boolean function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ at a point $\beta \in \mathbb{F}_{2^{n}}$ is defined to be

$$
\mathcal{W}_{F}(\beta)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{F(x)+\operatorname{tr}(\beta x)}
$$

A Boolean function is called plateaued if the squared Walsh transform of it takes at most three values [26]. The plateaued functions with the Walsh transform taking only two values $\pm 2^{n / 2}$ are called bent. The proof of Theorem 1 shows that the Boolean function $\operatorname{tr}(\alpha f(x)), \alpha \in \mathbb{F}_{2^{n}}^{*}$, is plateaued, if f is crooked. Moreover, we get the following description of such bent functions.

Corollary 1. Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be a crooked map and $\alpha \in \mathbb{F}_{2^{n}}^{*}$, then $\operatorname{tr}(\alpha f(x))$ is bent if and only if $T_{f}(\alpha) \cup \bar{T}_{f}(\alpha)=\{0\}$.

Proposition 2. Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be a crooked map and n be odd. Then for every $\alpha \in \mathbb{F}_{2^{n}}^{*}$ there is a unique $a \in \mathbb{F}_{2^{n}}^{*}$ with $D(a)=\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha x)=0\right\}$ or $D(a)=\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha x)=1\right\}$.

Proof. If for some α the hyperplane $\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha x)=0\right\}$ and its complement $\left\{x \in \mathbb{F}_{2^{n}}\right.$: $\operatorname{tr}(\alpha x)=1\}$ are not a differential set of f, then by (1)

$$
\mathcal{F}_{f}(\alpha, \beta)^{2}=2^{n} \quad \text { for all } \beta,
$$

and this contradicts to n odd. The uniqueness follows from counting.
As a consequence of the proposition above we get the following result proved for bijective crooked maps in [24].

Theorem 2. Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be a crooked map and n be odd. Then f is almost bent.
Proof. Using Proposition 2 and (1), we obtain

$$
\mathcal{F}_{f}(\alpha, \beta)^{2} \in\left\{0,2^{n+1}\right\} .
$$

Theorem 3. There are no bijective crooked maps in $\mathbb{F}_{2^{n}}$ if n is even.
Proof. If f is a bijective crooked map, then $T_{f}(\alpha)=\{0\}$ and thus $\left|\bar{T}_{f}(\alpha)\right| \leqslant 1$ by Proposition 1 . On the other side, for every $a \in \mathbb{F}_{2^{n}}^{*}$ there is an $\alpha \in \mathbb{F}_{2^{n}}^{*}$ such that $a \in \bar{T}_{f}(\alpha)$, and thus by counting $\left|\bar{T}_{f}(\alpha)\right|=1$ for every $\alpha \in \mathbb{F}_{2^{n}}^{*}$. This implies that $\mathcal{F}_{f}(\alpha, \beta)^{2} \in\left\{0,2^{n+1}\right\}$ and therefore n must be odd.

3. Gold power maps

A map $Q: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is called quadratic if it is defined by a polynomial with exponents of binary weight 2 , i.e.

$$
Q(x)=\sum_{0 \leqslant i \leqslant j \leqslant n-1} \delta_{i j} x^{i^{i}+2^{j}}
$$

It is easy to see that $Q(x)+Q(y)+Q(x+y)$ is bilinear, and therefore the differential sets of a quadratic map are affine subspaces. In particular, a quadratic function is crooked if and only if it is almost perfect nonlinear. Theorem 2 implies that a quadratic almost perfect nonlinear map in $\mathbb{F}_{2^{n}}$ is almost bent in the case of odd n. This was proved in [6] using other methods.

Let us consider the quadratic power maps $x^{2^{i}+1}$. Observe, that $D(a)=\left\{x^{2^{i}+1}+(x+a)^{2^{i}+1}\right.$: $\left.x \in \mathbb{F}_{2^{n}}\right\}=\left\{a^{2^{i}+1} z: \quad z \in D(1)\right\}=: a^{2^{i}+1} D(1)$, implying that either all differential sets of a quadratic power map are subspaces or they are all cosets. The differential sets are cosets if and only if $x^{2^{i}+1}$ is a permutation, which is the case when $\operatorname{gcd}\left(2^{i}+1,2^{n}-1\right)=1$ or, equivalently, if $\frac{n}{\operatorname{gcd}(n, i)}$ is odd. Indeed, let $s=\operatorname{gcd}(n, i)$. Then

$$
\operatorname{gcd}\left(2^{n}-1,2^{i}+1\right)=\frac{\operatorname{gcd}\left(2^{n}-1,2^{2 i}-1\right)}{\operatorname{gcd}\left(2^{n}-1,2^{i}-1\right)}=\frac{2^{\operatorname{gcd}(n, 2 i)}-1}{2^{\operatorname{gcd}(n, i)}-1}
$$

At last note, that

$$
\frac{2^{\operatorname{gcd}(n, 2 i)}-1}{2^{s}-1}= \begin{cases}1 & \text { if } \frac{n}{s} \text { is odd } \\ 2^{s}+1 & \text { otherwise } .\end{cases}
$$

It is not difficult to show that $x^{2^{i}+1}+(x+a)^{2^{i}+1}$ is a 2^{s}-to-one map [22]. Thus we get the following proposition.

