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Multi-player online battle arena games (MOBAs) are large virtual environments requiring complex

problem-solving and social interaction. We asked whether these games generate psychologically inter-

esting data about the players themselves. Specifically, we asked whether user names, which are chosen

by players outside of the game itself, predicted in-game behaviour. To examine this, we analysed a large

anonymized dataset from a popular MOBA (‘League of Legends’) – by some measures the most popular

game in the world.

We find that user names contain two pieces of information that correlate with in-game social be-

haviour. Both player age (estimated from numerical sequences within name) and the presence of highly

anti-social words are correlated with the valences of player/player interactions within the game.

Our findings suggest that players’ real-world characteristics influence behaviour and interpersonal in-

teractions within online games. Anonymized statistics derived from such games may therefore be a valu-

able tool for studying psychological traits across global populations.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

Online video games are played by hundreds of millions of peo-

le worldwide and fine-grained statistics on each game are con-

tantly relayed to centralized servers where they can be stored and

nalysed. These games often require complex team strategies and

ermit direct personal interactions mediated by real-time chat, as

ell as inter-player rating mechanisms. They therefore represent a

ich potential source of data for psychological investigation.

Previous research on relating personality traits to video game

haracteristics have often correlated findings from personality

uestionnaires with game data: either statistics collected within

he game environment, or statistics about the amounts or types of

ames played (Chory & Goodboy, 2011; King, Delfabbro, & Griffiths,

013; Park, Song, & Teng, 2011; Teng, 2008; Worth & Book, 2014;

ee, Ducheneaut, Nelson, & Likarish, 2011). This approach is valu-

ble because personality questionnaires provide verified indicators

bout stable, real-life personality traits. However, respondents may

espond untruthfully even to questionnaires administered anony-
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ously across the internet and completing these questionnaires is

ime-consuming, thereby limiting the number of individuals who

an be included in each study.

An alternative approach to the psychological analysis of gaming

ata is to ‘mine’ very large datasets for scientifically relevant re-

ationships. This approach is interesting for several reasons. First,

t is valuable to ask whether large datasets of this type are use-

ul for statistical analysis at all. It may be, for example, that all

layers adopt a single ‘optimal’ strategy that leaves little room for

ersonal variability, rendering these datasets uninteresting from a

sychological viewpoint.

Secondly, if players do seem to exhibit systematic differences in

ehaviour, it might be that some of this variance is linked to real-

orld characteristics such as age, gender or personality (Worth &

ook, 2014). Understanding these relationships could provide valu-

ble information about these characteristics at a population level,

nd this information could be used as a preliminary screen to

dentify subjects who may be suitable for further testing. Finally,

rom a system design point of view, if reliable metrics on player

ehaviour can be established, they can be used to improve the so-

ial environment within the game.
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1.1. Hypotheses

Here we examined correlations between the valence of in-game

interactions and estimates of player age and anti-social tendencies

in the massive online battle arena game ‘League of Legends’ (LoL).

Here we define anti-social tendencies as being a propensity to en-

gage in behaviour that breaches societal norms and which is likely

to cause offense to a large proportion of people.

Because we are harvesting a large, anonymized dataset this

study is correlational: We use two pieces of data extracted from

usernames and use them to make estimates about the players real-

world attributes. We then describe how these estimated variables

correlate with in-game behaviour as assessed by the game-based

reporting system. We discuss methodological issues relating to the

accuracy of these inferences in detail at the end of the paper.

In LoL (Fig. 1) players join small, competing ‘teams’ that pro-

ceed to challenge each other for territory and an objective (over-

taking the enemy base) in a relatively short time period (typi-

cally < 1 h). The precise details of the game are beyond the scope

of this paper but there are abundant descriptions in online sources

(“League of Legends,” 2013). LoL is currently one of the most pop-

ular video games on the planet with an estimated 27 million on-

line players every day (Gaudiosi, 2012). There are regular profes-

sional LoL tournaments with prizes worth millions of dollars and

top players are eligible for US “internationally recognized athletes”

visa status (Blake, 2013).

LoL players communicate through a real-time chat facility. This

facilitates coordinated game play but it also allows players to in-

teract socially. Players are also encouraged to evaluate their team-

mates at the end of each game. For example, players can praise

each other for their teamwork or friendliness by sending ‘Honor’.

