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1. Introduction

The Grosse–Wulkenhaar model (GWm) has been shown renor-
malizable at all orders of perturbations [1]. This noncommutative
(NC) φ�4

4 scalar theory has been extensively studied in the very re-
cent years [2–9]. Its most remarkable property, which holds both
for the real and complex version, is asymptotic safeness. The β-
function vanishes at all order of perturbations. This result has
been proved in [9] by a careful combination of Dyson–Schwinger
equations (DSe) and Ward identities (WI’s). Aside from N = 4 su-
persymmetric non-Abelian gauge theory, it is the only yet known
four-dimensional quantum field theory with this property.

It is natural to wonder whether there exist other NC renor-
malizable models with this striking property. The Gross–Neveu
model [10] and the O (N) and U (N) invariant GWm’s [11], when
preserving Langmann–Szabo (LS) duality [12], have been also
proved renormalizable. However the Gross–Neveu model is not
asymptotically safe [13], and in the class of NC color models
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considered in [11], only the GWm itself (real or complex) is asymp-
totically safe.1

In this Letter, we consider the complex GWm with added mag-
netic field, namely the Langmann–Szabo–Zarembo (LSZ) model
[14]. Langmann and co-workers proposed that small perturbations
of this theory could produce solvable models with renormalizable
interactions. Here, we study the RG flow of the coupling constant,
still with Ω = 1 and a magnetic field satisfying |B| < 1. We prove
that this model is still asymptotically safe at all orders, and we
calculate the RG flows of the two corresponding wave function
constants q and p. Note that beyond its possible relevance for high
energy physics, this LSZ model is a toy version of the quantum Hall
effect, which can be considered a 2 + 1 NC quantum field theory
with non-relativistic propagator including Matsubara frequencies
and Fermi surface [4].

The Letter is organized as follows. The next section introduces
the GWm in a magnetic field. The main theorem on the vanish-
ing β-function and its proof are developed in Section 3. Section 4
provides derivations of RG flows of the new parameters q and p.
Further issues and conclusions are drawn in Section 5, while Ap-
pendix A summarizes some calculations.

1 Nevertheless, a large class of such models is UV asymptotic free hence suscep-
tible of a full constructive analysis [15].
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2. Notations and considerations

The following action describes the complex NC φ�4
4 LSZ model

in the Moyal–Euclidean space [14]

S =
∫

d4x

{
∂μφ̄∂μφ + μ2φ̄φ + Ωφ̄ x̃μ x̃μφ

+ 2iBφ̄
(
x̃μ∂μ

)
φ + λ

2
φ̄ � φ � φ̄ � φ

}
, (2.1)

where B is the magnetic field, x̃ν = 2(θ−1
νμ )xμ and θ−1

νμ is the in-
verse of the antisymmetric matrix associated with the Moyal �-
product. The mass parameter is μ and Ω − B2 is an harmonic
potential. The complex GWm is recovered at B = 0.

We use the matrix basis and the notations of Refs. [8,9], setting
Ω = 1.2 As argued in [8,9], the flow of Ω goes rapidly to 1 in the
UV limit. After rescaling the field and the coupling constant by two
constants, the generating functional becomes

Z(η, η̄) =
∫

dφ dφ̄ e−S(φ̄,φ)+F (η̄,η;φ̄,φ), (2.2)

S(φ̄, φ) = φ̄ XRφ + φ XL φ̄ + Aφ̄φ + λ

2
φφ̄φφ̄,

F (η̄, η; φ̄, φ) = φ̄η + η̄φ, (2.3)

φ = (φmn), XL = qmδmn, XR = pmδmn,

q = 1 + B, p = 1 − B, (2.4)

where traces are implicit, S is the action and F represents external
sources. The quadratic part of the action is now expressed in term
of the left and right matrix operators XL and XR with unequal
weights q and p, respectively, and the new mass parameter is A :=
2 + μ2θ/4 [16].

The theory is stable for |B| < Ω � 1. By convention, we con-
sider B positive, hence q > p. Note that the model (2.3) can be
seen as a (q, p)-deformed matrix theory with dual parameters
q > 1 and p < 1. The GWm is recovered as q → 1 and p → 1
(B → 0). Although this deformation is not in the ordinary sense
of Chakrabarti and co-workers [17,18], the model renormalizability
suggests that the deformed quantum algebras which are encoun-
tered in quantum group theory and quantum mechanics combined
with nonlocal geometries may also be renormalizable. This is en-
couraging for the q-bosons studies and related theoretical models
[18–20].

