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*Universidade de Brası́lia, Depto Biologia Celular, Laboratório de Biofı́sica, Brasilia DF, Brazil, 70910-900; yCentro de Biologia Molecular
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ABSTRACT The thermal stability of a Schizolobium parahyba chymotrypsin inhibitor (SPCI) as a function of pH has been
investigated using fluorescence, circular dichroism, and differential scanning calorimetry (DSC). The thermodynamic
parameters derived from all methods are remarkably similar and strongly suggest the high stability of SPCI under a wide
range of pH. The transition temperature (Tm) values ranging from 57 to 85.3�C at acidic, neutral, and alkaline pH are in good
agreement with proteins from mesophilic and thermophilic organisms and corroborate previous data regarding the thermal
stability of SPCI. All methods gave transitions curves adequately fitted to a two-state model of the unfolding process as judged
by the cooperative ratio between the van’t Hoff and the calorimetric enthalpy energies close to unity in all of the pH conditions
analyzed, except at pH 3.0. Thermodynamic analysis using all these methods reveals that SPCI is thermally a highly stable
protein, over the wide range of pH from 3.0 to 8.8, exhibiting high stability in the pH region of 5.0–7.0. The corresponding
maximum stabilities, DG25, were obtained at pH 7.0 with values of 15.4 kcal mol�1 (combined fluorescence and circular
dichroism data), and 15.1 kcal mol�1 (DSC), considering a DCp of 1.72 6 0.24 kcal mol�1 K�1. The low histidine content
(;1.7%) and the high acidic residue content (;22.5%) suggests a flat pH dependence of thermal stability in the region 2.0–8.8
and that the decrease in thermal stability at low pH can be due to the differences in pK values of the acidic groups.

INTRODUCTION

Protein stability can be measured directly using calorimetric

methods, and indirectly by theGibbs energy change estimated

from transition curves of native to the unfolded state

(Privalov, 1979; Pace, 1990). In many cases the folding of

proteins is a cooperative process, in which only the native (N)

and the unfolded (U) states are present in equilibrium (Kumar

et al., 2003). A conformational transition between these two

states is generally observed for small proteins with only one

domain. In the folding process all molecules can be

considered to exist in either one of these two structural states

or in an intermediary one. Many proteins, under weak dena-

turing conditions, can adopt this structurally intermediate

form, resembling more the native state than the unfolded state

(Ptitsyn and Uversky, 1994). The elucidation of the nature

of these transitions and the existence or not of folding

intermediates is a prerequisite for the kinetic and thermody-

namic analysis of the unfolding process (Arnold and Ulbrich-

Hofmann, 1997).

Protease inhibitors have potential for the regulation of

proteolytic activities in specific pathways (Laskowski and

Kato, 1980; Bode and Huber, 2000). Overall, protease

inhibitors can be taken as models for inhibition of proteolytic

enzymes, especially those that are usually responsible for ani-

mal and microorganism digestion (Richardson, 1977). Serine

proteases of the chymotrypsin and subtilisin families and

their natural protein inhibitors are among the most widely

studied models of protein-protein recognition (Otlewski et al.,

1999; Ascenzi et al, 2003).

Serine protease inhibitors are the best-known and most

characterized inhibitors. They are classified into 18 different

families, based on the amino acid sequence, structural sim-

ilarities, and mechanism of reaction with their respective

enzymes (Laskowski and Qasim, 2000). Two main inhibitor

families from leguminous plants have been characterized and

they are known as Kunitz- and Bowman-Birk-type protease

inhibitors (Laskowski and Kato, 1980; Valueva and Mosolov,

1999). These inhibitors have been described as protective

agents against the attack of insects and pathogenic micro-

organisms (Ryan, 1990; Broadway, 1995; Wilson and Chen,

1983; Shukle and Wu, 2003). For this reason, transgenic

plants expressing these protease inhibitors have been tested

for enhanced defensive properties against insect pests (Hilder

and Boulter, 1999; Schuler et al., 1998; Franco et al., 2003).

They share a common main-chain conformation at the bind-

ing loop, which is maintained throughout most of the in-

hibitor families, despite lack of similarity in the rest of the

protein (Otlewski et al., 2001). Kunitz-type inhibitors have

been characterized with respect to their evolutive (Pritchard

and Dufton, 1999) and structural aspects, but there are few

studies about the stability of these inhibitors. In one of these,

thermal denaturation of the soybean trypsin inhibitor was

studied using high-sensitivity differential scanning calorim-

etry (DSC) to determine the pH-dependence of protein sta-

bility (Grinberg et al., 2000; Burova et al., 2002). The thermalSubmitted May 27, 2004, and accepted for publication February 4, 2005.
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denaturation of this protein, at the pH range 2.0–11.0, has

been described as a two-state model (Varfolomeeva et al.,

1989). Indeed, the main representative member of Kunitz-

type inhibitor, the bovine pancreatic trypsin inhibitor, is one

of the most extensively structurally studied (Otlewski et al.,

2001; Makhatadze et al., 1993).