Proposition 3. Let $\operatorname{gcd}(n, i)=s$ and $f(x)=x^{2^{i}+1}$. Then
(i) if $\frac{n}{s}$ is odd, then $f(x)$ is a permutation and $\left\{f(x)+f(x+a): x \in \mathbb{F}_{2^{n}}\right\}$ are cosets of an ($n-s$)-dimensional subspace;
(ii) if $\frac{n}{s}$ is even, then $f(x)$ is a $\left(2^{s}+1\right)$-to-one map and $\left\{x^{2^{i}+1}+(x+a)^{2^{i}+1}: x \in \mathbb{F}_{2^{n}}\right\}$ are $(n-s)$-dimensional subspaces.

Our next goal is, for a given $\alpha \in \mathbb{F}_{2^{n}}^{*}$, to find the set of $a \in \mathbb{F}_{2^{n}}$ such that the set $D(a)$ is contained in the hyperplane $\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha x)=0\right\}$. Set

$$
T_{i}(\alpha):=\left\{a \in \mathbb{F}_{2^{n}}: \operatorname{tr}\left(\alpha\left(x^{2^{i}+1}+(x+a)^{2^{i}+1}\right)\right)=0 \text { for all } x \in \mathbb{F}_{2^{n}}\right\}
$$

Proposition 4.

$$
T_{i}(1)=\left\{a \in \mathbb{F}_{2 \operatorname{gcd}(2 i, n)}: \operatorname{tr}\left(a^{2^{i}+1}\right)=0\right\} .
$$

Proof. We look for $a \in \mathbb{F}_{2^{n}}$ with

$$
\operatorname{tr}\left(x^{2^{i}+1}+(x+a)^{2^{i}+1}\right)=0 \quad \text { for all } x \in \mathbb{F}_{2^{n}}
$$

or, equivalently,

$$
\operatorname{tr}\left(a x^{2^{i}}+a^{2^{i}} x\right)=\operatorname{tr}\left(\left(a^{2^{n-i}}+a^{2^{i}}\right) x\right)=\operatorname{tr}\left(a^{2^{i}+1}\right)
$$

The last identity is possible only if

$$
\operatorname{tr}\left(a^{2^{i}+1}\right)=0 \quad \text { and } \quad a^{2^{n-i}}+a^{2^{i}}=0 .
$$

The condition $a^{2^{n-i}}=a^{2^{i}}$ implies that $a \in \mathbb{F}_{2^{n}} \cap \mathbb{F}_{2^{2 i}}=\mathbb{F}_{2^{g \operatorname{gd}(2 i, n)}}$, completing the proof.
Corollary 2. Let $\operatorname{gcd}(n, i)=s$ and $\frac{n}{s}$ be odd. Then

$$
T_{i}(\alpha)=\alpha^{-\frac{1}{2^{i}+1}}\left\{a \in \mathbb{F}_{2^{s}}: \operatorname{tr}\left(a^{2^{i}+1}\right)=0\right\}
$$

Proof. Note, that $T_{i}(\alpha)=\alpha^{-1 /\left(2^{i}+1\right)} T_{i}(1)$ and $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, 2 i)$, since $\frac{n}{s}$ is odd.
Using the discussion above we can find the Fourier spectra of the quadratic power maps [12,15,25].

Theorem 4. Let $\operatorname{gcd}(n, i)=s, \frac{n}{s}$ be odd and $f(x)=x^{2^{i}+1}$. Then

$$
\mathcal{F}_{f}(\alpha, \beta) \in\left\{0, \pm 2^{\frac{n+s}{2}}\right\}
$$

for all $(\alpha, \beta) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \backslash\{(0,0)\}$.
Proof. Since $x^{2^{i}+1}$ is a permutation then $\left|T_{i}(\alpha)\right|=2^{s-1}$ and $\bar{T}_{i}(\alpha) \neq \emptyset$. The rest of the proof is similar to the proof of Theorem 1.

Corollary 3. Let $\operatorname{gcd}(n, i)=s$ and $\frac{n}{s}$ be even. Then

$$
T_{i}(\alpha)= \begin{cases}\alpha^{-\frac{1}{2^{i}+1}} \mathbb{F}_{2^{2 s}} & \text { if } \alpha \text { is a } 2^{i}+1 \text { power } \\ \{0\} & \text { otherwise }\end{cases}
$$

Proof. Observe, that the hyperplane $\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\beta x)=0\right\}$ contains the differential set $D(1)$ of $x^{2^{i}+1}$ if and only if $\beta \in \mathbb{F}_{2^{s}}$. Indeed, $\operatorname{tr}\left(\beta\left(x^{2^{i}+1}+(x+1)^{2^{i}+1}\right)\right)=0$ is possible only if $\operatorname{tr}(\beta)=0$ and $\beta^{2^{n-i}}=\beta$, implying $\beta \in \mathbb{F}_{2^{s}}$. Now, if

$$
D(a)=a^{2^{i}+1} D(1) \subset\left\{x \in \mathbb{F}_{2^{n}}: \operatorname{tr}(\alpha x)=0\right\}
$$

then

$$
D(1) \subset\left\{a^{-\left(2^{i}+1\right)} x: x \in \mathbb{F}_{2^{n}}, \operatorname{tr}(\alpha x)=0\right\}=\left\{y \in \mathbb{F}_{2^{n}}: \operatorname{tr}\left(a^{2^{i}+1} \alpha y\right)=0\right\}
$$

