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Abstract

It is well known that the forgetful functor from symmetric operads to nonsymmetric operads has a left
adjoint Sym1 given by product with the symmetric group operad. It is also well known that this functor
does not affect the category of algebras of the operad. From the point of view of the author’s theory of
higher operads, the nonsymmetric operads are 1-operads and Sym1 is the first term of the infinite series of
left adjoint functors Symn, called symmetrisation functors, from n-operads to symmetric operads with the
property that the category of one object, one arrow, . . . , one (n − 1)-arrow algebras of an n-operad A is
isomorphic to the category of algebras of Symn(A).

In this paper we consider some geometrical and homotopical aspects of the symmetrisation of n-operads.
We follow Getzler and Jones and consider their decomposition of the Fulton–Macpherson operad of com-
pactified real configuration spaces. We construct an n-operadic counterpart of this compactification which
we call the Getzler–Jones operad. We study the properties of Getzler–Jones operad and find that it is con-
tractible and cofibrant in an appropriate model category. The symmetrisation of the Getzler–Jones operad
turns out to be exactly the operad of Fulton and Macpherson. These results should be considered as an
extension of Stasheff’s theory of 1-fold loop spaces to n-fold loop spaces n � 2. We also show that a space
X with an action of a contractible n-operad has a natural structure of an algebra over an operad weakly
equivalent to the little n-disks operad. A similar result holds for chain operads. These results generalise the
classical Eckman–Hilton argument to arbitrary dimension.

Finally, we apply the techniques to the Swiss-Cheese type operads introduced by Voronov and prove
analogous results in this case.
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1. Introduction

This is the second paper in a sequence of papers devoted to the relations between higher cate-
gories and n-fold loop space theory. In the first paper [4] we developed the necessary categorical
techniques which allow us to go back and forth between n-operads and classical symmetric op-
erads. The main goal of this paper is to clarify the geometric and homotopy theoretic aspects of
this theory.

To do this we restrict ourselves to a class of so-called pruned (n−1)-terminal n-operads. This
is a slightly smaller category of n-operads than we considered in [4] but it is big enough to in-
clude most applications we have in mind. The reason is that the functor of desymmetrisation from
symmetric operads to n-operads [4] can be factorised through the category of pruned n-operads.
Moreover, as in the unpruned case this desymmetrisation functor preserves endomorphism oper-
ads. This allows us to construct a theory of symmetrisation very much in parallel to the unpruned
case. It turns out that pruned n-operads are easier to handle from the combinatorial point of view.
We have a conjecture, however, that the main results of this paper are also true in the case of
(n − 1)-terminal n-operads but so far we have been unable to prove it in this generality.

We apply the categorical methods of [4] to the category of pruned (n − 1)-terminal n-operads
and to the even smaller class of reduced (n−1)-terminal n-operads. These methods immediately
imply the existence of some categorical symmetric operads phn and rhn, which represent the
theories of internal (n − 1)-terminal pruned n-operads and internal (n − 1)-terminal reduced
n-operads inside categorical symmetric operads, in full analogy with the categorical operad hn

in [4]. Our first significant result here is Theorem 8.5 which asserts that the simplicial operads
N(phn) and N(rhn), where N is the nerve functor, are En-operads in the category of simplicial
symmetric operads and reduced simplicial symmetric operads respectively.

Together with Theorems 3.2 and 4.3, these theorems show that once we have a space with
an action of a contractible pruned (n − 1)-terminal n-operad there is an action of an En-operad
on this space. An analogous result holds for the reduced operads in chain complexes. As we
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conjectured in [4] this should give a very natural proof of Deligne’s conjecture answering a
question by Kontsevich [13].2

There are, however, other results in the present paper which we believe are significant. First
we observe that the desymmetrisation of the operad of Fulton and Macpherson fmn of compact-
ified real configuration spaces [9,14] contains a contractible reduced (n − 1)-terminal n-operad
which we call the Getzler–Jones operad GJn. Actually, this operad was discovered by Getzler
and Jones in their remarkable preprint [9]. The apparatus of n-operads did not exist at that time
and Getzler and Jones attempted to express the properties of GJn in terms of a natural subdivision
of the operad fmn. It turned out, however, that Getzler–Jones subdivision does not give a cellular
structure compatible with the operadic structure of fmn as was first observed by D. Tamarkin
(see [25] for an explanation of Tamarkin’s counterexample). This counterexample implied con-
siderable technical difficulties in the proof of Deligne’s conjecture.