Schizolobium parahyba chymotrypsin inhibitor (SPCI) is a

Kunitz-type inhibitor with a single polypeptide chain, present-

ing four cysteine residues linked into two disulfide bonds

(Souza et al., 1995; Teles et al., 2004). It suppresses the pro-

teolytic activity of chymotrypsin through the formation of

a stable complex with a 1:1 stoichiometry. The secondary

structure of SPCI is mainly formed by b-strands and un-

ordered structures (Teles et al., 1999), and its native structure

is mainly maintained by hydrophobic forces and electrostatic

interactions (Souza et al., 2000). The molecular arrangements

of SPCI at pH 7.0, visualized by atomic force microscopy at

high resolution in nanopure water, indicated an organization

in different oligomeric states, with predominance of hexag-

onal forms (Leite et al., 2002).

Currently, the research about protease inhibitors is driven

by their potential applications in medicine, agriculture, and

biotechnology. In this context, the determination of the

physicochemical parameters characterizing the structural

stability of the inhibitors is essential to select effective and

stable inhibitors under a large variety of environmental con-

ditions. Moreover, the knowledge of their structural features

is fundamental to understand the inhibitor-enzyme inter-

actions and allow novel approaches in the use of synthetic

inhibitors aiming for drug design.

Protease inhibitors are widely distributed in plant seeds,

where they act as anti-nutritional agents, especially in insects

where they inhibit midgut proteases. They also inhibit a

broad spectrum of activities including suppression of path-

ogenic nematodes and growth inhibition of many pathogenic

fungi (Joshi et al., 1998). Kunitz-type inhibitors have been

reported to have the potential to suppress ovarian cancer cell

invasion and peritoneal disseminated metastasis in vivo

(Kobayashi et al., 2004). In addition, Kunitz-type inhibitors

had an adverse effect on insect development and might serve

as a transgenic resistance factor (Shukle and Wu, 2003).

These advantages make protease inhibitors an ideal choice to

be used in biotechnological applications, especially in devel-

oping transgenic crops resistant to insect pests.

Although the major digestive protease in the midgut of

insects are serine proteases with trypsin-like and chymo-

trypsin-like specificity (Bown et al., 1997), the proteases

showed differences from bovine enzymes with respect to

their interaction with the plant protease inhibitors. Therefore,

to achieve an effective pest control strategy, it is very im-

portant to select different inhibitors presenting high stability

under different conditions and to know the feature of midgut

proteases, as well as the effects of the inhibitors on their

activities. In this work, we present the characterization of the

pH dependence on SPCI thermal stability, to establish the

ideal conditions for further biotechnological applications in

developing transgenic crops resistant to insect pests. Further-

more, structural analysis would greatly help in enzyme and

SPCI engineering to more potent forms, against certain

targeted pest species. These studies would be performed with

the elucidation of the three-dimensional structure of SPCI

that was recently crystallized. The x-ray data collection and

structure determination are in progress at Brazilian Synchro-

tron Light Laboratory (J. A. R. G. Barbosa, R. C. L. Teles,

and S. M. de Freitas, unpublished data).

MATERIALS AND METHODS

Protein purification

SPCI was purified from Schizolobium parahyba seeds as previously de-

scribed (Teles et al., 2004). Concentration of SPCI was determined spec-

trophotometrically using the absorption coefficient of A%
280 ¼ 6:18 (Souza

et al., 1995).

Fluorescence spectroscopy

Fluorescence measurements were carried out using a JASCO (Easton, MD)

FP-777 fluorescence spectrometer. Spectra were recorded from 300 to

400 nm using an excitation wavelength of 280 nm, and 5 nm bandwidth for

both excitation and emission. To measure the temperature dependence of the

protein emission fluorescence, solutions containing 8 mM of SPCI in 50 mM

3-(N-morpholino propane sulfonic acid) (MOPS) pH 7.0 buffer at pH 7.0

were equilibrated for 15 min in a 1.0 3 1.0-cm cuvette into a thermostated

cell holder using a Peltier-type temperature controller at temperatures

ranging from 25 to 110�C. Data were analyzed by assuming a two-state

transition considering the changes in emission fluorescence intensities at

336 nm. To correct for the effect of the temperature on the fluorescence

intensities, data were normalized taking into account the recorded emission

of N-acetyl-L-tryptophanamide (NATA) under identical conditions to the

protein experiments and at the same molar concentration of tryptophan

residue in SPCI (Richardson et al., 2000). The protein fraction present in the

unfolded conformation (fU), equilibrium constant (Keq), and Gibbs free

energy were calculated using the following equations:

fU ¼ ðyF � yÞ=ðyF � yUÞ (1)