and therefore $a^{2^{i}+1} \alpha \in \mathbb{F}_{2^{s}}$. Hence, if $T_{i}(\alpha) \neq\{0\}$ then $\alpha \in \bigcup_{a \in \mathbb{F}_{2^{n}}} a^{-\left(2^{i}+1\right)} \mathbb{F}_{2^{s}}$. (Observe, that $\bigcup_{a \in \mathbb{F}_{2^{n}}^{*}} a^{-\left(2^{i}+1\right)} \mathbb{F}_{2^{s}}=\left\langle\gamma^{2^{i}+1}\right\rangle$, since $\mathbb{F}_{2^{s}}^{*}$ is a subgroup of $\left\langle\gamma^{2^{i}+1}\right\rangle$, where γ is a primitive element of $\mathbb{F}_{2^{n}}$.) Further, using Proposition 4 we get

$$
T_{i}(\alpha)=\alpha^{\frac{1}{2^{i}+1}} T_{i}(1)=\alpha^{\frac{1}{2^{i}+1}}\left\{a \in \mathbb{F}_{2^{2 s}}: \operatorname{tr}\left(a^{2^{i}+1}\right)=0\right\}=\alpha^{\frac{1}{2^{i}+1}} \mathbb{F}_{2^{2 s}}
$$

since $a^{2^{i}+1} \in \mathbb{F}_{2^{s}}$ for all $a \in \mathbb{F}_{2^{s}}$, implying $\operatorname{tr}\left(a^{2^{i}+1}\right)=0$.
Theorem 5. Let $\operatorname{gcd}(n, i)=s, \frac{n}{s}$ be even and $f(x)=x^{2^{i}+1}$. Then

$$
\mathcal{F}_{f}(\alpha, \beta) \in\left\{0, \pm 2^{\frac{n}{2}}, \pm 2^{\frac{n+2 s}{2}}\right\}
$$

for all $(\alpha, \beta) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \backslash\{(0,0)\}$.
Proof. Clearly, $\bar{T}_{i}(\alpha)=\emptyset$ for all $\alpha \in \mathbb{F}_{2^{n}}^{*}$. The proof can be completed using Corollary 3 and the steps of the proof of Theorem 1.

Corollary 4. Let $\operatorname{gcd}(n, i)=s$ and $\frac{n}{s}$ be even. Then the Boolean function $\operatorname{tr}\left(\alpha x^{2^{i}+1}\right) x \in \mathbb{F}_{2^{n}}$ is bent if and only if α is not a $2^{i}+1$ power in $\mathbb{F}_{2^{n}}$.

Proof. Follows from Corollaries 3 and 1.
The obtained results can be used to determine the type of quadratic form $\operatorname{tr}\left(\alpha x^{2^{i}+1}\right)$. At first, we repeat briefly some definitions and facts about quadratic forms [20,21].

Given a basis $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ of \mathbb{F}_{2}^{n}, every polynomial $P \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ determines a map $P: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ by $\sum_{i=1}^{n} a_{i} \gamma_{i} \mapsto P\left(a_{1}, \ldots, a_{n}\right)$. The maps arising from a homogeneous polynomial of degree 2 are called quadratic forms. Thus, the quadratic forms are determined by

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \leqslant j} c_{i j} x_{i} x_{j}, \quad c_{i j} \in F_{2} .
$$

Set $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Then $Q(\mathbf{x})$ can be represented also as

$$
Q(\mathbf{x})=\mathbf{x}^{t} B \mathbf{x}+\mathbf{c}^{t} \mathbf{x}
$$

where B is an $n \times n$ upper triangular matrix with zeros along the diagonal and $\mathbf{c} \in \mathbb{F}_{2}^{n}$. The rank $2 h\left(1 \leqslant h \leqslant \frac{n}{2}\right)$ of the symmetric matrix $B+B^{t}$ is called the rank of the quadratic form. Two quadratic forms are called equivalent if they can be transformed each into the other by means of a nonsingular linear substitution of indeterminates. It is well known that a quadratic form of rank $2 h$ is equivalent to one of the following quadratic forms:

$$
\begin{gathered}
x_{1} x_{2}+\cdots+x_{2 h-1} x_{2 h} \quad \text { (hyperbolic) } \\
x_{1} x_{2}+\cdots+x_{2 h-1} x_{2 h}+x_{2 h-1}+x_{2 h} \quad \text { (elliptic) } \\
x_{1} x_{2}+\cdots+x_{2 h-1} x_{2 h}+x_{2 h-1} x_{2 h}+x_{2 h+1} \quad \text { (parabolic), }
\end{gathered}
$$

and its Walsh transform takes values $0, \pm 2^{n-h}$ if $h \neq \frac{n}{2}$, and $\pm 2^{n / 2}$, if $h=\frac{n}{2}$. The cardinality $N:=|\{\mathbf{x} \in V: Q(\mathbf{x})=0\}|$ allows to determine the kind of a quadratic form. More precisely, a quadratic form is

$$
\begin{array}{ll}
\text { hyperbolic } & \text { if } N=2^{n-2 h}\left(\left(2^{h}-1\right)\left(2^{h-1}+1\right)+1\right) \\
\text { elliptic } & \text { if } N=2^{n-2 h}\left(\left(2^{h}+1\right)\left(2^{h-1}-1\right)+1\right) \\
\text { parabolic } & \text { if } N=2^{n-2 h-1} 2^{2 h}
\end{array}
$$

Equivalently,

$$
\mathcal{W}_{Q}(0)= \begin{cases}-2^{n-h} & \text { if } Q(\mathbf{x}) \text { is hyperbolic } \tag{2}\\ 2^{n-h} & \text { if } Q(\mathbf{x}) \text { is elliptic } \\ 0 & \text { if } Q(\mathbf{x}) \text { is parabolic }\end{cases}
$$