The second implicit appearance of GJn was in the Kontsevich and Soibelman paper [14].
For n = 2 they considered closed contractible subsets XT of fm2 where T is a finite set with
two complementary orders on it (see Definition 2.2). They used some properties of XT to prove
Deligne’s conjecture for A∞-algebras. We show that the space GJn

T of arity T is indeed equal
to the Kontsevich–Soibelman XT for a pruned n-tree T (see Section 2 for the explanation of the
connection between trees and complementary orders, and Section 7 for the definition of XT for
any n).

We show that GJn can be considered as a natural analogue of fmn in the category of reduced
(n − 1)-terminal n-operads. In particular, set theoretically it is a free reduced (n − 1)-terminal
n-operad on the reduced n-collection of Getzler–Jones cells. This last result leads to the theorem
that the symmetrisation of GJn is exactly fmn which is the basis for the main results of our paper.
We also think that this gives an interesting new insight to the geometry of fmn. We are going to
continue this study in the next paper of this series.

The operad GJn is still not cellular in the strong sense that it is not a geometric realisation
of a poset of cells of a regular CW-complex. Tamarkin’s counterexample works well in this
case too. Nevertheless, its unbased version GJn◦ is a cellular object in the category of unbased
reduced (n − 1)-terminal n-operads in the model category theoretic sense, and in particular it
is a cofibrant contractible operad. The term unbased here means that we forget about nullary
operations of our operads. There is also an n-operad RHn◦, which is an unbased categorical re-
duced n-operad freely generated by its internal reduced n-operad. The geometric realisation of
the nerve of this operad is cofibrant and contractible and is strongly homotopy equivalent to the
operad GJn◦ . This implies a homotopy equivalence between the geometric realisation of N(rhn◦)
and fmn◦ . This operad rhn◦ (the unbased categorical reduced symmetric operad freely generated
by its internal reduced n-operad) plays, therefore, the role of the nonexistent poset operad of
cells of the Getzler and Jones decomposition.

Perhaps, the most interesting result of the above study of the combinatorics of the Getzler–
Jones operad is the following generalisation of Stasheff’s classical theory of A∞-spaces. The
closure of a Getzler–Jones cell KT = cl(Modn

T ) inside GJT is a manifold with corners home-
omorphic to the ball of dimension E(T ) − n − 1, where E(T ) is the number of edges of the

2 During the preparation of this paper, D. Tamarkin informed me that he indeed obtained a proof of Deligne’s con-
jecture by exhibiting a contractible 2-operad acting naturally on a 2-graph consisting of DG-categories, DG-functors
and the complex of their derived natural transformations. In the particular case of a DG-category with one object and
transformations of the identity functor, we obtain the Hochschild complex of an associative algebra and then we apply
our Theorem 8.7 [22].
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n-tree T . The cellularity of GJn◦ means that an action of GJn◦ on a pointed space X can be de-
scribed as an inductive process of extension of higher homotopies from the boundary of KT to
its interior in exact analogy with Stasheff’s description of A∞-spaces. And our Theorem 7.3
states that the collection K•, where • runs over the set of pruned n-trees, gives full coherence
conditions for En-spaces. If n = 1 the collection K• is the sequence of associahedra [9] and we
get Stasheff’s theorem.

The difference between 1-dimensional and higher-dimensional cases appears in the existence
of some cells (Tamarkin’s cells) in GJn which are not completely on the boundary of KT . This
is not excessive information, however, just a defect of our language when we try to express the
coherence laws in terms of an action of an (n− 1)-terminal n-operad. There is a way of avoiding
this problem but we will have to pay a price by using more sophisticated n-operads which have
full source and target operations [3]. We will consider this subject in a forthcoming paper.