Alternatively they can submit ‘Reports’ chastising other players for

deliberately playing badly or sending abusive messages through

the chat system. This report system allows us to gather informa-

tion about the average valence of each player’s interpersonal inter-

action within the game environment. We hypothesized that if play-

ers’ real-world personality types predict their behaviour within the

game, the valence of these interactions might correlate with fac-

tors that are related to real-world behaviour. Two such factors are

players’ ages and their tendency to use foul or offensive language

in their public usernames (DeWall, Buffardi, Bonser, & Keith Camp-

bell, 2011; Holtzman, Vazire, & Mehl, 2010) – their ‘anti-social

naming tendency’ (ANT).

We analysed players’ self-chosen user names to estimate both

age and ANT. Many of these user names contained information

that informed us about these parameters. Specifically, players often

embed their birth date in their user names (e.g. goodplayer1996)

and in a separate analysis we show that these dates are highly-
Fig. 1. Game play within League of Legends. a) A screenshot of a LoL match in progress

bottom right). Individual player ‘summoner names’ or ‘usernames’ appear above the hum

able to communicate with each other both during and after a game. c) Sending negative

send a positive ‘Honor’ report about a teammate.
orrelated with the self-reported ages of the players in the reg-

stration procedure. In addition, many usernames contain explicit

r lightly obfuscated expletives, racial slurs and boasts that are

learly designed to attract attention (e.g.‘g0ats3x’). Players must in-

est some time in generating these ANT names as multi-player on-

ine games typically have simple filters in place to block straight-

orward examples of offensive language.

Once we had identified user names that appeared to contain ei-

her age or ANT information, we asked if there was a relationship

etween ANT or age and the average valence of reports that each

layer sent or received within the game. We found that both age

nd ANT are predictive of in-game interaction valences as mea-

ured by honors and reports. Importantly, we find this effect for

oth incoming and outgoing ratings (in other words, ratings gen-

rated by a player and directed towards other teammates or, alter-

atively, ratings generated by teammates directed to a player).

. Methods and materials

.1. Data sources

Data were provided by the US-based company Riot Games

Santa Monica, CA)—the creators of League of Legends. To im-

rove internet connectivity, Riot Games maintains servers around

he world dedicated to particular geographic regions. The data de-

cribed here were obtained from servers based in North America

NA), Western Europe (EUW), North Eastern Europe (EUNE), Turkey

TK), and Brazil (BR). Riot Games supplied a representative, random

ample of 450,000 datasets—one for each player. This large dataset

omprised of 100,000 players on each of the NA, EUW, EUNE and

R servers and 50,000 players from the TK servers. The data repre-

ent a snapshot of the accounts on the different servers on June 13,

013. All accounts in the dataset had been created after November

st, 2012. The number of datasets was chosen to be as large as

ossible while still remaining computationally tractable.

Our analysis of anti-social user names was based on data from

ust the NA server (allowing us to identify English language epi-

hets). Our age analysis was based on all available datasets.

Strict controls were imposed of the type of data that were anal-

sed. Data were collected and analysed in accordance with guide-

ines from both the Association of Internet Researchers (Markham

Buchanan, 2012) and the American Psychological Association

Kraut et al., 2004). It is important to note that only anonymized

atasets were analysed. Researchers had no access to personal

dentifying information and no modification of players’ online ex-

erience was performed as a result of this research. All players had

greed to Riot’s Terms and Conditions as part of the LoL registra-

ion procedure and these explicitly allow LoL to use their data for
. A small portion of the playing arena is shown (illustrated in the small inset box,

an-controlled characters along with a health indicator. b) In-game chat. Players are

and positive reports is possible after each game ends. Here, a player is choosing to
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esearch purposes. All procedures described in this paper were ap-

roved by the University of York Department of Psychology ethical

eview board.