The bare propagator in the matrix base, at Ω = 1, is

Cmn;kl = Cmnδmlδnk, Cmn = 1

A + qm + pn
, (2.5)

and we use notations

δml = δm1l1δm2l2 , qm + pn = q(m1 + m2) + p(n1 + n2). (2.6)

Feynman rules involve only orientable graphs with propagators
oriented from φ̄ to φ. Arrows occur in alternating cyclic order at
every vertex. For a field φ̄mn , we call the index m a left index and
n a right index. Consequently for the field φkl , k is a right index and
l a left index.

In [4], the renormalizability of the model has been proved in
the direct space at all order of perturbation. The renormalization
of the four point function is essentially the same as the one of
the real GWm. But the two point function renormalization is more
subtle due to the left/right asymmetry of the model.

2 The corresponding model is an independent non-identically distributed matrix
model.
3. Coupling constant flow

We denote by Γ 4(m,n,k, l) the amputated one particle irre-
ducible (1PI) four point function with external indices m,n,k, l,
and Σ(m,n) the amputated 1PI two point function with external
indices m,n (the self-energy). To define the wave function renor-
malization, we have to distinguish the left and right side of the
ribbon and to attribute to each side its renormalization through
the definitions

ZL = 1 − 1

q
∂LΣ(0,0), Z R = 1 − 1

p
∂RΣ(0,0) (3.7)

which are the derivative of the self-energy with respect to left
and right indices. The wave function renormalization is then Z =√

ZL Z R corresponding to a field rescaling φ → Z 1/2φ. Therefore
the effective coupling is defined as

λeff = −Γ 4

Z 2
= − Γ 4

ZL Z R
. (3.8)

Theorem 3.1. The equation

Γ 4(0,0,0,0) = −λ

(
1 − 1

p
∂RΣ(0,0)

)(
1 − 1

q
∂LΣ(0,0)

)
, (3.9)

where λ is the bare constant, holds up to irrelevant terms to all orders of
perturbation theory.

Irrelevant terms have to be understood with respect to power
counting and include in particular all contributions of non-planar
or planar graphs with more than one broken face. This theorem is
proved in the remaining of this section following the method and
ideas of [9] adapted to the left and right asymmetry.

3.1. (q, p)-Ward identities

The proof of Theorem 3.1 involve Ward identities (WI’s) re-
lated to the U (N) covariance of the theory. These WI’s can be
extended to a class of classical or quantum symmetry transforma-
tions (translations and dilatations) letting the action invariant up
to a total derivative [21,22]. The following lemma holds.

Lemma 3.1. The planar one broken external face correlation functions
satisfy

q(a − b)
〈[φ̄φ]abφνaφ̄bν

〉
c = 〈φνbφ̄bν〉c − 〈φ̄aνφνa〉c, (3.10)

p(a − b)
〈[φφ̄]abφbμφ̄μa

〉
c = 〈φ̄μbφbμ〉c − 〈φaμφ̄μa〉c, (3.11)

q(a − b)
〈
φαa[φ̄φ]abφ̄bνφνδφ̄δα

〉
c

= 〈φαbφ̄bνφνδφ̄δα〉c − 〈φαaφ̄aνφνδφ̄δα〉c, (3.12)

p(a − b)
〈
φ̄αa[φφ̄]abφ̄bνφνδφ̄δα

〉
c

= 〈φαbφ̄bνφνδφ̄δα〉c − 〈φαaφ̄aνφνδφ̄δα〉c . (3.13)

The rest of this subsection is devoted to the proof of this
lemma.