Keq ¼ ½U�=½N� ¼ fU=ð1� fUÞ (2)

DG ¼ �RT lnKeq ¼ �RT ln ½ðyF � yÞ=ðy� yUÞ�; (3)

where yF and yU represent the amount of y in the folded and unfolded states,

respectively. These data were fitted according to Eq. 4 considering the van’t

Hoff approximation (Eq. 5):

Yobs ¼ ðYd1Md 3 TÞ 3 expððDS=RÞ � ðDH=RTÞÞ1 ðYn1Mn 3 TÞ
11 expððDS=RÞ � ðDH=RTÞÞ (4)

3510 Teles et al.

Biophysical Journal 88(5) 3509–3517



LnKeq ¼ ðDS=RÞ � ðDH=RÞð1=TÞ; (5)

where Keq is the experimentally observed equilibrium constant, T is tem-

perature in Kelvin (K), DH is the slope from the fitted regression (the van’t

Hoff change in enthalpy), andDS is the intersection from the fitted regression

(the change in entropy). In Eq. 4, these parameters have the same meaning.

Additionally, Yn and Mn represent the intercept and slope of the

pretransition straight line, respectively, whereas Yd and Md represent the

intercept and slope of the posttransition straight line, repectively.

The correspondent stability at 25�C (DG25) was estimated from the

Gibbs-Helmholtz equation (Eq. 6), considering the temperature range where

unfolding occurs:

DGðTÞ ¼ DHmð1� T=TmÞ � DCp½ðTm � TÞ1 T lnðT=TmÞ�:
(6)

DCp is the change in heat capacity that accompanies protein unfolding.

For SPCI, DCp was calculated from DSC transitions using the linear rep-

resentationofDH versus temperature (Privalov andPotekhin, 1986). The tem-

perature of maximum stability (Tmax) was calculated using Eq. 7:

Tmax ¼ Tm=fexp½DHm=ðDCpTmÞ�g: (7)

Circular dichroism spectroscopy

Circular dichroism (CD) measurements were carried out on a JASCO J-810

spectropolarimeter, equipped with a Peltier-type temperature controller, and

a thermostated cell holder, interfaced with a thermostatic bath. Spectra were

recorded in 0.1-cm pathlength quartz cells at a protein concentration of 0.15–

0.20 mg/ml in 50 mM citrate-phosphate buffer at pH 3.0, 50 mM Na-acetate

buffer at pH 4.2, 50 mM MOPS buffer at pH 7.0, and 50 mM Tris-HCl

buffer at pH 8.8. Five consecutive scans were accumulated and the average

spectra stored. Thermal denaturation experiments were performed by in-

creasing the temperature from 20 to 95�C, allowing temperature equilibra-

tion for 5 min before recording each spectrum. The observed ellipticities

were converted into the mean residue ellipticities [u] based on a mean

molecular mass per residue of 112 Da. The data were corrected for the

baseline contribution of the buffer and the observed ellipticities at 225 nm

were recorded. Thermodynamic parameters derived from transition curves

were calculated in the same way as the fluorescence measurements. The

temperature dependence of the secondary structure was estimated from fitted

far-ultraviolet CD curves (Bolotina and Lugauskas, 1985; Bolotina, 1987).

Differential scanning calorimetry

The apparent specific heat capacity of SPCI as a function of temperature was

obtained in a VP-DSC (Microcal, Northampton, MA) at scan rate of 1.0�C
min�1. Protein sample was prepared by dissolving lyophilized SPCI in

50 mM MOPS buffer at pH 7.0 or 50 mM sodium citrate buffer at pH 2.0–

5.0, followed by centrifugation at 8000 3 g for 15 min. This solution was

degassed before it was loaded into the DSC cells. A blank scan with buffer in

both calorimeter cells was subtracted automatically to correct for differences

between the cells. Consecutive scans were performed to demonstrate

reversibility. The influence of the irreversible steps on the heat capacity

curves was checked by running samples at several scanning rates (0.2, 0.75,

and 1.0�C min�1).

Data were analyzed using the routines of Origin software (version 4.0,

MicroCal) to obtain the temperature at the midpoint of the unfolding

transition (Tm), the calorimetric (DHcal), and the van’t Hoff enthalpy energy

of denaturation (DHvh). A baseline between the pre- and posttransition

regions was subtracted from the endotherm to calculate the area, which is

equal to the unfolding calorimetric enthalpy. The corresponding van’t Hoff

enthalpy energy was estimated using the following equation:

DHvh ¼ 4RT
2

mCp;max=DHcal; (8)

where Cp,max represents the maximum peak height to the area of the

transition, and Tm is the temperature at Cp,max. The cooperative ratio (CR) is

defined by the relation: CR ¼ DHvh / DHcal and used to estimate the number

of steps in the unfolding process.