.2. Interaction valence

After each League of Legends match, players are allowed to

enerate feedback on the behaviour of other team members via

point and click interface (Fig. 1c). Feedback can be positive

‘honor’) or negative (‘reports’) and can refer to a range of prede-

ned behaviours (for example, ‘Verbal abuse – Report’, or ‘Team-

ork – Honor’). A single click on each of the feedback buttons

enerates a single instance of a report. Players can honor or re-

ort multiple team members at the end of each game but can

nly send a single feedback (either positive or negative) to each

layer. The accumulation of negative or positive reports can have

onsequences to a player. For example, large numbers of negative

eports may lead to temporary or even permanent suspension of

he player’s account. Riot now implement a ‘tribunal’ procedure

hat allows other players to vote on these types of punishment

nd we note that the statistics of these tribunal events provide

nother rich dataset that may also relate to player personalities

Blackburn & Kwak, 2014). Although both positive and negative

valuations are nominally assigned to specific categories, in real-

ty the nature of the infraction is sometimes unclear. For example,

eporting a player for “intentional feeding” implies that they are

eliberately playing poorly to benefit the opposing team but some

ggressive players will use this accusation indiscriminately against

nyone they consider to be inferior to themselves or to vent frus-

ration when their team loses. There is also evidence that percep-

ions of toxic behaviour vary somewhat across cultures and geo-

raphic domains (Kwak, Blackburn, & Han, 2015).

Because we were interested in the overall valence of player be-

aviour, we used the mean of the combined ‘report’ and ‘honour’

etrics as scalar representations of negative and positive interac-

ion. Outliers were removed using a robust outlier labelling heuris-

ic (Banerjee & Iglewicz, 2007; Hoaglin, Iglewicz, & Tukey, 1986)

hich typically removed fewer than 1% of the data points. Re-

ort and Honor values were divided by the total number of games

layed and then log-scaled. Rates, rather than absolute levels were

sed to avoid conflating number of games played with average lev-

ls of anti-social or altruistic behaviour. The log transform was im-

ortant to ensure that data distributions were approximately nor-

al and therefore amenable to parametric statistical analysis. The

esulting datasets were found to have equal variance as assessed

y Levene’s statistic.

Because the number of samples in each group was very high,

hese distributions were still found to be non-Gaussian by stan-

ard tests (Kolmogorov–Smirnov and Shapiro–Wilk tests; p < .001

n both cases) but inspection of Q–Q plots indicated relatively mi-
Table 1

Descriptive statistics from ANT and random non-ANT players.

N Mean Std. dev

Log(rep received) ANT 2198 −1.707 .473

Random 2198 −1.838 .472

Log(reports sent) ANT 2198 −1.816 .537

Random 2198 −1.902 .555

Log(honor received) ANT 2198 −.973 .417

Random 2198 −.910 .441

Log(honor sent) ANT 2198 −1.314 .706

Random 2198 −1.184 .752

Note. Values are log-scaled means of incoming and outgoing ‘Reports’ and ‘Honor’ feedba
or deviations. For the sake of completeness, we performed both

arametric (ANOVA) and non-parametric (Kruskal–Wallis–with p-

alues indicated by ‘KW’) tests on our datasets and the results

ere found to be almost identical.

.3. Antisocial names

A script containing a lexicon of common swearwords, slurs

nd sexual epithets as well as attention-drawing words and sim-

le alphanumerical variations was created in MATLAB (Mathworks,

A). The list of words was derived initially from an online list

http://www.noswearing.com/dictionary). Additional common ep-

thets and attention-seeking words were added by experienced

ame players and alphanumerical variation of the words (e.g.

g0ats3x”) were also added algorithmically because players often

se them to by-pass filters (Blashki & Nichol, 2005). Because we

sed databases of English language epithets, we restricted our

earch to data from the North-American Server (100,000 names).

he full list of substrings used to identify antisocial names is pro-

ided in the supplementary material. This list of target words was

ot exhaustive but it nevertheless identified over 2000 antiso-

ial names from the North American server. We asked whether

ean Honor and Reports sent and received (four statistics in total)

ere different between players with ANT and the control group.

o avoid issues of multiple comparisons resulting from performing

our separate t-tests, we used a standard one-way ANOVA to eval-

ate the statistical significance of pairs of group differences. ANT

ata were compared to an equal-sized random sample of players

ith non-antisocial names extracted from the same server. Statis-

ical analysis was performed in SPSS (SPSS IBM, New York, U.S.A)

nd Matlab (Mathworks, MA). Parametric means testing is gener-

lly robust to small deviations from normality when sample sizes

re large and equal—as our datasets were (see above). Because sig-

ificance depends on group size, we also include measure of the

aw effect size in our analysis. The descriptive statistics for ANT vs

on-ANT data are shown in Table 1.