Proof of Lemma 3.1.
U (N) transformations. Let B be an infinitesimal hermitian matrix
and consider the U (N) group element U = eıB acting on the right
and left on the matrix fields

(right) φU := φU , φ̄U = U †φ̄, (3.14)

(left) φU := Uφ, φ̄U = φ̄U †. (3.15)
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The variation of the action under (3.14) and (3.15) is, at first order
in B ,

δL S = ıB(XL φ̄φ − φ̄φ XL), δR S = ıB(−XRφφ̄ + φφ̄ XR), (3.16)

respectively. Similarly the variations of external sources are at first
order

δL F = ıB(−φ̄η + η̄φ), δR F = ıB(−ηφ̄ + φη̄). (3.17)

As a consequence of the theory covariance, we have

δL ln Z

δBba
= 0 = 1

Z(η̄, η)

∫
dφ̄ dφ

(
− δL S

δBba
+ δL F

δBba

)
e−S+F

= 1

Z(η̄, η)

∫
dφ̄ dφ e−S+F (−[XL φ̄φ − φ̄φ XL]ab

+ [−φ̄η + η̄φ]ab
)
, (3.18)

δR ln Z

δBba
= 0 = 1

Z(η̄, η)

∫
dφ̄ dφ

(
− δR S

δBba
+ δR F

δBba

)
e−S+F

= 1

Z(η̄, η)

∫
dφ̄ dφ e−S+F (−[−XRφφ̄ + φφ̄ XR ]ab

+ [−ηφ̄ + φη̄]ab
)
. (3.19)

Two point function Ward identities. Applying the operator ∂η∂η̄|η=η̄=0
on the above expressions and analyzing the result in terms of con-
nected components leads to

0 = 〈
∂η∂η̄

(−[XL φ̄φ − φ̄φ XL]ab + [−φ̄η + η̄φ]ab
)
eF (η̄,η)

∣∣
0

〉
c, (3.20)

0 = 〈
∂η∂η̄

([XRφφ̄ − φφ̄ XR ]ab + [−ηφ̄ + φη̄]ab
)
eF (η̄,η)

∣∣
0

〉
c, (3.21)

from which one deduces〈
∂(η̄φ)ab

∂η̄

∂(φ̄η)

∂η
− ∂(φ̄η)ab

∂η

∂(η̄φ)

∂η̄

− [XL φ̄φ − φ̄φ XL]ab
∂(η̄φ)

∂η̄

∂(φ̄η)

∂η

〉
c
= 0, (3.22)

〈
∂(φη̄)ab

∂η̄

∂(φ̄η)

∂η
− ∂(ηφ̄)ab

∂η

∂(η̄φ)

∂η̄

+ [XRφφ̄ − φφ̄ XR ]ab
∂(η̄φ)

∂η̄

∂(φ̄η)

∂η

〉
c
= 0. (3.23)

By the definition of XL,R , we get

q(a − b)

〈
[φ̄φ]ab

∂(η̄φ)

∂η̄

∂(φ̄η)

∂η

〉
c

=
〈
∂(η̄φ)ab

∂η̄

∂(φ̄η)

∂η

〉
c
−

〈
∂(φ̄η)ab

∂η

∂(η̄φ)

∂η̄

〉
,

−p(a − b)

〈
[φφ̄]ab

∂(η̄φ)

∂η̄

∂(φ̄η)

∂η

〉
c

=
〈
∂(φη̄)ab

∂η̄

∂(φ̄η)

∂η

〉
c
−

〈
∂(ηφ̄)ab

∂η

∂(η̄φ)

∂η̄

〉
,

and fixing η̄βα and ηνμ , the previous relations become

q(a − b)
〈[φ̄φ]abφαβφ̄μν

〉
c = 〈δaβφαbφ̄μν〉c − 〈δbμφ̄aνφαβ〉c, (3.24)

−p(a − b)
〈[φφ̄]abφαβφ̄μν

〉
c = 〈δbαφaβ φ̄μν〉c − 〈δaν φ̄μbφαβ〉c . (3.25)

Restricting to planar with a single external face terms requires
[α = ν , a = β , b = μ] and [μ = β , ν = a, b = α] for (3.24) and
(3.25), respectively, and leads to (3.10)–(3.11).
Four point function Ward identities. Derivating further (3.20) and
(3.21) yields
q(a − b)
〈[φ̄φ]ab∂η̄1 (η̄φ)∂η1 (φ̄η)∂η̄2 (η̄φ)∂η2 (φ̄η)

〉
c

= 〈
∂η̄1 (η̄φ)∂η1(φ̄η)