Any quadratic form from $\mathbb{F}_{2^{n}}$ into \mathbb{F}_{2} has also a univariate polynomial representation $\operatorname{tr}\left(x \sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{2^{i}+1}\right)$ with $a_{i} \in \mathbb{F}_{2^{n}}$. In general it is difficult to find the type or the rank of $\operatorname{tr}\left(x \sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{2^{i}+1}\right)$. In [16] types of the monomial quadratic forms are determined. We give another proof of this result using the properties of the Gold power maps obtained above. Let $\mathcal{W}_{\alpha}(\beta)$ denote the value of Walsh transform of $\operatorname{tr}\left(\alpha x^{2^{i}+1}\right)$ at β and P be the set of the $2^{i}+1$
powers in $\mathbb{F}_{2^{n}}$. Further, let $\operatorname{gcd}(n, i)=s$ and thus $\operatorname{gcd}\left(2^{n}-1,2^{i}+1\right)=2^{s}+1$ in the case $\frac{n}{s}$ is even. By Theorem $5 \mathcal{W}_{\alpha}(0) \in\left\{ \pm 2^{n / 2}, \pm 2^{n / 2+s}\right\}$. It was observed in [19] that

$$
\mathcal{W}_{\alpha}(0)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}\left(\alpha x^{2^{i}+1}\right)}=1+\left(2^{s}+1\right) \sum_{y \in G}(-1)^{\operatorname{tr}\left(\alpha y^{i^{i}+1}\right)},
$$

where G is the subgroup of $\mathbb{F}_{2^{n}}^{*}$ generated by a primitive element to the power $2^{s}+1$, and therefore $\mathcal{W}_{\alpha}(0)$ is congruent 1 modulo $2^{s}+1$. This remark implies

$$
\mathcal{W}_{\alpha}(0)= \begin{cases}-2^{\frac{n}{2}} & \frac{n}{2 s} \text { if odd } \\ 2^{\frac{n}{2}} & \frac{n}{2 s} \text { if even }\end{cases}
$$

in the case $\alpha \notin P$, and

$$
\mathcal{W}_{\alpha}(0)= \begin{cases}2^{\frac{n}{2}+s} & \frac{n}{2 s} \text { if odd } \\ -2^{\frac{n}{2}+s} & \frac{n}{2 s} \text { if even }\end{cases}
$$

in the case $\alpha \in P$.
So the following theorem is immediate.
Theorem 6. (See [16].) Let $\operatorname{gcd}(n, i)=s$ and $\alpha \in \mathbb{F}_{2^{n}}^{*}$.
(i) If $\frac{n}{s}$ is odd, then the quadratic form $\operatorname{tr}\left(\alpha x^{2^{i}+1}\right)$ in $\mathbb{F}_{2^{n}}$ is parabolic of rank $n-s$.
(ii) If $\frac{n}{2 s}$ is odd, then the quadratic form $\operatorname{tr}\left(\alpha x^{2^{i}+1}\right)$ in $\mathbb{F}_{2^{n}}$ is elliptic of rank $n-2 s$ if α is a $2^{i}+1$ power in $\mathbb{F}_{2^{n}}$ and hyperbolic of rank n otherwise.
(iii) If $\frac{n}{2 s}$ is even, then the quadratic form $\operatorname{tr}\left(\alpha x^{2^{i}+1}\right)$ in $\mathbb{F}_{2^{n}}$ is hyperbolic of rank $n-2 s$ if α is a $2^{i}+1$ power in $\mathbb{F}_{2^{n}}$ and elliptic of rank n otherwise.

4. On the image set of $x^{d}+\gamma(x+a)^{d}$ in $\mathbb{F}_{p^{n}}$

In this section p is an arbitrary prime. Let $0 \leqslant k \leqslant p^{n}-2$. We denote by C_{k} the cyclotomic coset modulo $p^{n}-1$ containing k, i.e.

$$
C_{k}=\left\{k, p k, \ldots, p^{n-1} k\right\} \quad\left(\bmod p^{n}-1\right) .
$$

Further, let \mathcal{C} be the set of all cyclotomic cosets modulo $p^{n}-1$, i.e.

$$
\mathcal{C}=\left\{C_{k}: 0 \leqslant k \leqslant p^{n}-2\right\} .
$$

If $\left|C_{k}\right|=l$, then $\left\{x^{k}: x \in \mathbb{F}_{p^{n}}\right\} \subset \mathbb{F}_{p^{l}}$ and $\mathbb{F}_{p^{l}}$ is the smallest subfield with this property. Let k and k^{\prime} have base p representation $\left(k_{n-1} \ldots k_{0}\right)_{p}$ and $\left(k_{n-1}^{\prime} \ldots k_{0}^{\prime}\right)_{p}$, respectively. Let $0<i<n$. We say that $\left(k_{n-1} \ldots k_{0}\right)_{p}$ is the i th shift of $\left(k_{n-1}^{\prime} \ldots k_{0}^{\prime}\right)_{p}$ if $k_{j}=k_{j+i}^{\prime}$ for every j, where indices are taken modulo n. Observe, that k and k^{\prime} are in the same cyclotomic coset modulo $p^{n}-1$ if and only if $\left(k_{n-1} \ldots k_{0}\right)_{p}$ is a shift of $\left(k_{n-1}^{\prime} \ldots k_{0}^{\prime}\right)_{p}$. The p-weight of k is the number of nonzero
digits in its base p representation. The support $s_{p}(k)$ of k is the binary sequence $\left(s_{n-1} \ldots s_{0}\right)$ that records the nonzero positions of $\left(k_{n-1} \ldots k_{0}\right)_{p}$, i.e.

$$
s_{i}= \begin{cases}1 & \text { if } k_{i} \neq 0, \\ 0 & \text { if } k_{i}=0\end{cases}
$$

If k and k^{\prime} are in the same cyclotomic coset then $s_{p}(k)$ and $s_{p}\left(k^{\prime}\right)$ are shifts of each other. We say that k covers k^{\prime} and write $k^{\prime} \prec k$ if $k \neq k^{\prime}$ and $s_{p}(k)$ covers $s_{p}\left(k^{\prime}\right)$.

