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Abstract

A map f : F2n → F2n is called crooked if the set {f (x + a) + f (x): x ∈ F2n } is an affine hyperplane for
every fixed a ∈ F

∗
2n (where F2n is considered as a vector space over F2). We prove that the only crooked

power maps are the quadratic maps x2i+2j
with gcd(n, i − j) = 1. This is a consequence of the following

result of independent interest: for any prime p and almost all exponents 0 � d � pn − 2 the set {xd +
γ (x + a)d : x ∈ Fpn} contains n linearly independent elements, where γ and a �= 0 are arbitrary elements
from Fpn .
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A map f : F2n → F2n is called almost perfect nonlinear if for every a ∈ F
∗
2n := F2n \ {0} the

set

D(a) := {
f (x + a) + f (x): x ∈ F2n

}
contains 2n−1 elements, i.e. it is as large as possible. We call D(a) the differential set of f

at a. Almost perfect nonlinear maps provide the best resistance against the so-called differential
cryptanalysis [7]. All known almost perfect nonlinear maps, with the exception of some spo-
radic examples [11], can be obtained from the almost perfect nonlinear power maps. The known
exponents of almost perfect nonlinear power maps (up to factor 2i ) are
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2k + 1, gcd(k, n) = 1 (Gold’s exponent [1,12]),

22k − 2k + 1, gcd(k, n) = 1 (Kasami’s exponent [15]),

if n = 5k 24k + 23k + 22k + 2k − 1 (Dobbertin’s function [10]),

if n = 2m + 1 also 2m + 3 (Welch’s exponent [5,9,14]),

2m + 2
m
2 − 1 if m is even, and

2m + 2
3m+1

2 − 1 if m is odd (Niho’s exponent [8,14]),

2n − 2 (field inverse [22]).

The characterization of almost perfect nonlinear power maps is open and seems to be a very
difficult problem.

In [1,24] the almost perfect nonlinear maps with the differential sets being the complements
of hyperplanes are studied. Such maps are called crooked. Crooked maps exist only if n is odd.
Crooked maps can be used to construct many interesting combinatorial objects [1,23,24]. The
only known crooked maps are polynomials with exponents of binary weight 2. We study here the
question whether other crooked maps exist. Using combinatorics in the cyclic group of order n,
we show that in a class of maps including power maps only the ones with exponents of binary
weight 2 can be crooked. This is a generalization of a result in [17]. There are some indications
that the complete characterization of crooked maps is difficult. For example, the characterization
of crooked binomials is more difficult [3]. Also it was believed that any almost perfect nonlinear
polynomial with exponents of binary weight 2 is affinely equivalent to a Gold power map [2].
This was recently disproved [11]. In [11] it is shown that f (x) = x3 +ux36 for a suitable u ∈ F210

defines an almost perfect nonlinear map from F210 into F210 , which is not affinely equivalent to
any power map.

This paper is organized as follows. In Section 2 we generalize the notion of crooked maps
and give some properties of such maps. In Section 3 as an application of the results of Section 2
we give new proofs of some known properties of Gold power maps. In Section 4 we show that
for any prime p the set {xd + γ (x + a)d : x ∈ Fpn} contains n linearly independent elements
almost for all exponents d . We also prove a similar result for more general class of maps. As a
consequence we characterize the crooked maps in that class.

2. Crooked maps

Let F2n be the finite field with 2n elements, which is also considered as a vector space over F2.
If k divides n, then F2k denotes the subfield of 2k elements in F2n . The hyperplanes in F2n are
the subspaces of dimension n − 1. The affine hyperplanes are the subspaces of dimension n − 1
and their complements. Let tr : F2n → F2 be the absolute trace map. Then the affine hyperplanes
are the sets {x ∈ F2n : tr(αx) = c} for some α ∈ F

∗
2n and c ∈ F2.

In [1] a map f : F2n → F2n is called crooked, if

D(a) = {
f (x + a) + f (x): x ∈ F2n

}
is the complement of a hyperplane in F2n for every a ∈ F

∗
2n . Crooked maps are necessarily bi-

jective, since 0 /∈ D(a) for all a ∈ F
∗
2n . They exist only if n is odd. We extend the definition of

crooked maps in the following way.
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Definition 1. A map f : F2n → F2n is called crooked, if for every a ∈ F
∗
2n the set

D(a) = {
f (x + a) + f (x): x ∈ F2n

}
is an affine hyperplane of F2n .