RESULTS AND DISCUSSION

Heat-induced unfolding fluorescence analysis

Fluorescence has been an important method to study protein

conformation because it reflects the environment-dependent

solvent exposure of the tryptophan indole ring and the tyro-

sine aromatic side chain (Eftink, 1994; Eftink and Shastry,

1997). The transition curve from heat-induced fluorescence

emission changes of SPCI at pH 7.0, fitted according to Eq. 4,

is shown in Fig. 1. The decrease in intrinsic tryptophan

fluorescence emission was recorded after incubation of SPCI

at different temperatures for 15 min to establish the equi-

librium between native and unfolded protein forms. The

fluorescence intensities of NATA were considered to avoid

ambiguity in the estimation of the temperature-dependence

fluorescence corresponding to the native and unfolded states

(Richardson et al., 2000). Therefore, the thermally induced

decrease in fluorescence emission is only due to the solvent

exposure of tryptophan residue in SPCI reflecting changes in

the environment of its side chain.

Experimental curves from the different measurements of

fluorescence emission at 336 nm were considered to deter-

FIGURE 1 Temperature-induced unfolding profile of SPCI at pH 7.0

monitored by changes in tryptophan fluorescence intensity at 336 nm. The

temperature-dependence transition curve was calculated from the ratio of

fluorescence intensities of SPCI and NATA at the same concentration as that

of tryptophan in SPCI measurements. These data were used to obtain the

fitted curve by nonlinear regression according to Eq. 4 (see Materials and

Methods). Table 1 shows the thermodynamic parameters derived from com-

bined fluorescence and circular dichroism data.

Thermal Stability of SPCI 3511
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mine the fractions Fu for each temperature (Fig. 1). Because

the shape of the transition curve is characteristic of an ap-

parent cooperative process, the data were analyzed assuming

a two-state temperature-induced unfolding as a function of

pH fitted as a nonlinear extrapolation (Santoro and Bolen,

1992), according to the van’t Hoff approximation.

The temperature at which half of the protein is unfolded

(Tm), the unfolding enthalpy change at Tm (DHm) calculated

from the fluorescence fitted unfolding curve according to

Eq. 4, and the correspondent stability at 25�C (DG25) are

84.8�C, ;160.0 6 3.0 kcal mol�1, and ;17.0 6 2.5 kcal

mol�1, respectively. These thermodynamic parameters are

slightly different from those obtained from circular di-

chroism due the experimental difficulty of highly coopera-

tive transitions for both techniques. However, these

parameters calculated from fluorescence and CD combined

data at pH 7.0 were similar to those obtained from DSC

(Tables 1 and 2). For most naturally occurring globular

proteins the conformational stability is between 5 and 15 kcal

mol�1 (Pace, 1990). The unfolding enthalpy change of 145

6 6 kcal.mol�1, Tm of 84.9�C, and DG25 of 15.4 6 2.1 kcal

mol�1, obtained by nonlinear fitting of Eq. 4 to the combined

fluorescence and CD data at pH 7.0, show that SPCI is

a highly thermostable protein.

Heat-induced unfolding CD analysis

Far-UV CD is one of the most sensitive physical techniques

for analyzing secondary structure and monitoring structural

changes occurring in proteins (Yang et al., 1986; Venyami-

nov et al., 1996). Fig. 2 presents far-UV CD spectra at pH 7.0

recorded in the temperature range of 20–90�C. The sec-

ondary structure content (Bolotina, 1987) (Fig. 2, inset)

mainly shows a significant decrease in b-structure content,

but part of the secondary structure is still preserved at 90�C.
Between 20 and 70�C the CD spectra is typical of b-structure
and unordered structure proteins (Fig. 2, inset). These results
are in agreement with those previously reported for SPCI

using Raman and FTIR spectroscopy in which the secondary

structure was mainly characterized as b-strands and un-

ordered structures at pH 7.0 (Teles et al., 1999). At tem-

peratures above 70�C the CD spectra decrease the minimum

at 200 nm with a partial loss of the signal. Analysis of the

temperature progress curve at pH 7.0 (Fig. 2) reveals that the

native conformation of SPCI is thermally stable at temper-

atures below 70�C with partial unfolding of ,6% of its

secondary elements (Fig. 2, inset). The secondary structure is
only perturbed upon heating from 70 to 90�C. These results
indicate compensation between an increase of ;10 percent-

age points (3–13%) in a-helix and a decrease of ;36 per-

centage points (75–39%) in b-turn and the total disruption of
b-sheet content (18–1%).