.4. Age

Age data were extracted from all servers. Years are conven-

ionally indicated using either four (e.g. 1987) or two (87) dig-

ts. Consequently, an automated script identified dates within an

ppropriate 2- or 4-digit range (1985–2002) at either the begin-

ing or end of the nickname (“1987Nickname”, “Nickname87”). Be-

ause we were interested primarily in developmental changes up

o adulthood, and because statistical tests on very small groups are

nreliable, subjects over the age of 20 were not included in our

nalysis.

Clearly, not all instances of two or four digits matching a ‘year’

emplate actually indicate players’ birth years. To examine this, we
Std. err 95% conf interval Min Max

Lower Upper

.010 −1.726 −1.687 −3.371 .572

.010 −1.857 −1.818 −3.083 .166

.011 −1.838 −1.793 −3.373 .286

.012 −1.925 −1.878 −3.729 .079

.009 −.990 −.955 −2.538 1.314

.009 −.929 −.892 −2.093 1.623

.015 −1.343 −1.284 −3.560 1.729

.016 −1.216 −1.153 −3.604 1.975

ck for each player.

http://www.noswearing.com/dictionary
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Fig. 2. a) Histograms of player ages estimated from usernames from five servers.

Data are shown between estimated birth years 1985 and 2003 inclusive to illus-

trate the full shape of the distribution. b) Joint histogram of age estimates extracted

from two different sources (N = 10,299) with birth years between 1985 and 1999.

The area of each circle represents the number of players in each group. Age ex-

tracted from alphanumeric usernames correlates strongly (Pearson’s r = .60) with

age entered in the registration procedure.
obtained an additional dataset: the years of birth reported to Riot

during the game registration procedure. These represent an inde-

pendent, noisy estimate of player age. Ultimately, we obtained a

total of 11,630 players who passed all the criteria with a mean age

(estimated from the usernames) of 15.9 years. The distribution of

birth years from all servers between the 1985 and 2002 (inclusive)

are shown in Fig. 2a. We performed two separate analyses based

on player ages. For the analysis in Fig. 2 (where we compare re-

ported vs extracted dates of birth to assess the reliability of name-

derived age estimates) we deliberately excluded ages less than 14

(year of birth 2000) from the final analysis. We did this to ensure

that our results were unlikely to have been skewed by players ly-

ing about their age deliberately to pass the registration stage (Riot

imposes a nominal minimum age of 13).

Age estimates from the two independent sources (usernames

and registration) were correlated. Fig. 2b shows a joint histogram

of ‘name derived’ vs ‘reported’ ages for a total of 10,299 players

whose birth years lay between 1985 and 1999. The areas of the

circles indicate the relative number of players that fall into each

year.

Our data clearly show that many players use the same age in

both their user names and during registration and we find a statis-

tically significant correlation (p < .001) between the two measures

with a medium to strong effect size (Pearson’s r = .53, Spearman’s

ρ = .51). We note several interesting phenomena: The number ‘88’

is an outlier in terms of its frequency of appearance in usernames.

We believe this is likely due to its dual use as a cultural signi-

fier (see Discussion). Players also tend to over-report the birth year

1990 during registration and there is a particularly strong correla-

tion between players who report a birth year of 1990 and use the

digits ‘2000’ or ‘00’ in their username. The reason for this is un-

clear but when this report year is omitted from the analysis the

effect size for the correlation between reported and extracted date

of birth increases to r = .6, ρ = .58 (‘strong’).

In the main analysis examining the relationship between age

and interaction valence, we included the full set of 11,630 play-

ers with estimated ages as young as 11 (birth year 2002) because

ages were estimated solely from username information which is

not vetted. Players therefore have no reason to ‘lie’ about their date

of birth in their usernames.

2.5. Analysis summary

• Players with antisocial usernames were identified using an en-

hanced dictionary lookup that accounted for alphanumeric sub-

stitutions in the NA dataset.
• Ages were estimated from the presence of two- and four-digit

strings at the start or end of a name in all datasets. Cross-

checking with registration data confirmed a high correlation

between reported ages and the ages extracted from the user

names.
• For all players, positive and negative interaction rates were

computed from the means of the incoming and outgoing ‘Re-

port’ and ‘Honor’ metrics. Rates were log-scaled to achieve

near-normal distributions.

