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A Banach space is a dual space if and only if it is isometric to the space of 
uniform functions on a set with graded constraints. 

1. STATEMENT OF THE THEOREM 

For each set X let V(X) d enote the weak direct sum of X copies 
of the (real or complex) scalar field /1 so that V(X) is the vector space 
of all finitely nonzero X-tuples (h,) of scalars. A set with graded 
constraints (henceforth sgc) is a pair (X, A) where A = (A,: n = 
1, 2, 3,...,) is an arbitrary sequence of subsets of V(X). Given such 
(X, A) and a Banach space E, f: X + E is uniform if f is bounded 
and if 

3M > 0 Vn V(h,) E A, I/ C h,f(x)il < M/n, 

in which case //f IIA is defined to be the infimum of all such M. Let 
//f /Jm be the sup norm and let Lip(X, A; E) (just Lip(X, A) if E = A) 
denote the space of all uniform functions with norm 

MAIN THEOREM. If E is a dual space, so is Lip(X, A; E) for any 
sgc (X, A). A necessary and su$icient condition for E to be a dual 
space is that E be isometric to Lip(X, A) for some sgc (X, A). A 
necessary and suficient condition that E be isometric to the dual of a 
separable space is that E be isometric to Lip(X, A) for some sgc (X, A) 
with X countable. 

EXAMPLE 1.1. Let d be a metric on X and let D be a dense 
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subset of (X, d). Define A, = {(d(x, y)))’ (x - y): x # y, x, y E D> 
and A, = 0 for n > 1. Then Lip(X, A; E) is the usual space of 
bounded Lipschitz functions; in particular, Johnson’s result ([l], 
Theor. 4.1) that this is a dual space if E is follows from Corollary 3.2 
below. 

EXAMPLE 1.2. Let X be a subset of an abelian group and define 
A,={x+y-~:x,y,z,x+y~Xandx+y=x}foralln.Then 
Lip(X, A; E) is the space of all additive functions. A similar con- 
struction proves that the space of all convex functionals on a convex 
set is a dual space. 

2. FREE BANACH SPACES 

Since X is a basis for V(X), g: X -+ Y extends uniquely to a linear 

map IQ): V(X) -+ V(Y). An sgc homomorphism g: (X, A) -+ (Y, B) 
is a function g: X + Y such that V(g) maps A, into B, for all n. 
Each Banach space E induces the sgc (X, , AE) where X, is the unit 
ball of E and A,,, = ((A,): 11 C h,x 11 < n-l}. If h: E --+ E’ is a 
contractive linear map (i.e., bounded of norm <l), h: (X, , AE) + 
(XE, , AEf) is an sgc homomorphism. Given the sgc (X, A) a free 
Banach space over (X, A) is a pair (F, q) where F is a Banach space 
and rl: (X, A) + (X,, A) is an sgc homomorphism subject to the 
following universal property: 

for all Banach spaces E and sgc homomorphisms g: (X, A) + 
(X, , AE) there exists a unique contractive linear map g#: F -+ E 
such that g#q = g. It is clear that (F, q), if it exists, is unique up to 
linear isometry. 

THEOREM. For every sgc (X, A) the free Banach space over (X, A) 
exists. 

Proof. * This is an immediate consequence of the Freyd special 
adjoint functor theorem [2, V.81. 1 
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3. PROOF OF THE MAIN THEOREM 

PROPOSITION 3.1. Let (X, A) be an sgc, let (F, 7) be the free 
Banach space over (X, A) and let E be a Banach space. Then 
Lip(X, A; E) is a Banach space and is isometric to the Banach space 
9(F, E) of bounded linear maps. 

Proof. The passage from h: F +Etohq:X-+Eisalinearmap 
from 9(F, E) to the vector space of all functions from X to E which 
must, by the universal property, map the unit ball of Y(F, E) 
bijectively onto the set of sgc homomorphisms from (X, A) to 
(X, , A=). Because the uniform maps (X, A) -+ E are precisely the 
scalar multiples of sgc homomorphisms (X, A) -+ (X, , AE), the 
passage from h to hy is a linear isomorphism from 9(F, E) to the 
set of uniform maps (X, A) --+ E (which must therefore be a vector 
space); the unique norm on the latter rendering this passage an 
isometry must be given by the Minkowski functional 

jjflj = Inf{X > 0 : A-lf is an sgc homomorphism (X, A) -+ (X, , A=)} 

which is indeed the norm Max{/\ f Ilrn , 11 f ljA). 1 

COROLLARY 3.2. Let (X, A) be an sgc and let E be a dual space. 
Then Lip(X, A; E) is a dual space. 

Proof. Let E be isometric to G*. Using a well-known property of 
the Schatten tensor product, Lip(X, A; E) N S’(F, 9(G, A)) ‘v 

VW G)*. I 

LEMMA 3.3. Let (F, r]) be the free Banach space over the sgc (X, A). 
Then F is the closed span of y(X). 

Proof. Because of the universal property, any contractive linear 
functional h satisfying hq = 0 must be identically 0; now use the 
Hahn-Banach Theorem. 1 

PROPOSITION 3.4. Let (X, A) be an sgc with X countable. Then 
Lip(X, A) is the dual of a separable space. 

Proof. Let (F, r]) be free over (X, A). Then Lip(X, A) is isometric 
to F* and, by 3.3, F is separable. 1 

Let E be a fixed Banach space and let C be any subset of the unit 
ball of E. (C, A) is an sgc where A, = {(A,): 11 C Ag 11 < n-l}. If 
inc: C -+ E denotes the inclusion function, inc is an sgc homo- 
morphism (C, A) -+ (X, , AJ. Thus, if (F, r]) is the free Banach 
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space over (C, A), the universal property induces the contractive 
linear map inc #: F -+ E as shown below. 

(C, 4 ---L W, , AF) F 

LEMMA 3.5. ker(inc#) = 0. 

ProoJ Let t E ker(inc+). By 3.3 and the continuity of in@, there 
exists a sequence t, in the linear span of v(C) such that t, converges 
to t and 11 inc#(t,)lI < n-i. Write t, = C ncq(c). Then 11 C n, inc(c)l( = 
11 inc#(t,)ll < n-l so that, by the definition of (C, A), (nJ E A, . 
Since 7 is an sgc homomorphism, 11 t, II = I( C n,v(c)ll < a-l and 
t = 0 as desired. 1 

LEMMA 3.6. With respect to the metric on C induced by restricting 
11 x - y IIe , 7 is un isometry into F. 

Proof. Let x # y E C. As II x - y 11-l (X - y) E A, and 7 is an 
sgc homomorphism, 11 x - y 11-l (7~ - qy) E A,,1 (note: 7)~ # my since 
inc is injective). Therefore, I/ TX - yy IIF < II x - y IIE . Conversely, 
because incX has norm <l, 11 x - y IIE = II inc#(Tx - 7~y)ll~ < 
IIV-TYIIF~ I 

LEMMA 3.7. If every unit vector in E is in the closure of C, 
in@: F -+ E is a linear isometry. 

Proof. By 3.6, inc# maps q(C) isometrically onto C. Since 
“closure” coincides with “metric completion” for subsets of a Banach 
space, in@ maps cls(rl(C)) isometrically onto cls(C). It is now clear 
that in@ is bijective. Moreover, as v(C) is a subset of the unit ball 
of F, in@ is an isometry. 1 

What remains to prove of the main theorem follows at once from 
3.7 and 3.1, choosing C to be countable if E is separable. 
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