In this notion crooked maps exist also for even n. For example, every almost perfect nonlinear
polynomial with exponents of binary weight 2 is crooked (see Section 3). Moreover, there are
crooked maps for odd n, which are not bijective, as the example of x2i+1 + x, gcd(i, n) = 1,
shows.

The maps f : F2n → F2n and g : F2n → F2n are called affinely equivalent if there are affine
maps B1,B2 and b : F2n → F2n such that B1,B2 are bijective and f = B1 ◦ g ◦ B2 + b. A map
that is affinely equivalent to a crooked map is also crooked.

Given a map g : F2n → F2n , the Fourier transform of g is the map Fg : F2n ×F2n → C defined
by

Fg(α,β) =
∑

x∈F2n

(−1)tr(αg(x)+βx), (α,β) ∈ F2n × F2n .

A map g : F2n → F2n is called almost bent, if Fg(α,β) ∈ {−2
n+1

2 ,0,2
n+1

2 } for all α ∈ F
∗
2n ,

β ∈ F2n . Obviously, almost bent maps exist only for odd n.
Let f : F2n → F2n be crooked. Consider

Ff (α,β)2 =
∑

x∈F2n

(−1)tr(αf (x)+βx)
∑

y∈F2n

(−1)tr(αf (y)+βy)

=
∑

x,y∈F2n

(−1)tr(αf (x)+βx+αf (y)+βy)

=
∑

a∈F2n

(−1)tr(βa)
∑

x∈F2n

(−1)tr(α(f (x)+f (x+a)))

= 2n
∑

a∈Tf (α)

(−1)tr(βa) − 2n
∑

a∈�Tf (α)

(−1)tr(βa), (1)

where

Tf (α) = {
a ∈ F2n : tr

(
α
(
f (x) + f (x + a)

)) = 0 for all x ∈ F2n

}
is the set of all a for which D(a) coincides with the hyperplane {x ∈ F2n : tr(αx) = 0} and

�Tf (α) = {
a ∈ F

∗
2n : tr

(
α
(
f (x) + f (x + a)

)) = 1 for all x ∈ F2n

}
is the set of all a with D(a) equal to the complement of hyperplane {x ∈ F2n : tr(αx) = 0}.
Clearly, 0 ∈ Tf (α) for any α.

Proposition 1. Let f : F2n → F2n be crooked and α ∈ F
∗
2n , then Tf (α) is a subspace and �Tf (α)

is either empty or is a coset of Tf (α).
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Proof. Let a, b ∈ Tf (α) or a, b ∈ �Tf (α), then a + b ∈ Tf (α) too. Indeed,

tr
(
α
(
f (x) + f (x + a)

)) = tr
(
α
(
f (x) + f (x + b)

))
for all x ∈ F2n ,

which implies that

tr
(
α
(
f (x + a) + f (x + b)

)) = tr
(
α
(
f (y) + f (y + a + b)

)) = 0 for all y ∈ F2n .

Similarly, it can be shown, that if a ∈ Tf (α) and b ∈ �Tf (α) then a + b ∈ �Tf (α). Thus �Tf (α) is a
coset of Tf (α) if it is not empty. �
Theorem 1. The squared Fourier spectrum of a crooked map f : F2n → F2n consists of 0 and
powers of 2.

Proof. From (1)

Ff (α,β)2 = 2n
∑

a∈Tf (α)

(−1)tr(βa) − 2n
∑

a∈�Tf (α)

(−1)tr(βa).

Let dimTf (α) = k. If �Tf (α) = ∅, then

Ff (α,β)2 = 2n
∑

a∈Tf (α)

(−1)tr(βa) =
{

2n+k if Tf (α) ⊂ {x ∈ F2n : tr(βx) = 0},
0 otherwise.

In the case �Tf (α) �= ∅, let b ∈ �Tf (α), then

Ff (α,β)2 = 2n
∑

a∈Tf (α)

(
(−1)tr(βa) − (−1)tr(β(b+a))

)

= 2n
(
1 − (−1)tr(βb)

) ∑
a∈Tf (α)

(−1)tr(βa)

=
{

2n+k+1 if Tf (α) ⊂ {x ∈ F2n : tr(βx) = 0} and tr(βb) = 1,

0 otherwise.
�

The Walsh transform of a Boolean function F : F2n → F2 at a point β ∈ F2n is defined to be

WF (β) =
∑

x∈F2n

(−1)F (x)+tr(βx).