Lemma 1. Let an integer $d=\left(d_{n-1} \ldots d_{0}\right)_{p}$ have p-weight >2 and $\left|C_{d}\right|=n$. Suppose that for every i with $p^{i} \prec d$ there exists $j \neq i$ such that $p^{j} \prec d$ and $d-d_{i} p^{i}$ is a shift of $d-d_{j} p^{j}$. Then d is in the cyclotomic coset of $\sum_{l=0}^{n / g-2} t p^{g l}$, where g a divisor of n and $1 \leqslant t \leqslant p-1$.

Proof. Let $\left(s_{n-1} \ldots s_{0}\right)$ be the support of d. Note, that all integers in C_{d} satisfy the assumption of this lemma, and therefore we can assume that $s_{0}=1$ and $\min \left\{i-j: s_{i}=1, s_{j}=1, i \neq j\right\}=$ $\min \left\{i: s_{i}=1, i \neq 0\right\}$. Observe that if $i \neq 0$ and $\left(d-d_{i} p^{i}\right)$ is the m th shift of $\left(d-d_{j} p^{j}\right)$ then $d_{0}=d_{m}$, and in particular $s_{m}=1$. Let $i \neq i^{\prime}$. Then $\left|C_{d}\right|=n$ implies that if $\left(d-d_{i} p^{i}\right)$ is the m th shift of $\left(d-d_{j} p^{j}\right)$, and $\left(d-d_{i^{\prime}} p^{i^{\prime}}\right)$ is the m^{\prime} th shift of $\left(d-d_{j^{\prime}} p^{j^{\prime}}\right)$, then $m \neq m^{\prime}$. Hence, by counting, for every $m \neq 0$ with $s_{m}=1$ there are $i \neq 0$ and j such that $\left(d-d_{i} p^{i}\right)$ is the m th shift of $\left(d-d_{j} p^{j}\right)$. Take $g=\min \left\{i: s_{i}=1, i \neq 0\right\}$. Let $f \neq 0$ be such that $s_{f}=1$ and $\left(d-d_{f} p^{f}\right)$ is the g th shift of some $\left(d-d_{i} p^{i}\right)$. Then, in particular, $s_{p}\left(d-d_{f} p^{f}\right)$ is the g th shift of $s_{p}\left(d-d_{i} p^{i}\right)$, implying

$$
\begin{aligned}
\left\{k: 0 \leqslant k \leqslant n-1, s_{k}=1\right\}= & \left\{k: p^{k} \prec d\right\} \\
= & \{0, g, 2 g, \ldots, f g, f g+h,(f+1) g+h, \ldots, \\
& (f+r) g+h=n-g\}
\end{aligned}
$$

Again, replacing d by an appropriate integer from C_{d} we can assume that $\left\{k: p^{k} \prec d\right\}=$ $\{0, g, 2 g, \ldots,(w-1) g\}$, where w is the p-weight of d. Note that $n-(w-1) g$ must be equal to $2 g$. Indeed, otherwise $\left|\left\{k: p^{k} \prec d\right\} \cap\left\{k^{\prime}: p^{k^{\prime}} \prec p^{2 g} d\right\}\right| \leqslant w-2$, contradicting to the fact that there are i, j such that $s_{p}\left(d-d_{i} p^{i}\right)$ is the $2 g$ th shift of $s_{p}\left(d-d_{j} p^{j}\right)$.

We call the integers of type $\sum_{l=0}^{n / g-2} t p^{g l}$ exceptional, where g a divisor of n and $1 \leqslant t \leqslant p-1$, otherwise unexceptional.

Corollary 5. Let $d=\left(d_{n-1} \ldots d_{0}\right)_{p}$ be unexceptional and $\left|C_{d}\right|=n$. Then there is a k such that $p^{k} \prec d,\left|C_{d-d_{k} p^{k}}\right|=n$ and $C_{d-d_{k} p^{k}} \cap\left\{d-d_{j} p^{j}: p^{j} \prec d, j \neq i\right\}=\emptyset$.

Proof. Observe, that if $\left|C_{d-d_{i}} p^{i}\right|=l<n$ for some i with $p^{i} \prec d$ then $\left(d-d_{i} p^{i}\right) \equiv p^{l}\left(d-d_{i} p^{i}\right)$ $\left(\bmod p^{n}-1\right)$ and therefore Lemma 1 guarantees the existence of such a k.

Further we need the following well-known facts.
Proposition 5. Let $1 \leqslant d \leqslant p^{n}-2$ and $\left|C_{d}\right|=n$. Then $\operatorname{tr}\left(\alpha x^{d}\right)$ is constantly 0 if and only if $\alpha=0$.