Finally, in the last section of this paper we apply our techniques to the case of Swiss-Cheese
type operads [24]. The advantage of our categorical methods is that we have nothing to prove
here once we put the right definitions of our main categories and functors in place. We deduce im-
mediately a symmetrisation formula for Swiss-Cheese type n-operads3 and other Swiss-Cheese
analogues of the results for classical operads.

We hope that similar results can be obtained for symmetrisation of some other important
coloured operads; for example, operads for morphisms between En-algebras. This should lead
to a better understanding of coherence conditions for such morphisms.

Remark 1.1. We will freely use the terminology from [4] concerning n-trees, (n − 1)-terminal
n-operads and their algebras. Notice, however, that the main objects for us here are (n − 1)-
terminal n-algebras of our n-operads. Roughly speaking such an algebra is an object X of our
basic symmetric monoidal category V together with an action AT ⊗ X⊗k → X where k is the
number of tips of T satisfying some natural conditions. An n-operad A may have, however,
more complicated types of algebras which involve source and target operations but we do not
need them here. So we will speak simply about category of algebras of A having in mind the
subcategory of its (n − 1)-terminal algebras. We refer the reader to [3,4] for more discussion
about this issue.

2. Complementary orders and pruned n-trees

Here we consider a combinatorial techniques which will be used further to develop a theory of
pruned n-operads. The machinery of bar-codes from [9] is an equivalent language but we prefer to
work with the notion of complementary orders introduced by Kontsevich and Soibelman in [14].

Definition 2.1. A partial order on a set X is a transitive, antireflective relation on X. It is called
linear if any two elements are comparable.

Antireflective here means that the diagonal is always in the complement relation. We choose
this terminology just for technical reasons. Of course, we always can add the diagonal to our
relations and work with reflective relations. So if we are given a partial order < we will often use

3 I am grateful to D. Tamarkin for encouraging me to look at the action of the Swiss-Cheese operad from the n-operadic
point of view and for sending me a preliminary version of his papers concerning the action of Swiss-Cheese operads on
associative algebras and their Hochschild complexes [23].
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the notation a � b to mean that a < b or a = b. This does not lead to any trouble. Observe, also
that a partial order in our sense is always antisymmetric.

Definition 2.2. (Kontsevich–Soibelman [14]) Let I be a set. Suppose we have an n-tuple of
partial orders Ξ = (<0, . . . ,<n−1) on I. We call them complementary orders provided any two
elements i, j ∈ I can be compared with respect to exactly one order <0, . . . ,<n−1 .

Definition 2.3. A set with a given n-tuple of complementary orders on it will be called an
n-ordered set.

Lemma 2.1. Let T be a pruned n-tree

T = [kn] ρn−1−−−→ [kn−1] ρn−2−−−→ · · · ρ0−→ [1].
Then the relation: i <p j if and only if i < j in [kn] and

ρn−1 · · · · · ρp(i) = ρn−1 · · · · · ρp(j)

but

ρn−1 · · · · · ρp+1(i) �= ρn−1 · · · · · ρp+1(j);
defines n complementary orders on the set of tips of T .

Proof. The proof is obvious. �
In fact we can characterise pruned n-trees in the following way:

Lemma 2.2. Suppose we are given n-complementary orders <0, . . . ,<n−1 on a finite set X such
that

• if i <p j and j <r l then i <min(r,p) j

then there exist a linear order on X and a pruned n-tree T such that the ordinal of its tips is
X � [kn] and the complementary orders <0, . . . ,<n−1 are determined by T .

Proof. The linear order < on X is defined by the requirement that i < j if and only if there
exists a p such that i <p j. Let [kn] be the corresponding ordinal.