[
∂η̄2 (η̄φ)ab∂η2 (φ̄η) − ∂η2 (φ̄η)ab∂η̄2 (η̄φ)

]〉
c + 1

↔ 2, (3.26)

−p(a − b)
〈[φφ̄]ab∂η̄1 (η̄φ)∂η1(φ̄η)∂η̄2 (η̄φ)∂η2(φ̄η)

〉
c

= 〈
∂η̄1 (η̄φ)∂η1(φ̄η)

[
∂η̄2 (φη̄)ab∂η2 (φ̄η) − ∂η2 (ηφ̄)ab∂η̄2 (η̄φ)

]〉
c + 1

↔ 2. (3.27)

A straightforward derivation at fixed η̄1,βα , η1,νμ , η̄2,δγ and η2,σρ

gives

q(a − b)
〈[φ̄φ]abφαβφ̄μνφγ δφ̄ρσ

〉
c

= 〈φαβφ̄μνδaδφγ bφ̄ρσ 〉c − 〈φαβφ̄μνφγ δφ̄aσ δbρ〉c

+ 〈φγ δφ̄ρσ δaβφαbφ̄μν〉c − 〈φγ δφ̄ρσ φαβφ̄aνδbμ〉c, (3.28)

−p(a − b)
〈[φφ̄]abφαβφ̄μνφγ δφ̄ρσ

〉
c

= 〈φαβφ̄μνδγ bφaδφ̄ρσ 〉c − 〈φαβφ̄μνφγ δφ̄ρbδaσ 〉c

+ 〈φγ δφ̄ρσ δαbφaβ φ̄μν〉c − 〈φγ δφ̄ρσ φαβφ̄μbδaν〉c . (3.29)

Neglecting irrelevant graphs gives (3.12)–(3.13), completing the
proof of the lemma. �

A simple induction proves that such identities hold for 2� point
functions with a left or right insertion, and for any integer �, as
depicted in Fig. 1.

3.2. Proof of the theorem

Besides the WI’s, the proof of Theorem 3.1 uses left (right) DSe
for four point functions with the two left (right) indices equal to
m (see Fig. 2 for the left DSe), namely

G4(0,m,0,m) = G4
(1)(0,m,0,m) + G4

(2)(0,m,0,m)

+ G4
(3)(0,m,0,m), (3.30)

G4(m,0,m,0) = G4
(1)(m,0,m,0) + G4

(2)(0,m,0,m)

+ G4
(3)(m,0,m,0), (3.31)

where G4(m,n,k, l) is the connected planar single external face
four point function. Eq. (3.30) is the left DSe whereas (3.31) is the
right DSe. A clear comment of the meaning of these relations is
provided in [9]. The term G4

(2) is zero by mass renormalization.
Denote ∂L F (m,n) := ∂mi F (m,n) and ∂R F (m,n) := ∂ni F (m,n),

where m and n are respectively left and right indices. The follow-
ing lemma holds.

Lemma 3.2. Up to irrelevant terms we have

G4
(1)(0,m,0,m) = −λ

(
G2(0,m)

)4
(

Z R + Ar∂RΣ(0,0)

p(pm + Ar)

)
ZL, (3.32)

G4
(1)(m,0,m,0) = −λ

(
G2(m,0)

)4
(

ZL + Ar∂LΣ(0,0)

q(qm + Ar)

)
Z R , (3.33)

G4
(3)(0,m,0,m) = −G4(0,m,0,m)

Ar

(pm + Ar)

∂RΣ R(0,0)

p − ∂RΣ(0,0)
,

(3.34)

G4
(3)(m,0,m,0) = −G4(m,0,m,0)

Ar

(qm + Ar)

∂LΣ
L(0,0)

q − ∂LΣ(0,0)
,

(3.35)

where Σ R,L(0,0) is defined in (3.48) below and G2(m,n) is the con-
nected planar one broken face two point function.
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Fig. 1. q-Ward identity for a 2� point function with insertion on the left face.

Fig. 2. The left Dyson equation.
Proof. Let us prove (3.32) and (3.34). The proof of the other ex-
pressions is analogous.