3. Results

3.1. Antisocial names

Out of the 3229 hits in the North American Server, 1031 nick-

names were rejected as false positives after visual inspection by an

expert English speaker who was blinded to the statistics associated

with each name. For example, there would be nothing deliberately

anti-social about the name “ThePen1sMightier” despite it generat-

ing a hit in the swear word dictionary lookup. After false positive
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Fig. 3. There are significant differences between players with ‘normal’ and ‘ANT’

nicknames in all the traits we examined. Players with antisocial nicknames tend

to have higher levels of negative incoming and outgoing interactions (‘reports’)

and lower levels of positive interactions (‘honor’). All differences are significant at

p < .001. Error bars are ±1SEM.
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ejection, we obtained a sample of 2198 users whose names were

nequivocally designed to be anti-social – generally containing bla-

ant racial, sexual or scatological epithets. An equal random sample

f ‘control’ (non-antisocial) names from the North American server

as selected for comparison so that the ANOVA was operating

n groups of equal sizes. Human inspection of the control group

dentified no ‘false negatives’ or missed incidences of antisocial

ames.

We found that players with antisocial names had significantly

igher sent (F(1,4394) = 27.31, p < .001, ε2 = .0064, r = .08, KW

< .001) and received (F(1,4394) = 84.2, p < .001, ε2 = .02, r = .14,

W p < .001) Report rates compared to the control group, reflect-

ng an increase in anti-social behaviour. They also had significantly

ower sent (F(1,4394) = 34.517, p < .001, ε2 = .0081, r = .09, KW

< .001) and received (F(1,4394) = 23.11, p < .001, ε2 = .0049,

= .07, KW p < .001) Honor rates, indicating a reduction in al-

ruistic or prosocial behaviour. These differences are illustrated in

ig. 3.

Overall, our control group sent and received positive ‘Honor’ at

rate that was 25% higher than that of their antisocially-named

eers. Similarly, antisocial-named players sent and received nega-

ive ‘Reports’ at a 25% higher rate than controls.

.2. Age

We found a significant relationship between age and online in-

eraction rates. First of all, we note that overall, all games gener-

te around 8 times as many positive interactions as negative ones

espite the fact that there are slightly more categories for negative

ompared to positive interactions. There was also no difference be-

ween the average number of games played at different ages.

However, we found that overall interaction rates (interactions

er game) increase with age (p < .001) so that players at the

ighest end of the age range considered (27 years old) send, on

verage, 20% more interactions per game than those at the low-
st end (11 years old). This overall increase in interaction is com-

osed of opposing and statistically significant changes in the rates

f the four interaction types: [positive (honor) or negative (re-

orts)] × [incoming (initiated by other team members) or outgoing

initiated by the player themselves)].

The rate of all negative interactions decrease with age. Older

layers (22–26 years old) are significantly less likely to send or re-

eive negative reports compared to younger players (11–15 years

ld). Conversely, the rate of positive interactions increases with

ge. These effects were highly significant (p < .001) in all cases

Fig. 4a).

As in the case of ANT data, the effect sizes of these age-related

hanges are small (R2 < .001). As an example, the older players

22–26 years old) sent, on average, only 6% more positive inter-

ctions than younger players (11–15 years old). In comparison to

he effect sizes seen in our analysis of username data, our ability

o predict the behaviour of any individual player based on their

stimated age is almost non-existent and the strong significance

alues we find are the result of having a large number of sub-

ects. Our ability to predict changes in the overall behaviour of

particular age group is, however, excellent. A linear regression

odel fitted to the average ratio of positive to negative interac-

ions (the ‘valence’ of overall interactions) gives an excellent fit

R2 = .8, p < .001) – See Fig. 4b. On average therefore, player be-

aviour within LoL games experiences a slow, significant and linear

ncrease between the ages of 11 and 26. This effect is seen equally

trongly in the valence of both incoming and outgoing interactions.