A Boolean function is called plateaued if the squared Walsh transform of it takes at most three
values [26]. The plateaued functions with the Walsh transform taking only two values ±2n/2

are called bent. The proof of Theorem 1 shows that the Boolean function tr(αf (x)), α ∈ F
∗
2n , is

plateaued, if f is crooked. Moreover, we get the following description of such bent functions.

Corollary 1. Let f : F2n → F2n be a crooked map and α ∈ F
∗
2n , then tr(αf (x)) is bent if and only

if Tf (α) ∪ �Tf (α) = {0}.
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Proposition 2. Let f : F2n → F2n be a crooked map and n be odd. Then for every α ∈ F
∗
2n there

is a unique a ∈ F
∗
2n with D(a) = {x ∈ F2n : tr(αx) = 0} or D(a) = {x ∈ F2n : tr(αx) = 1}.

Proof. If for some α the hyperplane {x ∈ F2n : tr(αx) = 0} and its complement {x ∈ F2n :
tr(αx) = 1} are not a differential set of f , then by (1)

Ff (α,β)2 = 2n for all β,

and this contradicts to n odd. The uniqueness follows from counting. �
As a consequence of the proposition above we get the following result proved for bijective

crooked maps in [24].

Theorem 2. Let f : F2n → F2n be a crooked map and n be odd. Then f is almost bent.

Proof. Using Proposition 2 and (1), we obtain

Ff (α,β)2 ∈ {
0,2n+1}. �

Theorem 3. There are no bijective crooked maps in F2n if n is even.

Proof. If f is a bijective crooked map, then Tf (α) = {0} and thus |�Tf (α)| � 1 by Proposition 1.

On the other side, for every a ∈ F
∗
2n there is an α ∈ F

∗
2n such that a ∈ �Tf (α), and thus by counting

|�Tf (α)| = 1 for every α ∈ F
∗
2n . This implies that Ff (α,β)2 ∈ {0,2n+1} and therefore n must be

odd. �
3. Gold power maps

A map Q : F2n → F2n is called quadratic if it is defined by a polynomial with exponents of
binary weight 2, i.e.

Q(x) =
∑

0�i�j�n−1

δij x
2i+2j

.

It is easy to see that Q(x) + Q(y) + Q(x + y) is bilinear, and therefore the differential sets of a
quadratic map are affine subspaces. In particular, a quadratic function is crooked if and only if it
is almost perfect nonlinear. Theorem 2 implies that a quadratic almost perfect nonlinear map in
F2n is almost bent in the case of odd n. This was proved in [6] using other methods.

Let us consider the quadratic power maps x2i+1. Observe, that D(a) = {x2i+1 + (x + a)2i+1:
x ∈ F2n} = {a2i+1z: z ∈ D(1)} =: a2i+1D(1), implying that either all differential sets of a
quadratic power map are subspaces or they are all cosets. The differential sets are cosets if and
only if x2i+1 is a permutation, which is the case when gcd(2i + 1,2n − 1) = 1 or, equivalently,
if n

gcd(n,i)
is odd. Indeed, let s = gcd(n, i). Then

gcd
(
2n − 1,2i + 1

) = gcd(2n − 1,22i − 1)

n i
= 2gcd(n,2i) − 1

gcd(n,i)
.

gcd(2 − 1,2 − 1) 2 − 1
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At last note, that

2gcd(n,2i) − 1

2s − 1
=

{
1 if n

s
is odd,

2s + 1 otherwise.

It is not difficult to show that x2i+1 + (x + a)2i+1 is a 2s -to-one map [22]. Thus we get the
following proposition.

Proposition 3. Let gcd(n, i) = s and f (x) = x2i+1. Then

(i) if n
s

is odd, then f (x) is a permutation and {f (x) + f (x + a): x ∈ F2n} are cosets of an
(n − s)-dimensional subspace;

(ii) if n
s

is even, then f (x) is a (2s + 1)-to-one map and {x2i+1 + (x + a)2i+1: x ∈ F2n} are
(n − s)-dimensional subspaces.