Theorem 7 (Lucas theorem). Let $d=\left(d_{n-1} \ldots d_{0}\right)_{p}$ and $m=\left(m_{n-1} \ldots m_{0}\right)_{p}$. Then

$$
\binom{d}{m} \equiv\binom{d_{n-1}}{m_{n-1}} \cdots\binom{d_{0}}{m_{0}} \quad(\bmod p)
$$

In particular, if $\binom{d}{m} \not \equiv 0(\bmod p)$ then $m \prec d$.
Lemma 2. If $1 \leqslant d \leqslant p^{n}-2$ has p-weight larger than 2 and $\left|C_{d}\right|=n$, then the function $\operatorname{tr}\left(\delta\left(x^{d}+\right.\right.$ $\left.\left.\gamma(x+1)^{d}\right)\right), \delta, \gamma \in \mathbb{F}_{p^{n}}$, is a constant function if and only if $\delta=0$.

Proof. Let $\delta^{\prime}=\delta \gamma$. Using Lucas theorem we get

$$
\begin{aligned}
\operatorname{tr}\left(\delta\left(x^{d}+\gamma(x+1)^{d}\right)\right) & =\operatorname{tr}\left(\delta(1+\gamma) x^{d}\right)+\operatorname{tr}\left(\delta^{\prime}\left(\sum_{m=0}^{d-1}\binom{d}{m} x^{m}\right)\right) \\
& =\operatorname{tr}\left(\delta(1+\gamma) x^{d}\right)+\operatorname{tr}\left(\delta^{\prime}\left(\sum_{m<d}\binom{d}{m} x^{m}\right)\right) \\
& =\operatorname{tr}\left(\delta(1+\gamma) x^{d}\right)+\sum_{C \in \mathcal{C}} \sum_{m \in C, m \prec d} \operatorname{tr}\left(\delta^{\prime}\binom{d}{m} x^{m}\right)
\end{aligned}
$$

where in the last sum the monomials with exponents from the same cyclotomic cosets are collected together. Let K be the set of the smallest representatives of the cyclotomic cosets. Further for $k \in K$ let $I(k):=\left\{i \in\{0, \ldots, n-1\}: p^{i} k \prec d\right\}$. Then the above sum can written as follows:

$$
\begin{aligned}
& \operatorname{tr}\left(\delta(1+\gamma) x^{d}\right)+\sum_{k \in K} \sum_{i \in I(k)} \operatorname{tr}\left(\delta^{\prime}\binom{d}{p^{i} k} x^{p^{i} k}\right) \\
& \quad=\operatorname{tr}\left(\delta(1+\gamma) x^{d}\right)+\sum_{k \in K} \sum_{i \in I(k)} \operatorname{tr}\left(\left(\binom{d}{p^{i} k}\left(\delta^{\prime}\right)^{p^{n-i}} x^{k}\right)^{p^{i}}\right) \\
& \quad=\operatorname{tr}\left(\delta(1+\gamma) x^{d}\right)+\sum_{k \in K} \operatorname{tr}\left(\left(\sum_{i \in I(k)}\binom{d}{p^{i} k}\left(\delta^{\prime}\right)^{p^{n-i}}\right) x^{k}\right) \\
& \quad=\operatorname{tr}\left(\delta(1+\gamma) x^{d}\right)+\sum_{k \in K} \operatorname{tr}\left(\delta(k) x^{k}\right),
\end{aligned}
$$

where $\delta(k)=\sum_{i \in I(k)}\binom{d}{p^{i} k}\left(\delta^{\prime}\right)^{p^{n-i}}$. Since $\operatorname{tr}\left(\delta\left(x^{d}+\gamma(x+1)^{d}\right)\right)$ is a polynomial of degree less than $p^{n}-1$, it will be a constant on $\mathbb{F}_{p^{n}}$ only if it is the zero polynomial. The exponents k belong to different cyclotomic cosets, so every summand $\operatorname{tr}\left(\delta(k) x^{k}\right)$ must be constantly 0 . By Proposition 5, it must hold $\gamma=-1$ and $\delta(k)=0$ for every k with $\left|C_{k}\right|=n$. By Corollary 5 if d is unexceptional, then there is a $k \in K$ with $\left|C_{k}\right|=n$ and $|I(k)|=1$. Let $\gamma=-1$ and d be in the
same cyclotomic coset with $\sum_{l=0}^{n / g-2} t p^{g l}$ for some $1 \leqslant t \leqslant p-1$ and a divisor g of d. Remark that n / g is at least 4 because of weight of d. In that case $I(t)=\{0, g, \ldots, n-2 g\}$ and thus

$$
\delta(t)=\sum_{i \in I(t)}\binom{d}{p^{i} t}(-\delta)^{p^{n-i}}=\sum_{l=0}^{n / g-2}(-\delta)^{p^{n-l g}}
$$

where the last equation follows from Lucas lemma. Consider the exponent $t+t p^{g}$. Then $I\left(t+t p^{g}\right)=\{0, g, \ldots, n-3 g\}$, implying

$$
\delta\left(t+t p^{g}\right)=\sum_{i \in I\left(t+t p^{g}\right)}\binom{d}{p^{i}\left(t+t p^{g}\right)}(-\delta)^{p^{n-i}}=\sum_{l=0}^{n / g-3}(-\delta)^{p^{n-l g}}
$$

Note that $\delta(t)-\delta\left(t+t p^{g}\right)=(-\delta)^{p^{2 g}}$. Moreover, $\left|C_{t}\right|=\left|C_{t+t p^{g}}\right|=n$ thus both $\delta(t)$ and $\delta\left(t+t p^{g}\right)$ must be 0 , yielding $\delta=0$.

Corollary 6. Let $1 \leqslant d \leqslant p^{n}-2$ be of p-weight larger than $2,\left|C_{d}\right|=n$ and $a \in \mathbb{F}_{p^{n}}^{*}$. Then the function $\operatorname{tr}\left(\delta\left(x^{d}+\gamma(x+a)^{d}\right)\right)$, where $\delta, \gamma \in \mathbb{F}_{p^{n}}$, is a constant function if and only if $\delta=0$.