These results suggest that the thermal treatment of SPCI

up to 90�C was not enough to produce complete unfolding of

the protein. As we previously demonstrated, the inhibitory

activity of SPCI toward chymotrypsin remained unaffected

even after incubation at 70�C for 1.0 h at pH 7.6. However,

SPCI lost 25% of its inhibitory activity at 80�C for 1.0 h and

50% at 90�C in ;3 h at pH 7.6 (Souza et al., 2000). In fact,

SPCI was only completely inactivated by heating at 90�C, or
in the presence of 8 M urea, high ionic strength (1 M KCl), or

20% PEG (w/v). The complete denaturation of SPCI was

observed in transition curves at the temperature range of 20–

93�C, with a transition temperature of unfolding (Tm) equal
to or above 74.9�C in all analyzed pH conditions (Fig. 3 and

FIGURE 2 Far-UV CD spectra of SPCI at pH 7.0, as a function of

temperature ranging from 20 to 90�C. The secondary structure contents were
estimated from these spectra and are presented in the inset as follows: (A)

a-helix; (B) b-sheet; (C) others; and (D) b-turn content as a function

of temperature. The ellipticities at 225 nm were considered to obtain the

curve presented in Figs. 3 and 7.

FIGURE 3 Fitted heat-induced unfolding curves of SPCI according to Eq.

4 (see Materials and Methods), obtained at pH 3.0 (open squares), 4.2 (open
triangles), 7.0 (half-solid circles), and 8.8 (open circles). These data are

calculated considering the change in ellipticities at 225 nm. The estimated

thermodynamic parameters derived from these analyses are presented in

Table 1.
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Table 1). The temperature from 94 to 98�C was extrapolated

from the fitted transition curves.

The unfolding process induced by increasing the temper-

ature was monitored following the ellipticity at 225 nm as

shown in Fig. 3 (pH 3.0, 4.2, 7.0, and 8.8). A sigmoid

dependence of the ellipticity with the temperature was

observed with practically no change for the native SPCI until

70�C. However, after this point, a large change in ellipticity

and a decrease in the intensity of the signal were observed,

suggesting unfolding but no complete disruption of the

secondary structure up to 93�C (Fig. 2). According to

calorimetric assays the complete unfolding of SPCI occurs

at temperatures over 93�C. These results were similar with

Tm obtained by the change of emission intensity at 336 nm

(Fig. 1) at pH 7.0.

The transition temperatures around 85�C obtained at pH

7.0 by all methods suggest that SPCI has a melting tem-

perature characteristic of thermally stable proteins (Table 1) at

neutral pH. The agreement between combined fluorescence

and CD data (Fig. 7) indicates that the side-chain conforma-

tional changes accompany changes in the secondary structure

of SPCI. These thermodynamic analyses reveals that SPCI is

a highly stable protein at neutral pH, exhibiting aDG25 of 15.4

6 2.1 kcal mol�1 and the corresponding temperature of

maximum stability (Tmax) of 10�C, calculated fromEqs. 6 and

7, respectively. Tmax is in agreement with other globular

proteins that are predicted to havemaximum stability between

�10 and135�C (Pace, 1990; Kumar et al., 2003; Tsonev and

Hirsh, 2000; Ganesh et al., 1999; Zweifel and Barrick, 2002).

Far-UV CD was used to monitor the unfolding of SPCI at

pH 3.0, 4.2, 7.0, and 8.8 (Fig. 3). The thermodynamic pa-

rameters are presented in Table 1. There are significant dif-

ferences in these parameters at pH 3.0, where SPCI presents

lower thermal stability when compared to pH 4.2 (data not

shown), 7.0, and 8.8. The transition curve at pH 4.2 revealed

the tendency of SPCI to precipitate at high temperature

(.95%) leading to a not-well-defined posttransition baseline.

Despite that, the thermodynamic parameters calculated from

the fitted curve at pH 4.2 were compatible with the maximum

stability of SPCI matching pH ¼ pI (Tm ¼ 85�C; DH ; 165

kcal mol�1; DG25 ; 18–20 kcal mol�1). However, to con-

clude anything about the high stability of SPCI close to the pI,
it is necessary to develop unfolding assays that could avoid the

aggregation of the protein at pH values close to the pI.

DSC analysis

The calorimetric method is best suited to analyze the thermal

unfolding transitions of proteins. The importance of this

method relates to its ability to provide a direct energetic de-

scription of protein unfolding (Privalov, 1979). When pro-

tein denaturation occurs via a two-state mechanism, the ratio

of the calorimetric enthalpy change obtained from the iso-

therms and the van’t Hoff enthalpy change is equal or close

to unity. The experimentally measured enthalpy change of

protein unfolding represents the sum of the enthalpies asso-

ciated with hydration of apolar and polar groups exposed to

water upon unfolding, disruption of the van der Waals in-

teractions between polar groups, disruption of hydrogen

bonds, and the number of hydrogen bonds (Privalov and

Makhatadze, 1992, 1993).