G2(m,n) is given by a well-known sum of a geometric series

G2(m,n) = Cmn

1 − CmnΣ(m,n)
= 1

C−1
mn − Σ(m,n)

. (3.36)

Let G L
ins(a,b; . . .) be the planar one broken face connected function

with one index jump on the left from a to b. Using (3.10), one
writes

q(a − b)G2,L
ins (a,b;ν) = G2(b, ν) − G2(a, ν). (3.37)

We note that WI’s and the DSe have a meaning both in the
bare (of mass A = Abare) and in the mass renormalized theory
(Ar = Abare −Σ(0,0)). The latter case implies that every two point
1PI subgraph should be subtracted at 0 external indices. In the
following, we use the mass-renormalized derivation.3 The mass
renormalized theory is free from quadratic divergences. Residual
logarithmic divergences in the UV cutoff can be read off the effec-
tive series as argued in [8,15].

G4
(1) decomposes as

G4
(1)(0,m,0,m) = −λC0mG2(0,m)G2,L

ins (0,0;m). (3.38)

By the WI (3.37), we obtain

G2,L
ins (0,0;m) = lim

ζ→0
G2

ins(ζ,0;m)

= 1

q
lim
ζ→0

G2(0,m) − G2(ζ,m)

ζ

= −1

q
∂L G2(0,m). (3.39)

3 An equivalence with the bare theory could be deduced from [9].
Using the form (3.36) of G2(0,m), we get

G4
(1)(0,m,0,m) = −λ

q
C0m

C0mC2
0m[q − ∂LΣ(0,m)]

[1 − C0mΣ(0,m)](1 − C0mΣ(0,m))2

= −λ

q

[
G2(0,m)

]4 C0m

G2(0,m)

[
q − ∂LΣ(0,m)

]
. (3.40)

A Taylor expansion gives the self energy up to irrelevant
terms [7],

Σ(m,n) = Σ(0,0) + m∂LΣ(0,0) + n∂RΣ(0,0). (3.41)

Keeping in mind that C−1
0m = pm + Ar , we have (again up to irrele-

vant terms)

G2(0,m) = 1

pm + Abare − Σ(0,m)
= 1

m[p − ∂RΣ(0,0)] + Ar
,

(3.42)

and

C0m

G2(0,m)
= 1

p

(
p − ∂RΣ(0,0)

) + Ar

p(pm + Ar)
∂RΣ(0,0). (3.43)

Substituting (3.43) in (3.40) we get

G4
(1)(0,m,0,m)

= −λ
[
G2(0,m)

]4
(

1

p

(
p − ∂RΣ(0,0)

) + Ar

p(pm + Ar)
∂RΣ(0,0)

)

×
[

1

q

(
q − ∂LΣ(0,m)

)]
. (3.44)

To evaluate G4
(3)(0,m,0,m), we need to “open” the face “on the

right” in the k loop in the third term of Fig. 2. The left bare corre-
lation functions are given by
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Fig. 3. Two point left insertion and opening of the loop with index k.

Fig. 4. The self energy.
G4,bare
(3) (0,m,0,m) = −λC0m

∑
k

G4,bare,L
ins (k,0;m,0,m). (3.45)

The face indexed by k may belong to a 1PI two point insertion
in G4

(3) (see Fig. 3). In that case, because we use the mass renor-
malized expansion, one has to introduce a counterterm in order
to compensate the one lost during the “opening” process. In other
terms, we have

G4
(3)(0,m,0,m) = −λC0m

∑
k

G4,L
ins (0,k;m,0,m)

− C0m
(
C T L

lost

)
G4(0,m,0,m). (3.46)

It turns out that all two point function counterterms contribute to
C T L

lost except those of the generalized left tadpole. We write

Σ(m,n) = T L(m,n) + Σ R(m,n) (3.47)

with T L the generalized left tadpole contribution and Σ R the rest.
T L(m,n) is a left border insertion hence does not depend upon the
right index n (see Fig. 4).