A special case of Lemma 2 with $p=2$, odd n and $\delta=\gamma=1$ was proved in [13,18].
The statement of Corollary 6 can be generalized for the following class of maps.
Lemma 3. Let d be an unexceptional integer of p-weight at least 3 and with $\left|C_{d}\right|=n$. Further, let $B \subset \mathbb{F}_{p^{n}}$ and $a \in \mathbb{F}_{p^{n}}$. Define $f(x)=\sum_{b \in B} c_{b}(x+b)^{d}$, where $c_{b} \in \mathbb{F}_{p^{n}}$ and $\sum_{b \in B} c_{b} \neq 0$. Then $\operatorname{tr}(\delta(f(x)-f(x+a)))$ is a constant function if and only if $\delta=0$.

Proof. It is enough to consider the case $a=1$. We have

$$
\begin{aligned}
\sum_{b \in B} c_{b}(x+b)^{d}-\sum_{b \in B} c_{b}(x+b+1)^{d} & =\sum_{b \in B} c_{b}\left((x+b)^{d}-(x+b+1)^{d}\right) \\
& =\sum_{b \in B} c_{b}\left(\sum_{m<d}\binom{d}{m}\left(b^{d-m}-(b+1)^{d-m}\right) x^{m}\right) \\
& =\sum_{m<d}\binom{d}{m} x^{m}\left(\sum_{b \in B} c_{b}\left(b^{d-m}-(b+1)^{d-m}\right)\right)
\end{aligned}
$$

Using the notation of the proof of Lemma 2, we get

$$
\begin{aligned}
& \operatorname{tr}\left(\delta\left(\sum_{m<d}\binom{d}{m} x^{m}\left(\sum_{b \in B} c_{b}\left(b^{d-m}-(b+1)^{d-m}\right)\right)\right)\right) \\
& \quad=\sum_{m<d} \operatorname{tr}\left(\delta\binom{d}{m}\left(\sum_{b \in B} c_{b}\left(b^{d-m}-(b+1)^{d-m}\right)\right) x^{m}\right) \\
& \quad=\sum_{k \in K} \operatorname{tr}\left(\sum_{i \in I(k)}\left(\delta\binom{d}{p^{i} k}\left(\sum_{b \in B} c_{b}\left(b^{d-p^{i} k}-(b+1)^{d-p^{i} k}\right)\right)\right)^{p^{n-i}} x^{k}\right) .
\end{aligned}
$$

By Corollary 5 there is a k_{0} such that $d-k_{0}=p^{l},\left|C_{k_{0}}\right|=n$ and $\left|I\left(k_{0}\right)\right|=1$. The summand corresponding to that k_{0} is

$$
\operatorname{tr}\left(\delta\binom{d}{k_{0}}\left(\sum_{b \in B} c_{b}\left(b^{p^{l}}-(b+1)^{p^{l}}\right)\right) x^{k_{0}}\right)=\operatorname{tr}\left(\delta\binom{d}{k_{0}}\left(\sum_{b \in B} c_{b}\right) x^{k_{0}}\right)
$$

which is constantly 0 only if $\delta=0$.
For $p=2$ Lemma 3 implies the following result.
Theorem 8. Let d be an unexceptional integer of binary weight at least 3 and with $\left|C_{d}\right|=n$. Further, let $B \subset \mathbb{F}_{2^{n}}$ and $c_{b} \in \mathbb{F}_{2^{n}}$ be such that $\sum_{b \in B} c_{b} \neq 0$. Then $f(x)=\sum_{b \in B} c_{b}(x+b)^{d}$ is not crooked.

Proof. The proof follows from Lemma 3. Indeed, if $f(x)$ is crooked, then for a given $a \in \mathbb{F}_{2^{n}}^{*}$ there exists a $\delta \in \mathbb{F}_{2^{n}}^{*}$ such that $\operatorname{tr}(\delta(f(x)+f(x+a)))$ is a constant Boolean function.

For a particular case of the power maps it holds:
Theorem 9. The only crooked power maps in $\mathbb{F}_{2^{n}}$ are the ones with exponent $2^{i}+2^{j}$, $\operatorname{gcd}(i-j, n)=1$.

Proof. If $D(a)$ is an affine hyperplane then there is a unique $\delta \in \mathbb{F}_{2^{n}}^{*}$ such that $D(a)=\left\{y \in \mathbb{F}_{2^{n}}\right.$: $\operatorname{tr}(\delta y)=c\}$, where $c \in \mathbb{F}_{2}$. Thus, by Lemma 2, d has weight 2 or $\left|C_{d}\right|<n$. If $\left|C_{d}\right|=l<n$ then $D(a) \subset \mathbb{F}_{2^{l}}$, implying $|D(a)|<2^{n-1}$. Application of Proposition 3 completes the proof.

We believe that the statement of Theorem 9 is true for all maps.

Conjecture 1. All crooked maps are quadratic.