Our next goal is, for a given α ∈ F
∗
2n , to find the set of a ∈ F2n such that the set D(a) is

contained in the hyperplane {x ∈ F2n : tr(αx) = 0}. Set

Ti(α) := {
a ∈ F2n : tr

(
α
(
x2i+1 + (x + a)2i+1)) = 0 for all x ∈ F2n

}
.

Proposition 4.

Ti(1) = {
a ∈ F2gcd(2i,n) : tr

(
a2i+1) = 0

}
.

Proof. We look for a ∈ F2n with

tr
(
x2i+1 + (x + a)2i+1) = 0 for all x ∈ F2n ,

or, equivalently,

tr
(
ax2i + a2i

x
) = tr

((
a2n−i + a2i )

x
) = tr

(
a2i+1).

The last identity is possible only if

tr
(
a2i+1) = 0 and a2n−i + a2i = 0.

The condition a2n−i = a2i
implies that a ∈ F2n ∩ F22i = F2gcd(2i,n) , completing the proof. �

Corollary 2. Let gcd(n, i) = s and n
s

be odd. Then

Ti(α) = α
− 1

2i+1
{
a ∈ F2s : tr

(
a2i+1) = 0

}
.

Proof. Note, that Ti(α) = α−1/(2i+1)Ti(1) and gcd(n, i) = gcd(n,2i), since n
s

is odd. �
Using the discussion above we can find the Fourier spectra of the quadratic power maps

[12,15,25].
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Theorem 4. Let gcd(n, i) = s, n
s

be odd and f (x) = x2i+1. Then

Ff (α,β) ∈ {
0,±2

n+s
2

}
,

for all (α,β) ∈ F2n × F2n \ {(0,0)}.

Proof. Since x2i+1 is a permutation then |Ti(α)| = 2s−1 and �Ti(α) �= ∅. The rest of the proof is
similar to the proof of Theorem 1. �
Corollary 3. Let gcd(n, i) = s and n

s
be even. Then

Ti(α) =
{

α
− 1

2i+1 F22s if α is a 2i + 1 power,
{0} otherwise.

Proof. Observe, that the hyperplane {x ∈ F2n : tr(βx) = 0} contains the differential set D(1) of
x2i+1 if and only if β ∈ F2s . Indeed, tr(β(x2i+1 + (x + 1)2i+1)) = 0 is possible only if tr(β) = 0
and β2n−i = β , implying β ∈ F2s . Now, if

D(a) = a2i+1D(1) ⊂ {
x ∈ F2n : tr(αx) = 0

}
,

then

D(1) ⊂ {
a−(2i+1)x: x ∈ F2n , tr(αx) = 0

} = {
y ∈ F2n : tr

(
a2i+1αy

) = 0
}
,

and therefore a2i+1α ∈ F2s . Hence, if Ti(α) �= {0} then α ∈ ⋃
a∈F2n

a−(2i+1)
F2s . (Observe, that⋃

a∈F
∗
2n

a−(2i+1)
F2s = 〈γ 2i+1〉, since F

∗
2s is a subgroup of 〈γ 2i+1〉, where γ is a primitive ele-

ment of F2n .) Further, using Proposition 4 we get

Ti(α) = α
1

2i+1 Ti(1) = α
1

2i+1
{
a ∈ F22s : tr

(
a2i+1) = 0

} = α
1

2i+1 F22s ,

since a2i+1 ∈ F2s for all a ∈ F2s , implying tr(a2i+1) = 0. �
Theorem 5. Let gcd(n, i) = s, n

s
be even and f (x) = x2i+1. Then

Ff (α,β) ∈ {
0,±2

n
2 ,±2

n+2s
2

}
,

for all (α,β) ∈ F2n × F2n \ {(0,0)}.