With these notations the missing mass counterterm is given by

C T L
lost = Σ R(0,0) = Σ(0,0) − T L . (3.48)

To compute Σ R(0,0), we open its face indexed by k and use (3.10)
to get

Σ R(0,0) = − λ

G2(0,0)

∑
k

G2,L
ins (0,k;0)

= −λ

q

1

G2(0,0)

∑
k

1

k

[
G2(0,0) − G2(k,0)

]

= −λ

q

∑
k

1

k

(
1 − G2(k,0)

G2(0,0)

)
. (3.49)

Then (3.46) and (3.49) imply that

G4
(3)(0,m,0,m)

= −λC0m

∑
k

G4,L
ins (0,k;m,0,m)

− (−λ)

q
C0mG4(0,m,0,m)

∑ 1

k

(
1 − G2(k,0)

G2(0,0)

)
. (3.50)
k

Eq. (3.12) reexpresses the first term in (3.50)

−λC0m

∑
k

G4,L
ins (0,k;m,0,m)

= −λ

q
C0m

∑
k

1

k

(
G4(0,m,0,m) − G4(k,m,0,m)

)
. (3.51)

The second term in (3.51) is at least cubic in k, hence irrelevant.
The above sums over k for G4(k,m,0,m) are always convergent
(see [9]). We inject (3.51) in (3.50) and obtain

G4
(3)(0,m,0,m) = −λ

q
C0m

G4(0,m,0,m)

G2(0,0)

∑
k

G2(k,0)

k
. (3.52)

From (3.42), we obtain

∑
k

G2(k,0)

k
=

∑
k

G2(k,0)

k

(
1

G2(0,1)
− 1

G2(0,0)

)

× 1

(p − ∂RΣ(0,0))
. (3.53)

Performing the same manipulations as in (3.49), we express

Σ R(0,1) = −λ

q

∑
k

1

k

(
1 − G2(k,1)

G2(0,1)

)

= −λ

q

∑
k

1

k

(
1 − G2(k,0)

G2(0,1)

)
(3.54)

up to an irrelevant term. Substituting (3.49) and (3.54) in (3.53),

−λ
∑

k

G2(k,0)

k
= q(Σ R(0,0) − Σ R(0,1))

p − ∂RΣ(0,0)

= − q∂RΣ R(0,0)

p − ∂RΣ(0,0)
. (3.55)

Therefore,

G4
(3)(0,m,0,m) = −C0mG4(0,m,0,m)

1

G2(0,0)

∂RΣ R(0,0)

(p − ∂RΣ(0,0))

= −G4(0,m,0,m)
Ar∂RΣ R(0,0)

(pm + Ar)(p − ∂RΣ(0,0))
(3.56)

which achieves the proof of Lemma 3.2. �
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Proof of Theorem 3.1. Plugging (3.44) and (3.56) in (3.30), one has

G4(0,m,0,m)

(
1 + Ar ∂RΣ R(0,0)

(pm + Ar)(p − ∂RΣ(0,0))

)

= −λ
(
G2(0,m)

)4
(

1

p

(
p − ∂RΣ(0,0)

)
+ Ar

p(pm + Ar)
∂RΣ(0,0)

)
1

q

(
q − ∂LΣ(0,m)

)
. (3.57)

Multiplying (3.57) by (p − ∂RΣ(0,0))/p, amputating four times
and neglecting the irrelevant differences Γ 4(0,m,0,m) − Γ 4(0,0,

0,0) and ∂LΣ(0,m) − ∂LΣ(0,0), we finally find

Γ 4(0,0,0,0) = −λ

(
1 − 1

q
∂LΣ(0,0)

)(
1 − 1

p
∂RΣ(0,0)

)
(3.58)

which completes the proof of (3.9). �
4. One loop RG flow of (q, p) parameters

The left and right wave function renormalizations Z L and Z R ,
respectively, determine the RG flow of q and p. To compute RG
flows, we need to introduce some slice decomposition [2]. After
renormalization of the field φ → φ(Z R ZL)

1/4, the discrete RG flow
equation are

λi−1 = λi, qi−1 = qi

(
ZL

Z R

) 1
2

, pi−1 = pi

(
Z R

ZL

) 1
2

. (4.59)

At one loop, only the planar “up” and “down” tadpoles [8] con-
tribute to the self-energy Σ(m,n). We get a factor of symmetry of
2 so that

Σ(m,n) = −λ
∑
r∈N2

(Cmr + Crn), (4.60)

where Cmr and Crn are the bare propagators.
A direct calculation yields, with r ∈ N

2,

ZL = 1 − λ
∑

r

1

(pr + A)2
, Z R = 1 − λ

∑
r

1

(qr + A)2
. (4.61)

