
Discrete Applied Mathematics 158 (2010) 869–875

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

An implicit representation of chordal comparability graphs in linear time
Andrew R. Curtis a, Clemente Izurieta b, Benson Joeris c, Scott Lundberg b,
Ross M. McConnell b,∗
a Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
b Department of Computer Science, Colorado State University, Fort Collins, CO 80523-1873, USA
c University of Cambridge, Centre for Mathematical Sciences, Cambridge, CB3 0WA, UK

a r t i c l e i n f o

Article history:
Received 16 January 2009
Received in revised form 6 January 2010
Accepted 15 January 2010
Available online 16 February 2010

Keywords:
Comparability graph
Chordal graph
Perfect graph
Partial order
Dimension

a b s t r a c t

Ma and Spinrad have shown that every transitive orientation of a chordal comparability
graph is the intersection of four linear orders. That is, chordal comparability graphs are
comparability graphs of posets of dimension four. Among other uses, this gives an implicit
representation of a chordal comparability graph using O(n) integers so that, given two
vertices, it can be determined inO(1) timewhether they are adjacent, nomatter howdense
the graph is. We give a linear time algorithm for finding the four linear orders, improving
on their bound of O(n2).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A partial order or poset relation is a transitive antisymmetric relation. In this paper, we consider the graphical
representation of a poset using a directed acyclic and transitive graph. When we say the graph is transitive, we mean that
whenever (x, y) and (y, z) are directed edges, so is (x, z). Whether the partial order is reflexive is irrelevant to our goals,
so we only consider loopless graphs. The comparability relation of a partial order is the set of pairs that are comparable in
the partial order. That is, it is the symmetric closure, where, whenever (a, b) is in the partial order, (b, a) is added to it. The
comparability relation has a natural representation as an undirected graph that has an edge ab whenever (a, b) and (b, a)
are in the comparability relation; it is obtained by ignoring edge directions in the transitive graph that represents the partial
order.
Given a comparability graph, it is possible to transitively orient it in linear time [10], that is, to recover a corresponding

partial order. An earlier and simpler algorithm for this problem in the special case where the graph is chordal suffices here
and is preferable [6].
A chordal graph is an undirected graph where each cycle of length four or greater has a chord, that is, an edge that is not

on the cycle but whose endpoints are both on the cycle.
A co-comparability graph or co-chordal graph is one whose complement is a comparability graph or chordal graph,

respectively. Many interesting graph classes are defined by intersecting the comparability, co-comparability, chordal and
co-chordal graph classes.
An example is an interval graph, which is the intersection graph of a set of intervals on the line, that is, the graph that has

one vertex for each of the intervals and an edge for each intersecting pair. These are exactly the intersection of the chordal
and co-comparability graphs.

∗ Corresponding author. Tel.: +1 970 491 7524; fax: +1 970 491 2466.
E-mail addresses: a2curtis@uwaterloo.ca (A.R. Curtis), blj24@cam.co.uk (B. Joeris), rmm@cs.colostate.edu (R.M. McConnell).

0166-218X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2010.01.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81119635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:a2curtis@uwaterloo.ca
mailto:blj24@cam.co.uk
mailto:rmm@cs.colostate.edu
http://dx.doi.org/10.1016/j.dam.2010.01.005


870 A.R. Curtis et al. / Discrete Applied Mathematics 158 (2010) 869–875

A permutation graph is defined by a permutation of a linearly ordered set of objects. The vertices are the objects, and the
edges are the non-inversions, that is, the pairs of objects whose relative order is the same in the two permutations. These are
exactly the intersection of the comparability and co-comparability graphs.
A split graph is a graph whose vertices can be partitioned into a clique and an independent set. These are exactly the

intersection of the chordal and co-chordal graphs. More information about all graph classes mentioned here can be found
in [5].
All of these graphs are subclasses of the class of perfect graphs, because comparability graphs and chordal graphs

are perfect. Interval graphs can be represented with O(n) integers, numbering the endpoints in left-to-right order and
associating each vertex with its endpoint numbers. Adjacency can then be tested in O(1) time by comparing the two pairs of
endpoints of the vertices to see if they correspond to intersecting intervals. Similarly, permutation graphs can be represented
by numbering the vertices in left-to-right order in two lists, and testing adjacency in O(1) time by determining whether
the two vertices have the same relative order in both. These are examples of implicit representations; for more details see
Spinrad’s book on the topic of implicit representations of graph classes [11], or the paper [7], where the topicwas introduced.
A linear order is just a special case of a partial order, where the elements are numbered 1 through n, and the relation

is the set of ordered pairs {(i, j)|i < j}. This partial order has Θ(n2) elements, but can be represented implicitly by giving
the ordering or numbering of the vertices. A linear extension of a partial order P is a linear order that has P as a subset. A
topological sort of P is an ordering of elements that gives this implicit representation of a linear extension. It is any ordering
where whenever (i, j) ∈ P , i is earlier in the ordering than j is.
It is easy to see that the intersection of two partial orders (the ordered pairs that are common to both) is also a partial

order, hence this applies to the intersection of linear orders. In fact, every partial order is the intersection of a set of linear
orders [3]. A partial order has dimension k if there exist k linear orders whose intersection is exactly that partial order. It is
easy to see from this that the permutation graphs are just the comparability graphs of two-dimensional partial orders. Two-
dimensional partial orders and permutation graphs can be recognized and their representation with two linear orders can
be found in linear time [10]. In general, k linear orders gives an O(nk) representation, but unfortunately, it is NP-complete
to determine whether a partial order has dimension k for k ≥ 3 [13].
In this paper, we examine chordal comparability graphs, that is, the intersection of the class of chordal graphs and the class

of comparability graphs. Ma and Spinrad have shown that all chordal comparability graphs are the comparability graphs of
partial orders of dimension at most four [9,11]. The four linear orders give a way of representing the graph in O(n) space so
that for any two vertices, it can be answered in O(1) time whether they are adjacent. Each vertex is labeled with the four
position numbers of the vertex in the four linear order, and for two vertices, they are adjacent iff one of them precedes the
other in each of the four orders. This type of implicit representation is desirable as a data structure for representing the
partial order or its chordal comparability graph, and for organizing algorithmic solutions for combinatorial problems on the
graphs.
This bound was shown to be tight by Kierstead, Trotter, and Qin in [8], who used a non-constructive Ramsey-theoretic

proof to show that some chordal comparability graphs actually require four linear orders, but as is typical of Ramsey-
theoretic proofs, the known upper bound of the smallest one requiring four is an enormous 2727+1 vertices. It seems likely
that there exist small examples that require four linear orders. Testing a candidate is complicated by the NP-completeness of
determining whether a partial order has dimension 3, though we do not knowwhether that problem remains NP-complete
when restricted to chordal comparability graphs. Finding a smallest one, or even a small one, is an open problem.
We should note that, unlike the implicit representations of interval graphs and permutation graphs, this representation

does not characterize chordal comparability graphs, as there are posets of dimension four whose comparability graphs are
not chordal comparability graphs.
Ma and Spinrad have given a linear time algorithm for recognizing chordal comparability graphs, but the best bound they

give for finding the four linear orders is O(n2), where n is the number of vertices. In this paper, we improve this latter bound
to O(n+m).
The conference version of this paper appeared in [2].

2. Preliminaries

In this paper, G denotes a simple, finite graph with vertex-set V (G) and edge-set E(G). For convenience, we assume that
G is connected. If there exists an edge between v, u ∈ V (G), we say that v and u are adjacent or are neighbors in G. Let the
neighbors of a vertex v beN(v) and non-neighbors of v beX(v). IfG is directed, thenweuse (u, v) to denote an edge from u to
v in G. Given a set of directed edges, X , denote by G(X) the graph with vertex-set V (G(X)) = {v | v→ u ∈ X or u→ v ∈ X}
and edge-set X . Given a directed graph G, we say that G is acyclic or is a DAG if G does not contain any directed cycles. The
transitive closure of a DAG G adds the minimum number of edges to G such that the resulting graph is transitive.
If G is an interval graph, then there is a representation of Gwhere each vertex v in G corresponds to an interval Iv whose

endpoints are in {1, 2, . . . , 2n}. Two vertices v and u are adjacent if Iu and Iv share an element of {1, 2, . . . , 2n}. We say that
v contains u if all points in Iu are also in Iv . Two intervals overlap if they share some point, but neither contains the other,
and two intervals are disjoint if they share no common points. An interval Iv is right of another interval Iu if all points in Iv
are less than all points in Iu; in this case Iu is left of Iv .



A.R. Curtis et al. / Discrete Applied Mathematics 158 (2010) 869–875 871

Fig. 1. A chordal comparability graph G, a transitive orientation P , a clique tree of G, and, the intervals defined by a depth-first search of the clique tree. A
vertex’s interval is the time interval between the discovery of the first clique that contains it and the discovery of the last.

2.1. Union–find data structure

Our algorithm primarily makes use of elementary data structures; however, we do use the union–find data structure.
This data structure maintains a family of disjoint sets under the union operation. In order to identify the sets, each set has a
leader, which is the representative for all elements in its set. Union–find supports the following operations.

• MakeSet(x): creates a new set containing only x.
• Find(x): returns the leader of the set containing x.
• Union(x, y): unions the sets containing x and y and returns the single set’s new leader.

A MakeSet operation on n elements, followed by m union and find operations on them, takes O(n + mα(m, n)) time,
where α is an extremely slow-growing but unbounded functional inverse of Ackermann’s function. Full details can be found
in [12].
However, there is a special case of the general union–find data structure developed by Gabow and Tarjan [4]. Their data

structure requires initializing the structurewith an unrooted tree on the n elements, and performing unions in any order that
maintains the invariant that each union–find class induces a connected subtree of the initializing tree. In our application,
we are able to initialize the Gabow–Tarjan structure, and this is critical to obtaining a true linear time bound.

3. Representing a chordal comparability graph with four linear orders

Details of the following properties of chordal graphs are well known, and can be found in the text by Golumbic [5]. A
graph is chordal if and only if it has a subtree intersection model, which consists of the following:

1. A tree T that has O(n) vertices;
2. A connected subtree Tv associated with each vertex v of G such that two vertices x and y are adjacent in G if and only if
Tx and Ty contain a common node in T , and that the sum of cardinalities of the vertex sets in the subtrees is O(m).

Such a tree is often called a clique tree. An example is given in Fig. 1.
Following the approach of Ma and Spinrad, we perform an arbitrary depth-first search on the clique tree, labeling the

vertices of the tree in ascending order of their discovery time. The first and last discovery time i and j of nodes in a subtree
Tx defines an interval Ix = [i, j] on the sequence (1, 2, . . . , n). Because the sum of cardinalities of the cliques of a chordal
graph is O(n+m) [5], the time to find the intervals is O(n+m).
It is easy to verify that x and y are adjacent in G if Ix and Iy properly overlap, and that they are nonadjacent if Ix and Iy are

disjoint.
Suppose Iy is contained in Ix. Then it is possible that they are adjacent. If this were always the case, then G would be

not just a chordal comparability graph, but an interval comparability graph. However, it is also possible that they are not
adjacent. In this case, the DFS discovered a vertex in Tx, and sometime during the interval Ix, it left Tx to visit a set of vertices
below Tx that contain Ty, before returning upward to Tx to finish traversing it. This shows that it is not necessary for Tx and
Ty to intersect for Iy to be a subinterval of Ix. For example, in Fig. 1, Ta consists of the subtree induced by nodes {1, 2, 4, 5}.
The DFS leaves this tree to visit Tb, which is the subtree consisting of node 3, and then returns to Ta. The resulting intervals
for a and b in the right-hand figure intersect even though Ta and Tb do not.
We may find a transitive orientation P of the chordal comparability graph G = (V , E) in linear time using the

transitive orientation algorithm of [6]. Ma and Spinrad define three disjoint partial orders, any transitive orientation P
of G, the set R1 of ordered pairs of the form {(x, y)|Ix is left of Iy}, and the set R2 of ordered pairs of the form {(x, y)|Iy ⊂
Ix and x and y are non-neighbors }. Clearly, P∪R1∪R2 is an orientation of the complete graph, {P, R1, R2} is a partition of the
edge-set into three poset relations, and {R1, R2} is a partition of an orientation of G into two poset relations. We will refer to
the ordered pairs in P , R1, and R2 as edges (see Fig. 2).
In general, the union of two disjoint partial orders is not necessarily a partial order, or even acyclic. However, Ma and

Spinrad show that E1 = P ∪R1, E2 = P ∪RT1 , where R
T
1 denotes the reversal of all edges in R1, E3 = P ∪R2 and E4 = P ∪R

T
2 are

each acyclic. This shows that P is a four-dimensional partial order, as follows. Let L1, L2, L3, and L4 be arbitrary topological



872 A.R. Curtis et al. / Discrete Applied Mathematics 158 (2010) 869–875

Fig. 2. P is a transitive orientation of G, a pair (x, y) is in R1 if x’s interval precedes y’s, and a pair (u, v) is in R2 if v’s interval is contained in u′ and uv is not
an edge of G.

sorts of E1, E2, E3, and E4, respectively. It must be the case that for (u, v) ∈ P , u precedes v in all four topological sorts, since
it is a directed edge in each of E1, E2, E3, and E4. Every edge of P is conserved in the intersection of L1 through L4.
For any edge (u, v) in R1, (u, v) ∈ E1 and (v, u) ∈ E2. Therefore u precedes v in L1 and follows it in L2 and (u, v). It follows

that neither (u, v) nor (v, u) is in the intersection L1 ∩ L2 of the topological sorts of E1 and E2. The act of reversing R1 in E1
and E2 deletes the edges of R1 from the intersection L1 ∩ L2 hence from the intersection of L1 through L4.
Similarly, for any edge (x, y) in R2, x precedes y in L3 and follows it in L4, so the act of reversing R2 in E3 and E4 ensures

that x precedes y in L3 and follows it in L4. Therefore, neither (x, y) nor (y, x) is in the intersection L3 ∩ L4 of the topological
sorts of E3 and E4. Reversing R2 in E3 and E4 deletes R2 from the intersection.
Together, these observations prove that the intersection of L1 through L4 is exactly P: all elements of P are conserved

and no elements of R1, R2, RT1 , or R
T
2 are conserved. The constructive proof gives the basis of Ma and Spinrad’s algorithm,

which finds a transitive orientation of P , finds a clique tree, performs a DFS on it to identify R1 and R2, and then returns the
topological sorts of E1 through E4 in O(n2) time.
On the surface, it seems impossible to improve on this time bound without resorting to an entirely different algorithm,

since the topological sorts reference all edges in P ∪ R1 ∪ R2, and there are n(n− 1)/2 of them.
Our approach is similar to Ma and Spinrad’s, but we are able to use the properties of partial orders, chordal graphs, and a

number of data structure tricks to avoid touching all of the edges in R1 and R2 directly, thereby obtaining an O(n+m) bound.

3.1. Finding a topological sort of L1 of P ∪ R1

In this section, we describe a procedure for finding the topological sort L1 of E1 = P ∪ R1. To obtain L1, we perform
a depth-first search on E1, prepending each vertex to L1 when DFS retreats from it because all of its neighbors have been
marked visited. It is well known that prepending vertices to a list as they finish during DFS results in a topological sort of any
DAG [1]. The edges of P can be handled during the DFS in the standard way with an adjacency list representation. However,
when all neighbors in P of a vertex have beenmarked visited, it is not necessarily the case that all neighbors in E1 have been
marked visited, since it may have neighbors in R1. The problem is that |R1| is not O(n+ m), so touching all the members of
R1 would ruin our time bound. To get around this, we create a data structure that supports the following operation in O(1)
time:

• Find next R1 neighbor: Given a vertex v, return an unmarked neighbor in R1 if there is one, or else report that it has no
unmarked neighbors in R1.

To create this data structure,we radix sort all endpoints of intervals using the position of the endpoint as primary sort key,
and whether it is a left or right endpoint as a secondary sort key with left endpoints going earlier. We assign a pointer from
each endpoint to its corresponding vertex; each vertex is pointed to by a left endpoint and a right endpoint. We then label
each vertex v with a pointer to its parent, which is the vertexwwith the first left endpoint that follows the right endpoint of
v. The parent pointer is null if no such vertex exists. Finally, we create a list L of the vertices sorted by left endpoint, which
can be obtained by listing the vertices in the order in which pointers to them are found at left endpoints during a traversal
of the list of endpoints.
When we run the DFS, we maintain a set of union–find classes on elements of L, using the following invariant:

• Initially all elements are unmarked, and elements are marked as union–find classes are merged. An element is marked
when it is discovered during DFS, and can be marked either discovered or finished, depending on whether a recursive
call on it is in progress or has returned. Each union–find class starts either at the beginning of the list or at the first
element following an unmarked element, and contains all elements either up through the end of the list or through the
next unmarked element. Each union–find class has at most one unmarked element, and is labeled with a pointer to its
unmarked element, if it has one.



A.R. Curtis et al. / Discrete Applied Mathematics 158 (2010) 869–875 873

Initially, every element of L is in its own union–find class. At all times, every union–find class except the rightmost one
has exactly one unmarked element, and the unmarked element in a class is the rightmost element in the class. In addition,
every union–find class is consecutive in L, which allows us to use the path represented by L as the initializing tree for the
Gabow–Tarjan data structure. The find next R1 neighbor for a vertex v operation can be implemented by performing
a find operation on the parent of v. As v’s parent is the first disjoint vertex right of v, its union–find class points to the first
unmarked vertex right of v. Therefore, it takes O(1) time to locate the next unmarked vertex right of v, namely, the next
unmarked R1 neighbor of v.
When a vertex v is visited, it is marked discovered. This requires the following:

• Mark a vertex v as discovered: Unless v is the last element of L, merge its union–find class and the union–find class that
contains the successorw of v in L. Let the new class point to the unmarked element ofw’s old class.

To perform the DFS, we make recursive calls on all neighbors of v in P . When the last of these returns, we can find an
unmarked neighbor in R1 in O(1) time executing the find next R1 neighbor operation. Either a recursive call is made
on the result, marking it as discovered, or, if v has no remaining neighbors in R1, v can be marked as finished. Each vertex
is marked once as discovered and once as finished, so these marking operations can take place O(n) times during the entire
DFS, each at a cost of O(1). Therefore, the inclusion of R1 along with P in the DFS ends up costing O(n) time, even though
|R1| can beΘ(n2) in the worst case. The final bound on the DFS to obtain L1 is O(n+m),where m is the number of edges in G.
By left–right symmetry, a similar algorithm applies to finding L2.

3.2. Finding a topological sort L3 of P ∪ R2

The approach for finding L3 is similar in spirit to the one for finding L1 and L2, except that the charging argument to obtain
the time bound is more complicated. We again handle DFS on P using an adjacency list representation. When a vertex has
no more unmarked neighbors in P , it may still have neighbors in R2. We must define an operation analogous to find next
R1 neighbor:

• Find next R2 neighbor: Given a vertex v that has no undiscovered neighbor in P , return an undiscovered neighbor in R2
if there is one, or else report that it has no unmarked neighbors in R2.

However, because of additional difficulties posed by R2 edges, we use an amortizing argument that shows that all calls
to find next R2 neighbormade during a DFS take a total of O(n) time.
Aswithfind next R1 neighbor, we create a data structure to support the operation by sorting vertices by left endpoint

of their interval to obtain a list L, and we maintain union–find classes with one unmarked element in each class except the
rightmost class.
All R2 neighbors of v have both endpoints in the interior of Iv instead of to the right of Iv . Instead of making the parent be

the first vertex whose interval lies strictly to the right of v’s interval, we make it be the first interval whose left endpoint is
to the right of v’s left endpoint. We perform a find operation on this vertex to find the first unmarked vertexw that follows
it in L. If Iw is to the right of Iv , then we may mark v as finished, since Iv has no unmarked vertices beginning in its interior. If
Iw ⊂ Iv , thenw is the next R2 neighbor of v in the list, and we can make a recursive call onw, marking it as discovered.
A new problem arises when Iw properly overlaps Iv , since we have now spent O(1) time findingw, butw’s interval is not

contained in v’s, so it is not an R2 neighbor of v and we cannot mark it. Fortunately, if Iv and Iw properly overlap, they are
neighbors in G. Since v has no unmarked neighbors in P and w is unmarked, it must be the case that (w, v) is an edge in P .
We therefore charge the cost of touching w to the edge wv in G. We then continue by performing a find operation on the
successor ofw in L to find the next unmarked vertex. We iterate this operation, each time charging the O(1) cost of finding
the next unmarked vertex to an edge of G, halting when we reach the right endpoint of Iv , in which case v can be marked as
finished, or else find an unmarked R2 neighbor z, which we can then make a recursive call to DFS on, marking z discovered.
During the recursive call, we retain a pointer to z so that when it returns, we may resume the DFS from v by performing a
find operation on z.
Each vertex is again marked as discovered once, finished once, and each edge of P directed into a vertex v is charged

once. Since |P| = m, the additional cost incurred in including R2 with P in the DFS is O(n+m).

3.3. Finding L4

Unlike the case of L1 and L2, the cases of L3 and L4 are not symmetric, so we cannot use the procedure for finding L3 to
find L4. In the case of L3, the find next R2 neighbor found all unmarked vertices whose left endpoint was interior to Iv .
Those that were not R2 neighbors were neighbors in G, which allowed us to charge the cost of finding them to edges of G.
L4 needs to be a topological sort of P ∪ RT2 . Consider what happens when we reverse R2 to get R

T
2 . The R

T
2 neighbors of a

vertex v are those non-neighborsw in G such that Iv ⊂ Iw . Such a neighbor has a left endpoint to the left of Iv ’s left endpoint
and a right endpoint to the right of Iv ’s right endpoint. Using a Gabow–Tarjan data structure as we did above can identify
unmarked neighbors whose left endpoint is to the left of Iv ’s. The insurmountable problem is that such a vertex may also
have a right endpoint to the left of Iv ’s left endpoint. This means it is a non-neighbor in G. We have spent O(1) time touching
it, but we have no edge of G to charge the cost to.



874 A.R. Curtis et al. / Discrete Applied Mathematics 158 (2010) 869–875

Wetherefore abandon theunion–find approach and instead adopt a strategy that involves partitioning sets into neighbors
and non-neighbors in P , and takes advantage of the fact that we already have a topological sort L3 of P ∪ R2.
We begin with LT3 , which is a topological sort of P

T
∪ RT2 . We then modify this list to reverse the relative order of every

pair (a, b) such that (a, b) ∈ P without affecting the relative order of any pair (c, d) ∈ R2. This yields an ordering L4 such that
all edges of P are in the intersection L3 ∩ L4 and no edge of R2 is in L3 ∩ L4. L1 ∩ L2 ∩ L3 ∩ L4 = P will then be the four linear
orders representing P , hence G.
Given a subset S of elements of a linear order L, let the subsequence of L′ induced by S denote the result of deleting all

elements from L′ that are not in S. This is just the ordering of S that is consistent with their relative order in L.
Let us initially number the vertices in LT3 in order from 1 to n in the order in which they appear in L

T
3 . By radix sorting all

edges of P using vertex of origin as the primary sort key and destination vertex as the secondary sort key, wemay obtain, for
each vertex v, an adjacency list that is sorted in left-to-right order as the vertices appear in LT3 . This gives the subsequence L

′

of LT3 defined by neighbors of v. We let L
T
3 be a doubly-linked list, so that, given a pointer to a vertex in L

T
3 , it can be removed

from the list in O(1) time.
We now give the algorithm for turning LT3 into L4:

Reordering LT3 to obtain L4
Let v be the first vertex in LT3 . As a base case, if |L

T
3 | ≤ 1, there is nothing to be done. Otherwise, remove the

neighbors of v in P from LT3 , leaving the subsequence Ln of non-neighbors of v in L
T
3 . Since the adjacency list of v is in

sorted left-to-right order in LT3 , we can put them into a doubly-linked list that gives the subsequence La of vertices that
are adjacent to v in LT3 . We recursively reorder Ln and La to obtain L

′
n and L

′
a, and return the concatenation L

′
n · v · L

′
a.

The following establishes the correctness:

Lemma 1. P ⊆ L4 and R2 ∩ L4 = ∅.

Proof. In L4, all of its edges to elements La must point to the right. This is satisfied when La is moved to the right of v. Since
P is transitive, La is not just the neighbors of v, but the set of all nodes reachable from v on a directed path. Therefore, there
is no directed edge of P from La to Ln. There are no edges of P that go between v and Ln. All edges of P that go between these
three sets are now directed to the right, as they are supposed to in L4.
Now we show that no edge of R2 between these three sets points to the right. Suppose by contradiction that there is and

edge (x, v) ∈ R2 such that x ∈ Ln. This would contradict the fact that v is the first element of LT3 , which means it is a source
in RT2 , hence a sink in R2. Similarly, an edge (v, y) such that y ∈ La is an edge of G, it is not an edge of R2.
Suppose by contradiction that (x, y) is an edge of R2 such that x ∈ Ln and y ∈ La. Then y is a neighbor of v in G and x is

not. Moreover, (x, y) ∈ R2 implies that Iy ⊂ Ix. Since v is a neighbor of y, Iv intersects Iy, which means Iv also intersects Ix. If
Iv properly overlaps Ix, then v and x are neighbors in G, contradicting x’s membership in Ln. Therefore, Iv ⊂ Ix, and, since v
and x are non-neighbors in G, this implies that (v, x) ∈ R2. However, this contradicts the fact that v is a sink in R2.
We conclude that all edges of P that go between Ln, {v}, La point to the right after the reordering, and all edges of R2 that

go between these sets point to the left.
It remains to show that after the recursive calls return, this is true of edges that are internal to Ln and La. None of the

vertices internal to Ln or La have been reordered. They therefore satisfy the properties of LT3 for the subgraph induced by the
vertices passed to their recursive call and they are in doubly-linked lists, so the preconditions of the recursive calls have
beenmet. By induction on the length of the subsequence passed into a recursive call, the recursive calls on Ln and La reorder
these sets so that all edges of P internal to them point to the right in the final order, and all edges of R2 internal to them
point to the left in the final order. �

Since LT3 is a doubly-linked list, it takes time proportional to the degree of v to remove La out of L
T
3 and concatenate it to

the front. We charge this cost to edges of G out of v. At each level of the recursion, a distinct vertex serves in the role of v, so
each edge of G is charged at most once. The running time is therefore O(n+m).
Since L1 ∩ L2 includes all of P and excludes every edge of R1, and since L3 ∩ L4 includes all of P and excludes every edge

of R2, we get the following:

Theorem 1. Four linear orders that realize a chordal comparability graph G can be found in O(n+m) time.

References

[1] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, McGraw Hill, Boston, 2001.
[2] A. Curtis, C. Izurieta, B. Joeris, S. Lundberg, R.M. onnell, An implicit representation of chordal comparability graphs in linear time, in: The 32nd
International Conference on Graph-Theoretic Concepts in Computer Science, in: LNCS, vol. 4271, 2006, pp. 168–178.

[3] B. Duschnik, E.W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941) 600–610.
[4] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. Syst. Sci. 30 (1985) 209–221.
[5] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[6] W. Hsu, T. Ma, Fast and simple algorithms for recognizing chordal comparability graphs and interval graphs, SIAM J. Comput. 28 (1999) 1004–1020.
[7] S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, in: Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 1988, pp. 334–343.
[8] H. Kierstead, W.T. Trotter, J. Qin, The dimension of cycle-free orders, Order 9 (1992) 103–110.



A.R. Curtis et al. / Discrete Applied Mathematics 158 (2010) 869–875 875

[9] T. Ma, J.P. Spinrad, Cycle-free partial orders and chordal comparability graphs, Order 8 (1991) 49–61.
[10] R.M. McConnell, J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1–3) (1999) 189–241.
[11] J. Spinrad, Efficient Graph Representations, American Mathematical Society, Providence RI, 2003.
[12] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied Math., Philadelphia, 1983.
[13] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Algebr. Discrete Methods 3 (1982) 303–322.


	An implicit representation of chordal comparability graphs in linear time
	Introduction
	Preliminaries
	Union--find data structure

	Representing a chordal comparability graph with four linear orders
	Finding a topological sort of  L1  of  P cupR1 
	Finding a topological sort  L3  of  P cupR2 
	Finding  L4 

	References