Data of the partial molar heat capacity at acidic and neutral

pH for the unfolding of SPCI are shown in Fig. 4. The heat

capacity profiles were found to be independent of the scan

rate (data not shown). Therefore, the kinetic control of the

denaturation processes can be discarded, and the thermody-

namic analysis of DSC curves is justified. The thermal un-

folding of SPCI at acidic conditions is a reversible process,

as demonstrated by rescanning the sample (five rescans) after

complete thermal denaturation up to 100�C, returning from

the posttransitional baseline (data not shown). However, at

pH 7.0, the reversibility was ;95% once the rescan of the

sample was done up to 95�C because the tendency of SPCI to

aggregate in this condition. It is known that upon heating the

protein, the solubility drastically decreases at high temper-

atures, resulting in intensive aggregation. Moreover, high

concentrations of protein may also lead to difficulties arising

from aggregation of the denatured protein or, possibly, self-

association of the native state. SPCI presented a tendency to

form aggregates at high concentration of protein and at pH

TABLE 1 Thermodynamic parameters for the thermal

unfolding of SPCI obtained from fluorescence and

far-UV CD measurements at different pH values

pH Tm�C (DHm kcal mol�1) (DSm cal mol�1 K�1) (DG25 kcal mol�1)

Combined CD and fluorescence

7.0 84.9 145 6 6 406 6 17 15.4 6 2.1

Circular dichroism

3.0 74.9 101 6 13 290 6 38 8.0 6 1.5

7.0 84.9 131 6 23 367 6 65 13.0 6 2.9

8.8 83.5 125 6 25 352 6 69 11.7 6 2.9

FIGURE 4 Profiles of heat-dependent unfolding of SPCI monitored by

DSC under these different pH conditions: (a) pH 2.0, (b) pH 2.5, (c) pH 3.0,

and (d) pH 7.0. Thermodynamic parameters calculated from these isotherms

are summarized in Table 2.
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7.0 (Leite et al., 2002), as also shown by the DSC method

at high temperature and at pH 7.0. This feature was not

observed in the spectroscopy assays due to the low concen-

tration of the SPCI. Despite that, and considering the re-

versibility of ;95% at pH 7.0, the isotherm was well fitted

and centered at a transition temperature of 85.3�C with a

calorimetric transition enthalpy change of 144.0 kcal mol�1.

The thermodynamic parameters obtained under neutral

condition indicate a remarkable stability of SPCI in which

Tm occurs at a high temperature of 85.3�C, in agreement with

most mesophilic and thermophilic globular proteins (Kumar

et al., 2000, 2001), human lysozyme, parvalbumin, RNase

T1, and whale myoglobin (Robertson and Murphy, 1997).

The thermal stability of SPCI was also characterized as

a function of acid pH by DSC (Fig. 4) and these results are

summarized in Table 2. No change in shape of the SPCI

rescanned thermograms was observed when the pH was

varied between 2.0 and 5.0 indicating that the thermal

unfolding at all acidic pH was totally reversible. Therefore,

these transition curves can be described as single cooperative

endotherms analyzed using a two-state model in which only

the native and unfolded proteins are populated. As can be

seen in Table 2, the transition temperature depends on the

pH, varying from 57�C at pH 2.0–80.0�C at pH 5.0. A direct

comparison of the denaturation parameters shows little

difference in thermal stability at acid (pH ¼ 5.0) or neutral

pH. The maximum values for Tm, 80.0 and 85.3�C, and
enthalpy change, 134.1 kcal mol�1 and 144.0 kcal mol�1,

occur at pH 5.0 and 7.0, respectively (Table 2). Comparison

of the neutral and alkaline pH states from CD spectra reveals

slight differences in the thermal stability, but at acidic pH of

3.0, below the pI, a significant difference in thermal stability

was observed (Tables 1 and 2). It is well established that the

maximum stability of a globular protein occurs near its pI
(Pace, 1990; Dill, 1990; Staniforth et al., 1998). However,

analyses of CD spectra of SPCI at pH 4.2, near its pI of 4.4
suggest an increase in stability with similar thermodynamic

parameters obtained at pH 7.0: Tm of 85�C, DHm of ;165

kcal mol�1, and DG25 of ;18–20 kcal mol�1. Despite these

small differences in stability, a pH-dependence of the dena-

turation temperature of SPCI was detected revealing a broad

maximum at pH ranging from 4.2 to 8.8, but the maximum

stability coinciding with neutral, and at pH near its isoelectric

point of 4.4. The maximum conformational stability of SPCI

at zero net charge could be due to the favorable electrostatic

interactions among the positive and negative charged groups

arranged on the surface of protein as a consequence of de-

creasing the surrounding effective dielectric constant. How-

ever, although the thermodynamic parameters calculated

from CD spectra at pH 4.2 have suggested a high stability of

SPCI, the measurement of other transition curves slightly far

from the isoelectric point are needed to prevent aggregation

at posttransition baseline to conclude anything about the

stability of SPCI in this condition.

The decrease in stability was observed at pH , 2.75 and

the maximum stability of SPCI occurs at pH . 3.0. The

decrease in transition temperatures and the enthalpy changes,

during acidification at pH below 2.75 (Fig. 4 and Table 2),

most likely is the result of the disruption of the electrostatic

interactions and differences in pK values of negative and

positive charged groups flatting during the unfolded transi-

tion at different pH values. As previously reported, the high

ionic strength affects the inhibitory activity of SPCI by re-

ducing the electrostatic interactions as a consequence of the

dielectric constant increase (Souza et al., 2000).

As shown in Tables 1 and 2, small differences were found

for the thermodynamic parameters obtained from the analyses

of the calorimetric and spectroscopic data. DHcal (144.0 kcal

mol�1) and DG25 (15.1 kcal mol�1) measured calorimetrically

at pH 7.0 were similar to those measured spectroscopically by

CD and fluorescence combined data (DHm of 145.0 6 6 kcal

mol�1 and DG25 of 15.4 6 2.1 kcal mol�1) but somewhat

slightly different from the values measured by CD or fluo-

rescence. The differences between thermodynamic parameters

calculated from direct calorimetric and indirect equilibrium

processes estimating the protein stability have been discussed

in the literature (Makhatadze and Privalov, 1992; Sinha et al.,

2000). Nonnative states of the protein that may be undis-

tinguishable by CD and fluorescence could contribute dif-

ferently to enthalpy and the heat capacity of the system. The

two following reasons appear to be responsible for these dif-

ferences: DSC provides a direct estimation of the denaturation

enthalpy change and the constant-pressure heat-capacity

change, whereas in the spectroscopic methods the thermody-

namic parameters are estimated from the equilibrium constants

evaluated from the denaturant-induced conformational-

transition curves representing the equilibrium between the

native and the unfolded states. Furthermore, whereas CD and

fluorescence spectroscopy are sensitive to the disruption of

the native structure upon unfolding, DSC monitors the heat

capacity of the protein whatever its state.

The most common method for the determination of DCp of

a protein is the measurement of its heat-induced unfolding at

different pH values (Privalov, 1979; Becktel and Shellman,

1987), assuming that DCp does not depend on pH and

temperature (Swint and Robertson, 1993; Pace and Laurent,

1989; Makhatadze, 1998; Pace et al., 1999). Fig. 5 shows

TABLE 2 Thermodynamic parameters for the thermal

unfolding of SPCI by DSC scan at different pH values

pH* Tm (�C) DHcal (kcal mol�1) DG25 (kcal mol�1)

2.00 57.0 95.7 6.5

2.25 60.0 104.0 7.7

2.50 64.0 100.0 7.6

2.75 69.5 117.0 10.0

3.00 72.0 121.0 10.6

3.20 76.0 128.0 12.0

5.00 80.0 134.1 13.3

7.00 85.3 144.0 15.1

*The estimated errors of the parameters are small, usually ,2%.
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a linear relation between DHm and Tm for SPCI producing

a DCp value of 1.726 0.24 kcal mol�1 K�1 from the slope of

the fitted curve. The change in specific heat DCp at different

acidic conditions reveals the independence of this thermody-

namic parameter with respect to the temperature.

The conformational stability of SPCI expressed in terms of

DG25 over a wide range of temperature and pH 3.0, 5.0, and

7.0, described by the Gibbs-Helmholtz relation (Eq. 6), is

presented in Fig. 6. The temperatures of the maximum sta-

bilities Tmax derived from the analysis of those curves were

12�C, in agreement with those estimated from CD spectra,

and the corresponding DGmax were 11.6 kcal mol�1 (pH

3.0), 13.9 kcal mol�1 (pH 5.0), and 15.7 kcal mol�1 (pH

7.0). Small differences in pH result in slight changes in Tm
and in the corresponding stability DG25, but no significant

change in Tmax. It must be noted that small differences in

DHm will result in relatively large changes in DG25 at pH ,
3.0 (Tables 1 and 2). Overall, the much higher value of DHm

reflects a higher DG25 given by the Gibbs-Helmholtz re-

lationship. For SPCI, these values are relatively high com-

pared to other small globular proteins (Privalov and Gill,

1988; Privalov, 1990; Robertson and Murphy, 1997), again

demonstrating its high thermal stability under a broad range

from acidic to alkaline conditions.

The transition curves obtained by calorimetry and the com-

bined fluorescence and CD data at pH 7.0 (Fig. 7) are almost

coincident, suggesting that the system is in thermodynamic

equilibrium (Sturtevant, 1987) and that the unfolding transi-

tion observed in all techniques is probably the same and

involves two states at pH 7.0 (Privalov, 1979). The inset of

Fig. 7 shows the difference between the fluorescence and CD

experimental points and the calculated curve from calori-

metric parameters; the maxima difference is in the order of

60.05 units, reinforcing the agreement between the experi-

mental data obtained by three different techniques. The dif-

ferences in thermodynamic parameters at pH 7.0 between the

two spectroscopic techniques only highlight the experimental

difficulty of assessing these values of highly cooperative

transitions.

CONCLUSIONS

The temperature of maximum stability (Tmax), the correspond-

ing free energy (DGmax), and the temperature-dependent

calorimetric and spectroscopic measurements indicate that

intact SPCI exhibits significant conformational and thermal

stability from pH 3.0 to 8.8. Additionally, DSC profile

analysis reveals endotherms that are characterized by a tran-

sition temperature and an unfolding enthalpy related to groups

FIGURE 5 Dependence of the enthalpy change of SPCI unfolding on Tm
at different pH values. (a) pH 2.00, (b) pH 2.25, (c) pH 2.50, (d) pH 2.75, (e)
pH 3.00, and ( f ) pH 3.20. The slope of the line represents the heat-capacity

change upon unfolding, DCp ¼ 1.72 6 0.24 kcal mol�1 K�1.

FIGURE 6 Gibbs-Helmholtz free-energy change as a function of

temperature for the unfolding of SPCI at pH 7.0 (a), pH 5.0 (b), and pH

3.0 (c) obtained by DSC. The solid curves were calculated with Eq. 6 (see

Materials and Methods) using Tm and DHcal from isotherms and DCp from

the curve presented in Fig. 5. The corresponding stabilities were pH

dependent (DG of 11.6 kcal mol�1 at pH 3.0, 13.9 kcal mol�1 at pH 5.0, and

15.7 kcal mol�1 at pH 7.0) and Tmax ¼ 12�C.

FIGURE 7 Plot of degree of denaturation (Fu) versus temperature of the

combined calorimetric, circular dichroism, and fluorescence data at pH 7.0.

The estimated thermodynamic parameters derived from these analyses are

presented in Tables 1 and 2. Fluorescence data (open circles); CD data (solid
circles); calculated curve from calorimetric parameters (dashed line). (Inset)

Difference between the fluorescence and CD experimental points and the

calculated curve from calorimetric parameters.
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of highly stable proteins. Temperature-dependent far-UV

CD studies showed discrete changes in which the neutral pH

state exhibits a transition midpoint that is characterized by

a decrease in molar ellipticity with disruption of ;70% of

the secondary structure at a transition temperature of 84.9�C.
The remarkable agreement between the Tm and DH values

measured by the three independent techniques indicates that

the system remains in thermodynamic equilibrium during the

time in which the thermal unfolding occurs.

The thermal denaturation of SPCI can be well described as

a two-state model in which intermediates with an enthalpy

other than that of the unfolded protein are not populated at

equilibrium. This conclusion comes from the following evi-

dences: a), the unfolding data can be fitted to a single tran-

sition curve; b), the ratio of the van’t Hoff enthalpy change of

denaturation to the calorimetric enthalpy change obtained

using DSC or spectroscopic methods is close to unity; and c),

the remarkable agreement between the fitted transition curves

and van’t Hoff plot obtained by CD and fluorescence

spectroscopy and calorimetry.

Finally, we conclude that all thermodynamic parameters

obtained from fluorescence, CD, and DSC measurements

strongly suggest that the thermal stability of SPCI in the native

state is found in the upper end of the range observed for

globular proteins. SPCI has an unusual thermostability with

highest values of Gibbs free energy at a range of pH of 2.0–7.0

(6.5–15.4 kcal mol�1) and enthalpy change of 95–145 kcal

mol�1 in agreement with human lysozyme, parvalbumin,

RNase T1, and whale myoglobin (Robertson and Murphy,

1997). The three-dimensional structure of SPCI was not solved

to allow the recognition of the electrostatic interactions, the

chemical basis, and the mechanistic origin that would explain

its high stability. However, this study suggests that this feature

may be attributed to the self-association tendency and the

possible high number of ionic pairs. These results are in ac-

cordance to previous reports indicating that the native structure

of SPCI is mainly maintained by hydrophobic forces and

electrostatic interactions (Souza et al., 2000; Leite et al., 2002).

Thermodynamic analysis using all these methods reveals that

SPCI is thermally a highly stable protein, over a wide range of

pH 3.0–8.8, exhibiting maximum stability in the region

ranging from 5.0 to 8.8. The structural arrangement of the

charged groups in the three-dimensional structure of SPCI is

not known. However, the low histidine content of SPCI

(;1.7%) suggests flat pH dependence in the region 5.0–8.8.

The decrease in stability at low pH can be due the differences

in pK values of the acid groups (;22.5%) in the folded and

unfolded states reflecting higher H1 binding affinity of acidic

residues in the unfolded state relative to the native state.
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