Suppose that there exists a triple i < j < l from [kn] such that i <n−1< l but i <r j for
some r < n − 1 then i <r j so i <r l; contradiction. Similarly for the other side. So the order
<n−1 determines a subdivision on kn−1 intervals of the ordinal [kn]. This can be considered as
a surjection of ordinals [kn] → [kn−1]. Obviously we have (n − 1) complementary orders on
[kn−1] which satisfy the conditions of the lemma. So we can proceed and construct a tree T . �
Definition 2.4. We will call an n-ordered set X totally n-ordered if it satisfies the conditions of
Lemma 2.2. If X = {1, . . . , k} is totally n-ordered and the induced linear order makes it equal
to the ordinal [k] then we call X an n-ordinal. This includes the case of a terminal ordinal (one
element set and empty n complementary orders) and of an initial ordinal (empty set).
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Remark 2.1. We will often consider a special n-ordinal for which only one order <l is non-
empty. We will use the notation Mk

l for such an ordinal on {1, . . . , k} (see [4] for the picture of
corresponding pruned tree with the same notation).

Definition 2.5. Let X and Y be two n-ordered sets. An order preserving map (or a map of n-
ordered sets) from X to Y is a map f :X → Y such that i <p j in X implies that f (i) �r f (j)

for some r � p or f (j) <r f (i) for r > p.

Definition 2.6. Suppose we are given two n-tuples of complementary orders Ξ1 and Ξ2 on the
same set X. We will say that Ξ1 dominates Ξ2 (notation Ξ2 	 Ξ1) if i <p j in Ξ1 implies i <r j

for some r � p or j <r i for r > p in Ξ2.

Of course, Ξ1 dominates Ξ2 if and only if the identity map X → X is a map of n-ordered
sets.

Lemma 2.3. Let

T = [kn] ρn−1−−−→ [kn−1] ρn−2−−−→ · · · ρ0−→ [1]
and

S = [sn] ξn−1−−−→ [sn−1] ξn−2−−−→ · · · ξ0−→ [1]
be two pruned n-trees. Let f : [kn] → [sn] be a map. Then there exists a map of trees σ :T → S

such that σn = f if and only if f is a map of n-ordered sets.

Proof. If such a σ exists the order preserving property of f is obvious. Now we want to recon-
struct a σ from f . We put σn = f : [kn] → [sn], of course. Now take a point a from [kn−1] then
its preimage under ρn−1 consists of an interval and we define σn−1(a) = ξn−1(σn(i)), where i

is an arbitrary element from the preimage of a. Since f preserves order, this definition is cor-
rect. Indeed, if i <n−1 j is another element from the preimage then f (i) �n−1 f (j) and, hence,
their images under ξn−1 are equal. Now we can check quite easily that the constructed σn−1 pre-
serves the (n− 1) complementary orders determined by ∂S and ∂T and we can proceed with our
construction. �

We assume that the only degenerate pruned n-tree is znU0. We thus have

Theorem 2.1. The category Ordn of n-ordinals and their order preserving maps is isomorphic
to the category of pruned trees and their morphisms.

One can consider the poset Jn
X of all total complementary n-orders on a fixed set X with re-

spect to the domination relation. If X = {1, . . . , k} we will denote this poset by Jn
k . The symmetric

group Σk acts naturally on Jn
k .

Let Υn(k) be the subcategory of Ωn whose objects are pruned n-trees with k tips and whose
morphisms are morphisms of trees which are bijections on tips. We call such a morphism a qua-
sibijection. Theorem 2.1 implies

Corollary 2.1.1. There is a natural isomorphism of categories

Jn
k/Σk → Υn(k).
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Remark 2.2. The set Jn
k appeared many times in the literature [1,6,8,9]. It is isomorphic to the

poset of cells of the classical Fox–Neuwirth stratification of configuration space Confk(
n) (see
Section 6); it is also isomorphic to the Getzler and Jones poset of bar-codes and to the Milgram
poset of [1]. We use the last name in this paper.

The category Υn(k) is isomorphic to Berger’s shuffle category [6], where it is also shown how
to reconstruct Jn

k as a Grothendieck construction of a shuffle functor Υn(k) → Cat.