. Discussion

Although there is evidence from questionnaire-based studies

hat personality types are reflected to some extent in online game

nteractions (Worth & Book, 2014) and even in email addresses

Back, Schmukle, & Egloff, 2008), we ask here whether psychologi-

ally interesting information could be obtained purely from a large,

nonymized gaming dataset. We chose to examine two game-

ndependent attributes associated with individual players (age and

ntisocial tendencies) because information relating to both of these

an be estimated from a single, publicly displayed data string cho-

en by the players themselves.

Naturally, these data are not perfect reflections of real-life

layer attributes. Numbers, for example, may reflect culturally sig-

ificant digits rather than years. For example, ‘88’ is a culturally

aden number with Chinese speakers where it represents good

uck. In addition, older players may attempt to appear younger to

islead other players with regard to their expertise and younger

layers may attempt to appear older to gain status. Nevertheless,

ur comparison of two independent estimates year of birth age

Fig. 2) suggests a strong correlation between ages extracted from

sernames and those provided as part of the registration proce-

ure.

It is possible that players choose user names that reflect a per-

onality that they choose to adopt within the game rather than one

hat matches their own real-world personality. We find this plausi-

le to some extent (video gamers are, after all, playful) but the ex-

reme nature of some of the obscene usernames makes it unlikely

hat they are chosen by pro-social individuals even as a form of

scapism. The age results are particularly encouraging in this re-

pect as they correlate well with registration data and we believe

hat players are less likely to systematically choose alternative nu-

erical data codes to propagate an alternative online personality

lthough we are aware that certain numbers can be used to ad-

ertise an affiliation with extreme political beliefs (for example the

umber 88 also has significance within the culture of far-right Nazi

ympathizers).
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Fig. 4. The valence of interaction rates changes with age. a) Bootstrapped ratios of honor or report rates in older (22–26 year old) group compared to younger (11–15 year

old) group as estimated from username data. Negative reports become less common (ratio old:young < 1) in the older group while positive ‘honor’ interactions become

more common (ratio old:young > 1). On average, older players send approximately 6% more positive interactions and receive approximately 2% more positive interactions.

b) The ratio of positive to negative interactions increases approximately linearly as a function of age.
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4.1. Antisocial nicknames

Although the actual usernames cannot be reported here for

reasons of privacy, they lie well outside the adult societal norms

and there can be little doubt that they are specifically designed

to shock or draw attention from other players. Although we have

no other psychological information about the subjects who choose

these names, it is plausible that they indicate real-life antisocial

or attention-seeking tendencies and we are currently investigating

this hypothesis in ongoing lab-based experiments.

We found a set of correlations that link these potential anti-

social tendencies to the rate and valence of player–player interac-

tions but correlation does not inform about causality. It is tempt-

ing to associate report and honor rates with performance and be-

haviour within the game (since this is the overt purpose of these

metrics). By this account, antisocial naming tendencies are asso-

ciated with antisocial game play leading to higher received report

rates and lower received honor rates. But equally, it is possible that

players with antisocial names receive negative reports solely be-

cause those names antagonize other players. In this context, we

believe that the ‘sent’ metrics are particularly interesting because

the ANT players themselves initiate these interactions. We found

that players with ANT criticise their teammates more and praise

them less than controls. In this case, the ANT names are unlikely

to cause the negative valence of the interactions. Rather, both inter-

action metrics seem to reflect the underlying personalities of the

players.

One intriguing possibility is that antisocial names are used to

express affiliation to a particular group (or to differentiate play-

ers from their teammates). In this sense, the increased negativity

associated with ANT players may be framed in terms of in-group

and out-group behaviour with non-ANT players being more ready

to punish and less ready to reward ANT players and vice-versa.

A final possibility is that the variables we examine are related

through a third ‘hidden’ factor. For example, we considered the

possibility that ANT players tend to perform worse than controls

for other reasons and that their antisocial in-game behaviour was a

result of this poor performance. Support for this hypothesis comes

from recent studies showing that in-game antisocial behaviour is
 e
elated to losing games (players who lose games are more likely to

rade negative reports with their teammates) (Breuer, Scharkow, &

uandt, 2015). A full analysis of this type is beyond the scope of

he current paper but we did examine this possibility in general by

omparing the Match Making Rank (MMR) scores of ANT and con-

rol players: a proxy for player success. We found a very small, (but

tatistically significant: p < .001) increase in ANT MMRs compared

o controls suggesting that increased failure levels per se were un-

ikely to account for the reduction in interaction valence that we

easured for ANT players.

.2. Age

We found significant changes in all our interaction metrics as

function of age. In summary, players become more pro-social

s they age: negative interactions decrease and positive interac-

ions increase. The effect is small at the individual level but ex-

remely robust and significant at the group level. Adolescence is

period characterised by significant changes in important brain

tructures (amygdala, frontal lobes) that govern decision making

Galvan et al., 2006; Giedd et al., 1999). The faster maturation

f the limbic system, when compared to that of the frontal lobe

tructures, may make adolescents more prone to react to emo-

ionally salient situations/stimuli even when their logical reasoning

s intact (Casey, Jones, & Hare, 2008; Gardner & Steinberg, 2005;

teinberg, 2004; Steinberg et al., 2009) thus driving the overall

igher level of negative interactions in younger players.

Again, it is possible that the names (which embed the age

ata), rather than the behaviours are causal: older players may

ully younger players during game play, thereby leading them to

esort more to negative reporting as a retaliation strategy. Very

oung players may have played fewer games than older players

nd therefore be unaware of the societal norms within the game

r become frustrated by playing against more expert opponents.

These factors are unlikely to explain the trends we observed.

he data we examine here consist only of players with accounts

pened in a relatively short time window between November 1st

012 and June 13th 2013. All players therefore had approximately

qual experience with the game and there was no effect of age
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n the number of games played. Very young players are in the

inority – only 14% are less than 14 years old for example and

he correlation between negativity and age is weak at the low

ge range, becoming stronger within the 14–27 age group. This

upports the hypothesis that negative interaction rates reflect age-

ependent cognitive changes in the players rather than a reaction

o out-group discrimination based on their apparent age.

The increased ratio of negative to positive interactions in

ounger players may be due to the reduced cognitive control

resent in this age group. For example, (Dreyfuss et al., 2014)

ound increased sensitivity to threatening stimuli in adolescents,

specially males which are the main demographic of LoL, even

hen they were instructed to ignore them. Thus it is possible that

dolescents are unable to inhibit possible threatening stimuli lead-

ng to communicational escalations. The stimuli could relate to in-

ame events (for example getting killed), or to social interactions

for example, being criticised by another player).

The change in interaction valence could also be attributed to

ncreases in Agreeableness/Benevolence with age; a trait related

o cooperation as well as to the attribution of hostile intent to

ther agents’ actions. Young people are more prone to misjudge

neutral message as a hostile one (Digman, 1997; Klimstra, Hale,

aaijmakers, Branje, & Meeus, 2009; Van den Akker, Deković, Ass-

her, & Prinzie, 2014) and a similar pattern has been observed in

tudies looking at both proactive and reactive aggression in young

dolescents (Fite, Colder, Lochman, & Wells, 2008; van Bokhoven

t al., 2006). Thus, in the context of a highly demanding compet-

tive match, an otherwise neutral chat message could be miscon-

trued as offensive leading to increased reporting.

Age-dependent changes in interaction valence may also be

riven by changes in cognition as well as personality (Blakemore,

008). For example, according to (Dumontheil, Apperly, & Blake-

ore, 2010) adolescents commit more errors in a Theory of Mind

ask (ToM), when compared to adults while other studies have

hown that tasks requiring ToM activate brain networks similar

o those involved in empathy and forgiving (Farrow & Woodruff,

005; Hayashi et al., 2010; Strang, Utikal, Fischbacher, Weber, &

alk, 2014). Dumontheil and colleagues (Dumontheil et al., 2010)

oncluded that the interaction between ToM and executive func-

ions is still developing in late adolescence and we hypothesize

hat this is a factor in the slow increase in the valence of the in-

eractions that we observe over age because younger players are

nable to contextualize the actions of others correctly and may

isattribute actions (such as accidental poor play) to a deliberate

hreat or collusion (‘Intentional Feeding’).

There is some anatomical basis for the changes in impulsivity

nd risk taking seen adolescence. A dominant theory is that the

evelopmental trajectories of subcortical structures involved in re-

ard (for example, the nucleus accumbens) are faster than those

f more frontal cortical regions providing inhibition and cognitive

ontrol (Casey et al., 2008; Dreyfuss et al., 2014; Galvan et al.,

006). Again, this hypothesis predicts a slow but steady increase

n pro-social behaviour and a decrease in impulsivity across the

ime frame covered by our data.