Proof. Clearly, �Ti(α) = ∅ for all α ∈ F
∗
2n . The proof can be completed using Corollary 3 and the

steps of the proof of Theorem 1. �
Corollary 4. Let gcd(n, i) = s and n

s
be even. Then the Boolean function tr(αx2i+1) x ∈ F2n is

bent if and only if α is not a 2i + 1 power in F2n .
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Proof. Follows from Corollaries 3 and 1. �
The obtained results can be used to determine the type of quadratic form tr(αx2i+1). At first,

we repeat briefly some definitions and facts about quadratic forms [20,21].
Given a basis {γ1, . . . , γn} of F

n
2, every polynomial P ∈ F2[x1, . . . , xn] determines a map

P : Fn
2 → F2 by

∑n
i=1 aiγi �→ P(a1, . . . , an). The maps arising from a homogeneous polynomial

of degree 2 are called quadratic forms. Thus, the quadratic forms are determined by

Q(x1, . . . , xn) =
∑
i�j

cij xixj , cij ∈ F2.

Set x = (x1, . . . , xn). Then Q(x) can be represented also as

Q(x) = xtBx + ctx,

where B is an n × n upper triangular matrix with zeros along the diagonal and c ∈ F
n
2. The rank

2h (1 � h � n
2 ) of the symmetric matrix B + Bt is called the rank of the quadratic form. Two

quadratic forms are called equivalent if they can be transformed each into the other by means of
a nonsingular linear substitution of indeterminates. It is well known that a quadratic form of rank
2h is equivalent to one of the following quadratic forms:

x1x2 + · · · + x2h−1x2h (hyperbolic),

x1x2 + · · · + x2h−1x2h + x2h−1 + x2h (elliptic),

x1x2 + · · · + x2h−1x2h + x2h−1x2h + x2h+1 (parabolic),

and its Walsh transform takes values 0,±2n−h if h �= n
2 , and ±2n/2, if h = n

2 . The cardinality
N := |{x ∈ V : Q(x) = 0}| allows to determine the kind of a quadratic form. More precisely, a
quadratic form is

hyperbolic if N = 2n−2h
((

2h − 1
)(

2h−1 + 1
) + 1

)
,

elliptic if N = 2n−2h
((

2h + 1
)(

2h−1 − 1
) + 1

)
,

parabolic if N = 2n−2h−122h.

Equivalently,

WQ(0) =
⎧⎨
⎩

−2n−h if Q(x) is hyperbolic,
2n−h if Q(x) is elliptic,
0 if Q(x) is parabolic.

(2)

Any quadratic form from F2n into F2 has also a univariate polynomial representation
tr(x

∑�n/2�
i=0 aix

2i+1) with ai ∈ F2n . In general it is difficult to find the type or the rank of

tr(x
∑�n/2�

i=0 aix
2i+1). In [16] types of the monomial quadratic forms are determined. We give

another proof of this result using the properties of the Gold power maps obtained above. Let
Wα(β) denote the value of Walsh transform of tr(αx2i+1) at β and P be the set of the 2i + 1
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powers in F2n . Further, let gcd(n, i) = s and thus gcd(2n − 1,2i + 1) = 2s + 1 in the case n
s

is
even. By Theorem 5 Wα(0) ∈ {±2n/2,±2n/2+s}. It was observed in [19] that

Wα(0) =
∑

x∈F2n

(−1)tr(αx2i+1) = 1 + (
2s + 1

) ∑
y∈G

(−1)tr(αy2i+1),

where G is the subgroup of F
∗
2n generated by a primitive element to the power 2s + 1, and

therefore Wα(0) is congruent 1 modulo 2s + 1. This remark implies

Wα(0) =
{

−2
n
2 n

2s
if odd,

2
n
2 n

2s
if even,

in the case α /∈ P , and

Wα(0) =
{

2
n
2 +s n

2s
if odd,

−2
n
2 +s n

2s
if even,

in the case α ∈ P .
So the following theorem is immediate.

Theorem 6. (See [16].) Let gcd(n, i) = s and α ∈ F
∗
2n .

(i) If n
s

is odd, then the quadratic form tr(αx2i+1) in F2n is parabolic of rank n − s.

(ii) If n
2s

is odd, then the quadratic form tr(αx2i+1) in F2n is elliptic of rank n − 2s if α is a
2i + 1 power in F2n and hyperbolic of rank n otherwise.

(iii) If n
2s

is even, then the quadratic form tr(αx2i+1) in F2n is hyperbolic of rank n − 2s if α is
a 2i + 1 power in F2n and elliptic of rank n otherwise.