Definition 2.7. Let f :T → S be an order preserving map of n-ordinals. For an element i ∈ S,

the preimage f −1(i) with its natural structure of an n-ordinal induced from T will be called the
fiber of f over i.

Following [7,10] we define a tree to be an isomorphism class of finite connected acyclic
graphs with a marked vertex v0 called the root. A vertex which is not the root vertex and having
valency more than 2 is called an internal vertex. The edges of this graph with one open end are
called leaves. Every edge of a tree has, therefore, a target vertex and a source vertex provided
this edge is not a leaf. Every vertex also has a set of incoming edges and one outcoming edge
if the vertex is not a root. A monotone path in a tree is a sequence of edges such that the target
of each edge in the sequence is equal to the source of the next edge. The length of this path is
the number of edges in the sequence. The monotone paths are ordered by inclusion. Notice that
there can be several maximal paths in the tree with respect to this order. The length of a tree is
the maximal length of the maximal monotone paths in the tree.

If we choose an incoming edge e at a vertex v we can construct a subtree by considering
all vertices and edges which can be connected to v by a monotone path. We call this subtree
a branch corresponding to e.

A tree is called labelled by the set {1, . . . , k} if there is given a bijection from the set of the
leaves of the tree to {1, . . . , k}.
Definition 2.8. A labelled n-planar tree is a labelled tree such that for every internal vertex v the
set of incoming edges is a totally n-ordered set.

Since every totally n-ordered set has a canonical linear order then every n-planar tree has a
canonical structure of a planar tree. So we often will speak about n-planar trees as planar trees
decorated by n-ordinals.

Every such tree determines a structure of n-ordered set on the set of its labels. For a vertex
v of a planar tree τ and a label i ∈ {1, . . . , k}, let us define #v(i) to be the last incoming edge
(if it exists) in the monotone path which connects the outcoming edge with label i and v. Then
we put i <p j if #v(i) <p #v(j) for a vertex v ∈ τ , which always exists and is unique. The
domination relation, therefore, induces a partial order on the set of n-planar trees labelled by the
set {1, . . . , k}. We will use the same notation 	 for this relation.

3. Pruned (n − 1)-terminal n-operads

Now we can easily give the definition of an n-operad based on n-ordinals and their morphisms.
We will, however, show that this is just a subcategory of the category of n-operads which we
will call the category of pruned (n − 1)-terminal n-operads PO(n−1)

n (V ), where V stands for a
symmetric monoidal category over which we consider the operads.

We will call a morphism of trees σ :T → S a full injection if it is injective, and bijective on
tips. Obviously every fiber of σ is equal to Un. If A is an (n − 1)-terminal n-operad in V and σ
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is a full injection then we have the following composite morphism

AS
�−→ AS ⊗ I ⊗ · · · ⊗ I → AS ⊗ AUn ⊗ · · · ⊗ AUn → AT .

Definition 3.1. We call an n-operad pruned if this morphism is an identity for every full injec-
tion σ.

Remark 3.1. In the case of the empty set of fibers of σ (i.e. S = zS′), we require the morphism

AS → AS ⊗ I ⊗ I ⊗ · · · ⊗ I → AT

to be an identity. This means, that for any degenerate tree S there is an identification AS = AznU0 .

Recall that the only degenerate pruned tree is znU0.

Definition 3.2. A pruned ((n − 1)-terminal) n-collection in V is a family of objects AT ∈ V ,
where T runs over the set of pruned n-trees. They form a category PColln(V ) with respect to
termwise morphisms of collections.

We will denote by T (p) the maximal pruned subtree of a tree T . Then we can reformulate the
definition of the pruned n-operad in the following way:

Lemma 3.1. A pruned (n − 1)-terminal n-operad is given by a pruned (n − 1)-terminal n-col-
lection A equipped with:

• a morphism e : I → AUn;
• a morphism

mσ :AS ⊗ A
T

(p)
1

⊗ · · · ