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The purpose of this study was to compare three camera calibration approaches applied to underwater

applications: (1) static control points with nonlinear DLT; (2) moving wand with nonlinear camera
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model and bundle adjustment; (3) moving plate with nonlinear camera model. The DVideo kinematic

analysis system was used for underwater data acquisition. The system consisted of two gen-locked

Basler cameras working at 100 Hz, with wide angle lenses that were enclosed in housings. The accuracy

of the methods was compared in a dynamic rigid bar test (acquisition volume—4.5�1�1.5 m3). The

mean absolute errors were 6.19 mm for the nonlinear DLT, 1.16 mm for the wand calibration, 1.20 mm

for the 2D plate calibration using 8 control points and 0.73 mm for the 2D plane calibration using 16

control points. The results of the wand and 2D plate camera calibration methods were less associated to

the rigid body position in the working volume and provided better accuracy than the nonlinear DLT.

Wand and 2D plate camera calibration methods presented similar and highly accurate results, being

alternatives for underwater 3D motion analysis.

& 2012 Elsevier Ltd. Open access under the Elsevier OA license. 
1. Introduction

The quantitative analysis of the 3D human motion is fundamental
in different application domains, as sport science (Gourgoulis et al.,
2008; Sarro and Barros, 2008; Machtsiras and Sanders, 2009; Miana
et al., 2009), rehabilitation engineering (Lanini et al., 2008, Aliverti
et al., 2001) and biomechanics (Figueroa et al., 2003; Chiari et al.,
2005; Silvatti et al. 2009; Barros et al., 2010). Multi-camera systems
(MVS) (BTS Engineering, Milan, Italy; Vicon, Oxford, UK) are largely
used for indoor and laboratory measurements but their use outdoor
or in constrained environments such as underwater for sport applica-
tions is still very limited. Among a number of critical issues prevent-
ing the straight application of the MVS to sport, the camera
calibration procedure, which impacts on the system accuracy, is a
crucial step. The camera calibration procedure involves the estimation
of the intrinsic (focal length, distortion parameters, principal points,
pixel scale factor) and extrinsic (location and orientation) parameters
of each camera. In this paper, we focus on particular calibration
methodologies allowing the MVS to be used in underwater applica-
tions, as sport performance evaluation and rehabilitation.
pinas, Faculdade de Educac- ~ao
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In underwater applications, large acquisition volumes are
required and cumbersome calibration structure, having known
geometry, based on a linear camera model (DLT—Direct Linear
Transform), are commonly utilized (Gourgoulis et al., 2008;
Machtsiras and Sanders, 2009). This camera model disregards
the optical distortions that strongly impact the reconstruction
accuracy. Better results were obtained when the optical distortion
was modeled in the DLT method and a larger number of points
were fixed to the calibration frame, as shown in Kwon, 1991.
However, this implies in more control points on this cumbersome
calibration structure (Kwon, 1991).

Two alternative approaches, wand-based and 2D plate-based,
make use of simpler calibration objects and include nonlinear
models for the camera. The wand-based approach consists of the
static acquisition of a rigid structure, carrying the control points
(CP), and the dynamic acquisition of the end point of a wand,
which is moved within the field of view of the cameras. The DLT
method was used to estimate the initial guess of the camera
parameters, using the 2D/3D data coming from the known rigid
structure, and on a nonlinear optimization to refine the para-
meters, based on the bundle adjustment approach, which uses the
2D data coming from the acquired wand (Fraser, 1997; Cerveri
et al., 1998).

The 2D plate-based approach consists in the acquisition of a
2D plane in different positions and orientations. Similarly, it uses
the DLT model to determine an initial guess of the parameters and
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a nonlinear optimization for each camera separately to refine the
parameters (Zhang, 2000).

Our aim was to compare these two calibration approaches
with a previously proposed calibration approach based on static
control points and a nonlinear form of the (radial and decentering
optical distortion model) DLT method (Hatze, 1988), in terms of
accuracy and flexibility in order to verify the relative advantages
and disadvantages for underwater applications.
2. Methods

The DVideo kinematic analysis system, a multi-camera motion tracking

system, was used in this study. The DVideo was developed by the present group

for research applications in different areas such as biomechanics, image-based

sport performance evaluation, human surface tracking and analysis (Figueroa et al.

2003, 2006; Barros, et al. 2006a,b; Sarro and Barros 2008; Miana et al., 2009; Sarro,

et al., 2010; Barros et al., 2010; Lodovico et al., 2011). More recently, this system

was applied in underwater data acquisition (Silvatti et al., 2009, 2010). Two gen-

locked Basler cameras (Fig. 1D) working at 100 Hz, with wide angle lenses (8 mm

focal length) enclosed in waterproof housings were adopted (Fig. 1A).

In order to perform the wand calibration, an orthogonal waterproof triad

(1 m�1 m�1 m) was built by a computer numerical control machine (CNC)

screwing onto it nine spherical black markers (|: 35 mm) in known positions

(Fig. 1B). The 3D coordinates of the markers were known with accuracy of about

10 mm. The acquired markers were utilized to determine the initial guess of the

camera parameters. The moving wand, carrying one marker at its end (Fig. 1B),

was acquired in the whole working volume (4.5�1�1.5 m3) during 15 s. Two

hundred and fifty useful frames were opportunely extracted from the whole

sequence to refine the parameters by the bundle adjustment optimization, which

uses CP with both known (triad markers) and unknown (wand marker) 3D

coordinates. The bundle adjustment iteratively estimates the parameters of all

the cameras along with the unknown 3D coordinates by minimizing the 2D

projection error (measured vs. predicted by the camera model) on the image. The

optical distortion was taken into account in the camera model, adopting a radial
Fig. 1. (A) Camera enclosed in housings and fixed up tripods for underwater acquisit

(C) Chessboard used for 2D plate calibration. (D) Camera setup. The GCS was set on the

displacement and Z – vertical).
model with 2 parameters. In the wand calibration approach, the triad geometry

provided the reference system (Fig. 1B).

In order to perform the 2D plate calibration, a waterproof chessboard (7�8

squares, 100�100 mm) was printed (300 dpi) and glued to a rigid planar support

(Fig. 1C). The Zhang’s approach (Zhang, 2000) was modified in this study using an

additional rigid structure consisting in a graduated rod, equipped with four black

markers, which was acquired in 4 different underwater positions. The water levels

were measured in each graduated rod position to build the GCS with the water

plane (Fig. 1D). The distances between the 4 positions of the graduated rod and the

two points located on the swim pool border were measured to perform the

triangulation and to obtain the CP 3D coordinates, which were used to compute

the initial guess of the camera parameters. Two different amounts of CP (8 and 16)

were utilized. The chessboard was moved by two persons in front of the two

cameras assuming different positions and orientations spanning the entire work-

ing volume. The chessboard was moved at low speed (less than 25 cm/s, Fig. 1D).

A corner is defined by the intersection of two black squares. Forty two corners

were automatically detected in the images and tracked during the sequence. For

parameter refinement, the acquisition was re-sampled to 10 Hz to obtain two

hundred sequential frames. The optical distortion was taken into account in the

camera model, adopting a radial and tangential model with 5 parameters.

The nonlinear DLT used the same 16 CP acquired for the 2D plate calibration

and adopted the same distortion parameters in the camera model for the 2D plate

too. In Table 1, we summarized the issues of the three camera calibration

methods.

The accuracy of the calibration methods was assessed on the same 700 frames

acquisition sequence of a rigid bar (two black markers) moved within the working

volume and automatically tracked. The working volume was approximately the

same in the three methods (4.5�1�1.5 m3) delimited at the middle of the

swimming pool (Fig. 1D). The distance between markers (nominal value D:

291.89 mm) was obtained as a function of time (di). The following variables were

calculated: (a) the mean absolute errors (MAE, Eq. (1)) (b) the standard deviation,

(c) the minimum and (d) maximum error, (e) the root mean squared error (RMSE

Eq. (2)) and (f) the RMSE relative to reconstruction expressed as a percentage of

the real length of the rigid bar movement (Eq. (3)).

MAE¼
1

N

XN

i
9di�D9 ð1Þ
ion. (B) Triad and wand equipped with black markers used for wand calibration.

water plane in the first position of the graduated rod (X – progression, Y – lateral
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3. Results

Table 2 shows the mean, standard deviation, minimum error,
mean absolute errors, maximum error, RMSE of the distance curves
between markers and the %RMSE for the nonlinear DLT, wand
calibration and for both tests using the 2D plate calibration in the
rigid bar test. The nonlinear DLT presented the worst results in all
variables (Table 2 and Fig. 2A). The results of the wand calibration
and 2D plate calibration (8 and 16 CP) were comparable in terms of
MAE (1.16 mm, 1.20 mm, 0.73 mm). The mean values of the bar
Table 1
Calibration methods.

Issues Type of calibration

Nonlinear DLT Wand calibra

Calibration support Graduated rod Triadþwand

Points to track 16 Spherical–black markers Spherical–blac

Acquisition protocol Graduated rod in 4 positions Static triadþm

Calibration approach Least square method DLT for initial

Refinement by

Single camera calibration Camera netwo

Distortion model Radial and tangential Radial

Table 2
Results of the nonlinear DLT, the wand calibration, the 2D plate calibration using 8 point

the marker distance: 291.89 mm. The values are expressed in millimeters (mm).

Mean Standard deviation Minimum e

Nonlinear DLT 297.98 3.43 4.79

Wand calibration 290.77 0.69 0.20

2D plate calibration (8 CP) 292.87 1.07 0.19

2D plate calibration (16 CP) 291.67 0.89 0.07

Fig. 2. Errors of the nonlinear DLT (A), 2D plate calibration (B) and wand calibration (

frames of the testing bar and the error superimposed to one marker were displayed in
length and the mean absolute error for the 2D plate calibration with
sixteen CP were better than those obtained in the configuration with
eight CP, with the wand calibration and with the nonlinear DLT.
However, the standard deviation (0.69 mm, 1.07 mm and 0.89 mm)
and the maximum error (3.99 mm, 8.03 mm and 6.90 mm) were
smaller in the wand calibration than in both 2D plate calibration
configurations and nonlinear DLT.

Fig. 2A, B and C shows the error as function of frames and
Fig. 2D, E and F show the influence of the rigid bar position in the
acquisition volume on the error distribution for each camera
calibration approach. Since increased error and a clear signal of
the rigid bar movement can be seen related to the rigid bar
position, we can assert that the nonlinear DLT was more affected
by the movement of the rigid bar (Fig. 2A) and their position in
the acquisition volume (Fig. 2D) than 2D plate calibration (Fig. 2B
and E) and the wand calibration (Figs. 2C and F).
tion 2D plate calibration

Graduated rodþchessboard

k markers Planar–corners

oving wand Graduated rod in 4 positionsþmoving chessboard

guess DLT for initial guess

bundle adjustment Refinement of the intrinsic parameters

rk Single camera calibration

Radial and tangential

s and the 2D plate calibration using 16 points in the dynamic test. Nominal value of

rror Mean absolute error Maximum error RMSE %RMSE

6.19 19.71 6.98 2.39

1.16 3.99 1.31 0.45

1.20 8.03 1.45 0.50

0.73 6.90 0.92 0.31

C) as function of the acquisition frames. The distance error distribution over 700

(D)—nonlinear DLT, (E)—2D plate calibration and (F)—wand calibration.



Table 3
Synthesis of the advantages and disadvantages of the methods.

Type of calibration Advantages Disadvantages

Graduated

rodþnonlinear DLT

� Just 16 markers in one frame to track

� Allows to define a GCS aligned to water plane

� The rod setup is time consuming

� Unbalanced camera network: each camera is calibrated separately.

� Accuracy results related with the quantity of the CP

� Increased error related to the acquisition position

Triadþwand calibration � The triad setup is fast and easy

� Only one point to track

� Equalization of the reconstruction error across the

calibration volume

� High portability

� Using two markers of known distance on the wand can

better constraint the calibration

� The wand must be moved opportunely to cover all the

calibration volume

� Accuracy strictly depending of the construction of the triad

� High sensibility of wand marker tracking to water quality

� Assumes the vertical axis based on the swim pool floor

Graduated rodþ2D plate

calibration

� Easy corner tracking

� More accurate distortion correction

� Lower sensibility of corner detection to water

� Allows to define a GCS aligned to water plane

� Chessboard design and realization is straightforward

� The rod setup is time consuming

� Unbalanced camera network: each camera is calibrated separately.

� High number of corners to track

� Rod and chessboard are cumbersome

� Chessboard movement limitation to guarantee high detection

accuracy and automatic corner labeling
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4. Discussion and conclusion

In the wand method, just one marker was utilized because of
the simplification of the tracking during the acquisition sequence.
Commonly, commercial systems (BTS Engineering, Milan, Italy;
Vicon, Oxford, UK) utilize two markers at the ends of the rigid bar
including the marker distance as an additional constraint in the
optimization. We envisage extending the use of the wand
approach to two markers and updating the implementation of
the bundle adjustment to include constraints about the marker
distance. This could further increase the calibration accuracy.

According to the results, we can assert that the wand calibra-
tion allows a reduction (3.99 mm) of the error spread in the
calibration volume. This is can be justified by the use of the
bundle adjustment approach, which intrinsically tends to
decrease the dispersion of the reconstruction error across all the
calibration volume.

As far as 2D plate calibration is concerned, the distortion
estimation exploited the virtual straight lines of the chessboard
arguing that this led to better accuracy (0.73 mm). However, the
accuracy results were slightly worse than previously found in
similar setup (Silvatti et al., 2010). This fact might be due to the
water transparency, which affects the 2D localization error that
was better in the previous experiment. This suggests that the
water transparency should be taken into account when highly
accurate results are required. The use of the graduated rod allows
the definition of the GCS aligned to the water level. While rod
setup consumes more time than the triad, its use would be a
technical advantage in two aspects: (1) allows to correct different
depths in the swim pool; (2) provides the opportunity to deal
with a geometrical axis that divides the swimmer motion task in
underwater (positive) and out of water (negative). However, the
rod setup is not so flexible and the use of the triad could be a
valuable alternative measuring the water level with respect to
it GCS.

The wand and 2D plate calibration methods (8 and 16 CP) led
to underwater accuracy better than previously reported in the
literature (MAE values of 5.12 mm were found in Yanai et al.,
1996; RMS value of 5.6 mm and maximum error of 9.3 mm were
detected in Kwon and Lindley, 2000; %RMS value of 1.28% was
obtained in Gourgoulis et al., 2008; and RMS value of 5.2 mm was
presented in Machtsiras and Sanders, 2009). It is well known that
the number and the distribution of the CP strongly affect the DLT
(Kwon and Lindley, 2000). This is true for the nonlinear DLT as
well. Pribanić et al. (2008 and 2009) compared the wand and 2D
plate camera calibration methods, but out of the water, and found
MAE error distributions (5 calibration trials) ranging from
0.66 mm to 0.75 mm for the wand calibration and 0.69 mm to
0.84 mm for the 2D plate calibration, respectively. Our results
were comparable to these values and with the accuracy of
commercial systems used for dry land 3D analysis (Chiari et al.,
2005).

The advantages and disadvantages of each method were
synthesized in Table 3.

In conclusion we can summarize that the wand and 2D plate
calibration approaches are promising alternatives for underwater
3D motion analysis. As far as sport performance measurement is
concerned, future study involves the feasibility of moving stereo
cameras for surveying the athletes during swimming tasks based
on built-in calibration of the intrinsic parameters and rectilinear
motion encoder to measure the extrinsic parameters.
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