In the context of cognitive development, adolescent deficits in

oM might also be enhanced because they are deprived of valuable

nformation such as facial and vocal cues which are an important

ource of information about other players’ motives and emotions

Achim, Guitton, Jackson, Boutin, & Monetta, 2013).

Finally, an alternative possibility is that cognitive and be-

avioural difference are inherent to different birth cohorts rather

han different ages per se. In other words, the increase in in-

ame antisocial behaviour that we observe in younger players will

emain constant as those players become older: The millennials

re simply more antisocial than those born before the turn of

he century. Evidence for this hypothesis is mixed – largely be-
ause of the difficulty in performing well-controlled personality ex-

eriments spanning multiple generations. Recent work by Twenge

t al. (Twenge & Foster, 2010; Twenge, Konrath, Foster, Campbell, &

ushman, 2008) suggests that millennials score higher on at least

ne antisocial personality trait (Narcissism) than age-matched co-

orts from previous generations but this result has been disputed

n methodological grounds and other researchers studying simi-

ar datasets indicate that any effect that may be present is very

mall and that a measure strongly related to narcissism (“self-

nhancement”) is stable across birth cohorts At the moment, there-

ore, we believe that the most parsimonious explanation for our

ata is based on a developmental change in personality across

dolescence rather than a systematic difference in pre- and post-

illennial birth cohorts.

.3. Conclusions

Our data show that video games can provide a wealth of use-

ul population-level information on developmental cognitive and

sychological processes. Although the individual data points may

e noisy, the overall conclusions are highly robust due to the

heer number of subjects. Similar analysis techniques have been

sed to examine the relationship between practise and perfor-

ance in a custom-built online game as well as in MMORPGs

Stafford & Dewar, 2014) but we believe we are the first to examine

layer–player interactions in a MOBA game using this methodology

Drachen, Sifa, & Thurau, 2014; Guitton, 2010).

It is intriguing to ask if other clinical psychiatric disorders such

s autism, sociopathy or addictive personality traits might be ev-

dent in these types of data. For example, since personality in-

uences responses in experiments probing economic choice (Berg,

ilienfeld, & Waldman, 2013), can the same results be observed in

ideo-games? Campbell and his colleagues supported the notion

hat in a classic “tragedy of the commons” game, where the indi-

idual needs to exert self-discipline and harvest a limited amount

f the resources in order to allow for the continuous survival of all

he players, the optimal strategy at a group level requires players

o delay reward (Campbell, Bush, Brunell, & Shelton, 2005). Here,

e expect players who have limited abilities to discount imme-

iate gratification to have a stereotypical profile in complex on-

ine games such as LoL, which may alter long-term, in-game suc-

ess rates both for themselves and for other team members. Con-

ersely, it is also possible that positive in-game behaviour such as

apid learning, team building or leadership might correlate both

ith positive usernames and with positive personality traits in the

eal world.

Finally, we have assumed here that real-world personality at-

ributes are the cause of the online behaviour patterns we observe.

ut it is possible that strategies learnt in the online environment

ay also provide cues to appropriate (or successful) behaviour in

he real world.

Video game training alters a wide range of visual, cognitive

nd attentional mechanisms (Adachi & Willoughby, 2013; Appel-

aum, Cain, Darling, & Mitroff, 2013; Boot, Kramer, Simons, Fabiani,

Gratton, 2008; Granic, Lobel, & Engels, 2014; Green & Bavelier,

003; Li, Polat, Makous, & Bavelier, 2009) and regimes emphasizing

ifferent strategies within the same game can lead to changes in

eal-world behaviour (Greitemeyer & Osswald, 2010; Yoon & Var-

as, 2014) and cortical activation patterns in subsequent test pe-

iods (Lee et al., 2012). It has been suggested that the remarkable

lasticity evidenced in such studies is due in part to the highly

rousing nature of the games themselves (Bavelier, Levi, Li, Dan, &

ensch, 2010). We are currently investigating the possibility that

einforcing altruistic strategies within a game environment con-

ition players to modify antisocial behaviour in their day-to-day

ife.
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