4. On the image set of xd + γ (x + a)d in FFFpn

In this section p is an arbitrary prime. Let 0 � k � pn − 2. We denote by Ck the cyclotomic
coset modulo pn − 1 containing k, i.e.

Ck = {
k,pk, . . . ,pn−1k

} (
mod pn − 1

)
.

Further, let C be the set of all cyclotomic cosets modulo pn − 1, i.e.

C = {
Ck: 0 � k � pn − 2

}
.

If |Ck| = l, then {xk: x ∈ Fpn} ⊂ Fpl and Fpl is the smallest subfield with this property. Let k

and k′ have base p representation (kn−1 . . . k0)p and (k′
n−1 . . . k′

0)p , respectively. Let 0 < i < n.
We say that (kn−1 . . . k0)p is the ith shift of (k′

n−1 . . . k′
0)p if kj = k′

j+i for every j , where indices
are taken modulo n. Observe, that k and k′ are in the same cyclotomic coset modulo pn − 1 if
and only if (kn−1 . . . k0)p is a shift of (k′ . . . k′ )p . The p-weight of k is the number of nonzero
n−1 0
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digits in its base p representation. The support sp(k) of k is the binary sequence (sn−1 . . . s0) that
records the nonzero positions of (kn−1 . . . k0)p , i.e.

si =
{

1 if ki �= 0,

0 if ki = 0.

If k and k′ are in the same cyclotomic coset then sp(k) and sp(k′) are shifts of each other. We
say that k covers k′ and write k′ ≺ k if k �= k′ and sp(k) covers sp(k′).

Lemma 1. Let an integer d = (dn−1 . . . d0)p have p-weight > 2 and |Cd | = n. Suppose that for
every i with pi ≺ d there exists j �= i such that pj ≺ d and d − dip

i is a shift of d − djp
j . Then

d is in the cyclotomic coset of
∑n/g−2

l=0 tpgl , where g a divisor of n and 1 � t � p − 1.

Proof. Let (sn−1 . . . s0) be the support of d . Note, that all integers in Cd satisfy the assumption
of this lemma, and therefore we can assume that s0 = 1 and min{i − j : si = 1, sj = 1, i �= j} =
min{i: si = 1, i �= 0}. Observe that if i �= 0 and (d − dip

i) is the mth shift of (d − djp
j ) then

d0 = dm, and in particular sm = 1. Let i �= i′. Then |Cd | = n implies that if (d − dip
i) is the

mth shift of (d − djp
j ), and (d − di′pi′) is the m′th shift of (d − dj ′pj ′

), then m �= m′. Hence,
by counting, for every m �= 0 with sm = 1 there are i �= 0 and j such that (d − dip

i) is the
mth shift of (d − djp

j ). Take g = min{i: si = 1, i �= 0}. Let f �= 0 be such that sf = 1 and
(d − df pf ) is the gth shift of some (d − dip

i). Then, in particular, sp(d − df pf ) is the gth shift
of sp(d − dip

i), implying

{k: 0 � k � n − 1, sk = 1} = {
k: pk ≺ d

}
= {

0, g,2g, . . . , fg,fg + h, (f + 1)g + h, . . . ,

(f + r)g + h = n − g
}
.

Again, replacing d by an appropriate integer from Cd we can assume that {k: pk ≺ d} =
{0, g,2g, . . . , (w − 1)g}, where w is the p-weight of d . Note that n − (w − 1)g must be equal
to 2g. Indeed, otherwise |{k: pk ≺ d} ∩ {k′: pk′ ≺ p2gd}| � w − 2, contradicting to the fact that
there are i, j such that sp(d − dip

i) is the 2gth shift of sp(d − djp
j ). �

We call the integers of type
∑n/g−2

l=0 tpgl exceptional, where g a divisor of n and 1 � t � p−1,
otherwise unexceptional.

Corollary 5. Let d = (dn−1 . . . d0)p be unexceptional and |Cd | = n. Then there is a k such that
pk ≺ d , |Cd−dkp

k | = n and Cd−dkp
k ∩ {d − djp

j : pj ≺ d, j �= i} = ∅.

Proof. Observe, that if |Cd−dip
i | = l < n for some i with pi ≺ d then (d −dip

i) ≡ pl(d −dip
i)

(mod pn − 1) and therefore Lemma 1 guarantees the existence of such a k. �
Further we need the following well-known facts.

Proposition 5. Let 1 � d � pn − 2 and |Cd | = n. Then tr(αxd) is constantly 0 if and only if
α = 0.
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Theorem 7 (Lucas theorem). Let d = (dn−1 . . . d0)p and m = (mn−1 . . .m0)p . Then

(
d

m

)
≡

(
dn−1

mn−1

)
· · ·

(
d0

m0

)
(mod p).

In particular, if
(
d
m

) �≡ 0 (mod p) then m ≺ d .

Lemma 2. If 1 � d � pn−2 has p-weight larger than 2 and |Cd | = n, then the function tr(δ(xd +
γ (x + 1)d)), δ, γ ∈ Fpn, is a constant function if and only if δ = 0.

Proof. Let δ′ = δγ . Using Lucas theorem we get

tr
(
δ
(
xd + γ (x + 1)d

)) = tr
(
δ(1 + γ )xd

) + tr

(
δ′

(
d−1∑
m=0

(
d

m

)
xm

))

= tr
(
δ(1 + γ )xd

) + tr

(
δ′

( ∑
m≺d

(
d

m

)
xm

))

= tr
(
δ(1 + γ )xd

) +
∑
C∈C

∑
m∈C,m≺d

tr

(
δ′

(
d

m

)
xm

)
,

where in the last sum the monomials with exponents from the same cyclotomic cosets are col-
lected together. Let K be the set of the smallest representatives of the cyclotomic cosets. Further
for k ∈ K let I (k) := {i ∈ {0, . . . , n − 1}: pik ≺ d}. Then the above sum can written as follows:

tr
(
δ(1 + γ )xd

) +
∑
k∈K

∑
i∈I (k)

tr

(
δ′

(
d

pik

)
xpik

)

= tr
(
δ(1 + γ )xd

) +
∑
k∈K

∑
i∈I (k)

tr

(((
d

pik

)
(δ′)pn−i

xk

)pi )

= tr
(
δ(1 + γ )xd

) +
∑
k∈K

tr

(( ∑
i∈I (k)

(
d

pik

)
(δ′)pn−i

)
xk

)

= tr
(
δ(1 + γ )xd

) +
∑
k∈K

tr
(
δ(k)xk

)
,

where δ(k) = ∑
i∈I (k)

(
d

pik

)
(δ′)pn−i

. Since tr(δ(xd + γ (x + 1)d)) is a polynomial of degree less
than pn − 1, it will be a constant on Fpn only if it is the zero polynomial. The exponents k

belong to different cyclotomic cosets, so every summand tr(δ(k)xk) must be constantly 0. By
Proposition 5, it must hold γ = −1 and δ(k) = 0 for every k with |Ck| = n. By Corollary 5 if d

is unexceptional, then there is a k ∈ K with |Ck| = n and |I (k)| = 1. Let γ = −1 and d be in the
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same cyclotomic coset with
∑n/g−2

l=0 tpgl for some 1 � t � p − 1 and a divisor g of d . Remark
that n/g is at least 4 because of weight of d . In that case I (t) = {0, g, . . . , n − 2g} and thus

δ(t) =
∑

i∈I (t)

(
d

pit

)
(−δ)p

n−i =
n/g−2∑
l=0

(−δ)p
n−lg

,

where the last equation follows from Lucas lemma. Consider the exponent t + tpg . Then
I (t + tpg) = {0, g, . . . , n − 3g}, implying

δ
(
t + tpg

) =
∑

i∈I (t+tpg)

(
d

pi(t + tpg)

)
(−δ)p

n−i =
n/g−3∑
l=0

(−δ)p
n−lg

.

Note that δ(t) − δ(t + tpg) = (−δ)p
2g

. Moreover, |Ct | = |Ct+tpg | = n thus both δ(t) and
δ(t + tpg) must be 0, yielding δ = 0. �
Corollary 6. Let 1 � d � pn − 2 be of p-weight larger than 2, |Cd | = n and a ∈ F

∗
pn . Then the

function tr(δ(xd + γ (x + a)d)), where δ, γ ∈ Fpn , is a constant function if and only if δ = 0.

A special case of Lemma 2 with p = 2, odd n and δ = γ = 1 was proved in [13,18].
The statement of Corollary 6 can be generalized for the following class of maps.

Lemma 3. Let d be an unexceptional integer of p-weight at least 3 and with |Cd | = n. Further,
let B ⊂ Fpn and a ∈ Fpn . Define f (x) = ∑

b∈B cb(x + b)d , where cb ∈ Fpn and
∑

b∈B cb �= 0.
Then tr(δ(f (x) − f (x + a))) is a constant function if and only if δ = 0.

Proof. It is enough to consider the case a = 1. We have

∑
b∈B

cb(x + b)d −
∑
b∈B

cb(x + b + 1)d =
∑
b∈B

cb

(
(x + b)d − (x + b + 1)d

)

=
∑
b∈B

cb

( ∑
m≺d

(
d

m

)(
bd−m − (b + 1)d−m

)
xm

)

=
∑
m≺d

(
d

m

)
xm

(∑
b∈B

cb

(
bd−m − (b + 1)d−m

))
.

Using the notation of the proof of Lemma 2, we get

tr

(
δ

( ∑
m≺d

(
d

m

)
xm

(∑
b∈B

cb

(
bd−m − (b + 1)d−m

))))

=
∑
m≺d

tr

(
δ

(
d

m

)(∑
b∈B

cb

(
bd−m − (b + 1)d−m

))
xm

)

=
∑

tr

( ∑ (
δ

(
d

pik

)(∑
cb

(
bd−pik − (b + 1)d−pik

)))pn−i

xk

)
.

k∈K i∈I (k) b∈B
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By Corollary 5 there is a k0 such that d − k0 = pl , |Ck0 | = n and |I (k0)| = 1. The summand
corresponding to that k0 is

tr

(
δ

(
d

k0

)(∑
b∈B

cb

(
bpl − (b + 1)p

l ))
xk0

)
= tr

(
δ

(
d

k0

)(∑
b∈B

cb

)
xk0

)
,

which is constantly 0 only if δ = 0. �
For p = 2 Lemma 3 implies the following result.

Theorem 8. Let d be an unexceptional integer of binary weight at least 3 and with |Cd | = n.
Further, let B ⊂ F2n and cb ∈ F2n be such that

∑
b∈B cb �= 0. Then f (x) = ∑

b∈B cb(x + b)d is
not crooked.

Proof. The proof follows from Lemma 3. Indeed, if f (x) is crooked, then for a given a ∈ F
∗
2n

there exists a δ ∈ F
∗
2n such that tr(δ(f (x) + f (x + a))) is a constant Boolean function. �

For a particular case of the power maps it holds:

Theorem 9. The only crooked power maps in F2n are the ones with exponent 2i + 2j ,
gcd(i − j,n) = 1.

Proof. If D(a) is an affine hyperplane then there is a unique δ ∈ F
∗
2n such that D(a) = {y ∈ F2n :

tr(δy) = c}, where c ∈ F2. Thus, by Lemma 2, d has weight 2 or |Cd | < n. If |Cd | = l < n then
D(a) ⊂ F2l , implying |D(a)| < 2n−1. Application of Proposition 3 completes the proof. �

We believe that the statement of Theorem 9 is true for all maps.

Conjecture 1. All crooked maps are quadratic.

Another consequence of Corollary 6 is the characterization of integers s for which the bent
function f : F2

2n → F2

f (x, y) = tr
(
xys

) + h(y),

where h : F2n → F2 is arbitrary, admits a decomposition into four bent functions. A bent function
g : F2n → F2 admits a decomposition into four bent functions if there is an (n − 2)-dimensional
subspace V of F2n such that the restrictions of g to cosets of V are bent [4]. In [4] it is
shown that f (x, y) admits such a decomposition if and only if there are a, δ ∈ F

∗
2n such that

tr(δ((x + a)d + xd)) = 1, where d is the multiplicative inverse of s modulo 2n − 1. Hence using
Corollary 6 the following theorem is immediate.

Theorem 10. The only bent functions f (x, y) = tr(xys) + h(y), where h : F2n → F2 is arbitrary
and n odd, admitting a decomposition into four bent functions, are the ones having s in the same
cyclotomic coset with

∑(n−1)/2
k=0 22ik for some i coprime to n.

Proof. As in [22] it is shown
∑(n−1)/2

k=0 22ik is the inverse of 2i + 1. �
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