Hence, at first order in λ,√
ZL

Z R
= 1 − 1

2
λ

∑
r

[
1

(pr + A)2
− 1

(qr + A)2

]
+ O

(
λ2). (4.62)

The logarithmically divergent part of these sums governs the flows.
In a slice corresponding to r1, r2 ∈ [Mi−1, Mi], we have

Mi∑
r1,r2=Mi−1

1

(qr + A)2
= 1

q2

Mi∑
r1,r2=Mi−1

1

(r + A
q )2

= 1

q2
κ + O

(
M−i), (4.63)

where the constant κ is independent of i. We obtain at one loop,

qi−1 = qi

[
1 − λi

2

(
1

p2
i

− 1

q2
i

)
κ

]
,

pi−1 = pi

[
1 − λi

2

(
1

q2
i

− 1

p2
i

)
κ

]
(4.64)

from which the discrete flows are deduced

dqi

di
= λi

2
qi

(
1

p2
i

− 1

q2
i

)
κ,

dpi

di
= λi

2
pi

(
1

q2
i

− 1

p2
i

)
κ. (4.65)

This leads directly to
Fig. 5. RG flow of q(i) and p(i) versus i with cutoff Λ = 100 and puv = 10−6.

dqi

qidi
+ dpi

pidi
= 0 ⇔ qi pi = K , (4.66)

where K is some positive constant. We substitute qi = K/pi in
(4.65) and find the solutions

p(i)2 = K
e2λiκ(Λ−i)(p2

uv/K + 1) + p2
uv/K − 1

e2λiκ(Λ−i)(p2
uv/K + 1) − (p2

uv/K − 1)
, (4.67)

p2
uv = −K

e2λiκ(Λ−i)(p(i)2/K − 1) + p(i)2/K + 1

e2λiκ(Λ−i)(p(i)2/K − 1) − (p(i)2/K + 1)
, (4.68)

where Λ stands for the UV cutoff, and puv the bare value of p
(see Appendix A). Similar expressions of qi and quv follow. Graphic
representations of p(i) and q(i) versus i for various values of the
parameters are given in Fig. 5.

5. Conclusion

We have proved that the β-function governing the RG flow of
the coupling constant of the complex GWm with magnetic field
vanishes at all orders of perturbation. We have also computed at
one loop the RG flows of the new wave function parameters (q, p).
The non-Gaussian fixed point p = q lies on the IR side rather than
the UV one.

The motivation for studying these models in magnetic field
comes from the quantum Hall effect physics, although this physics
requires a different propagator and 2 + 1 dimensions. We hope to
describe the Hall plateaux as fixed points of a noncommutative RG
flow. The results for the particular toy model considered here may
not seem encouraging at first sight. Indeed the only infinite direc-
tion of such noncommutative RG is the UV one and that is where
we do not find fixed points. However recall that the noncommu-
tative interpretation of long and short distances is subtle, IR and
UV in NC really referring to low versus high energy. The physics at
small energies in a Hall fluid is well described in terms of anyons,
whereas electrons appear as high energy particles [23]. Hence any-
onic physics may be described by IR rather than UV fixed points.
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Appendix A

Consider the linear differential equation given by (4.65) after
substituting qi = K/pi , pi = p(i) and qi = q(i),

dp(i)

di
= λi

2
p(i)

(
p(i)2

K 2
− 1

p2(i)

)
κ. (A.1)

Separating variables and putting u(i) = p(i)2, we get

K
du

2
= λiκ di (A.2)
u − 1
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which can be easily integrated. Let us remark that λi 
 λ, The-
orem 3.1 having proved that the flow of λi is actually bounded.
Between the ith slice and the UV cutoff Λ, p(i) varies from p(i) to
its bare value puv , so that

1

2

{
ln

(
p2

uv/K − 1

p2
uv/K + 1

)
− ln

(
p(i)2/K − 1

p(i)2/K + 1

)}
= λκ(Λ − i). (A.3)

The bare and running values of p are related through

p(i)2/K + 1

p(i)2/K − 1
= e2λκ(Λ−i) p2

uv/K + 1

p2
uv/K − 1

, (A.4)

and we recover (4.67) and (4.68).
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