Another consequence of Corollary 6 is the characterization of integers s for which the bent function $f: \mathbb{F}_{2^{n}}^{2} \rightarrow \mathbb{F}_{2}$

$$
f(x, y)=\operatorname{tr}\left(x y^{s}\right)+h(y),
$$

where $h: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is arbitrary, admits a decomposition into four bent functions. A bent function $g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ admits a decomposition into four bent functions if there is an $(n-2)$-dimensional subspace V of $\mathbb{F}_{2^{n}}$ such that the restrictions of g to cosets of V are bent [4]. In [4] it is shown that $f(x, y)$ admits such a decomposition if and only if there are $a, \delta \in \mathbb{F}_{2^{n}}^{*}$ such that $\operatorname{tr}\left(\delta\left((x+a)^{d}+x^{d}\right)\right)=1$, where d is the multiplicative inverse of s modulo $2^{n}-1$. Hence using Corollary 6 the following theorem is immediate.

Theorem 10. The only bent functions $f(x, y)=\operatorname{tr}\left(x y^{s}\right)+h(y)$, where $h: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is arbitrary and n odd, admitting a decomposition into four bent functions, are the ones having s in the same cyclotomic coset with $\sum_{k=0}^{(n-1) / 2} 2^{2 i k}$ for some i coprime to n.

Proof. As in [22] it is shown $\sum_{k=0}^{(n-1) / 2} 2^{2 i k}$ is the inverse of $2^{i}+1$.

References

[1] T.D. Bending, D. Fon-Der-Flaass, Crooked functions, bent functions, and distance regular graphs, Electron. J. Combin. 5 (1) (1998) R34.
[2] T. Berger, A. Canteaut, P. Charpin, Y. Laigle-Chapuy, On almost perfect nonlinear mappings over F_{2}^{n}, IEEE Trans. Inform. Theory, in press.
[3] J. Bierbrauer, G. Kyureghyan, Crooked binomials, manuscript, 2005.
[4] A. Canteaut, P. Charpin, Decomposing bent functions, IEEE Trans. Inform. Theory 49 (8) (2003) 2004-2019.
[5] A. Canteaut, P. Charpin, H. Dobbertin, Binary m-sequences with three-valued crosscorrelation: A proof of Welch's conjecture, IEEE Trans. Inform. Theory 46 (1) (2000) 4-8.
[6] C. Carlet, P. Charpin, V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr. 15 (2) (1998) 125-156.
[7] F. Chabaud, S. Vaudenay, Links between differential and linear cryptanalysis, in: Proc. Advances in Cryptology EUROCRYPT '94, in: Lecture Notes in Comput. Sci., vol. 950, Springer, Berlin, 1995, pp. 356-365.
[8] H. Dobbertin, Almost perfect nonlinear power functions on $\operatorname{GF}\left(2^{n}\right)$: The Niho case, Inform. and Comput. 151 (1-2) (1999) 57-72.
[9] H. Dobbertin, Almost perfect nonlinear power functions on $\operatorname{GF}\left(2^{n}\right)$: The Welch case, IEEE Trans. Inform. Theory 45 (4) (1999) 1271-1275.
[10] H. Dobbertin, Almost perfect nonlinear power functions on $\mathrm{GF}\left(2^{n}\right)$: A new case for n divisible by 5, in: Proc. Finite Fields and Applications $F_{q} 5$, Springer, Berlin, 2001, pp. 113-121.
[11] Y. Edel, G. Kyureghyan, A. Pott, A new APN function which is not equivalent to a power mapping, IEEE Trans. Inform. Theory 52 (2) (2006) 744-747.
[12] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inform. Theory 14 (1968) 154-156.
[13] D. Hertel, A. Pott, A characterization of a class of maximum nonlinear functions, 2004, submitted for publication.
[14] H.D.L. Hollmann, Q. Xiang, A proof of the Welch and Niho conjectures on cross-correlations of binary msequences, Finite Fields Appl. 7 (2) (2001) 253-286.
[15] T. Kasami, The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes, Inform. Control 18 (1971) 369-394.
[16] A. Klapper, Cross-correlations of geometric sequences in characteristic two, Des. Codes Cryptogr. 3 (4) (1993) 347-377.
[17] G. Kyureghyan, The only crooked power functions are $2^{k}+2^{l}$, European J. Combin., in press.
[18] Ph. Langevin, P. Véron, On the non-linearity of power function, Des. Codes Cryptogr. 37 (1) (2005) 31-43.
[19] N.G. Leander, Normality of bent functions. Monomial- and binomial-bent functions, PhD thesis, Ruhr Univ. Bochum, Fakultät für Mathematik, Bochum, 2004.
[20] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 20, Cambridge Univ. Press, Cambridge, 1997.
[21] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
[22] K. Nyberg, Differentially uniform mappings for cryptography, in: Advances in Cryptology - EUROCRYPT '93, in: Lecture Notes in Comput. Sci., vol. 765, Springer, Berlin, 1994, pp. 55-64.
[23] E.R. van Dam, D. Fon-Der-Flaass, Uniformly packed codes and more distance regular graphs from crooked functions, J. Algebraic Combin. 12 (2) (2000) 115-121.
[24] E.R. van Dam, D. Fon-Der-Flaass, Codes, graphs, and schemes from nonlinear functions, European J. Combin. 24 (1) (2003) 85-98.
[25] J. Wolfmann, Codes projectifs à deux ou trois poids associés aux hyperquadriques d'une géométrie finie, Discrete Math. 13 (2) (1975) 185-211.
[26] Y. Zheng, X.-M. Zhang, Plateaued functions, in: ICICS '99, in: Lecture Notes in Comput. Sci., vol. 1726, Springer, Berlin, 1999, pp. 284-300.

[^0]: E-mail address: gohar.kyureghyan@mathematik.uni-magdeburg.de.
 1071-5797/\$ - see front matter © 2006 Elsevier Inc. All rights reserved.
 doi:10.1016/j.ffa.2006.03.003

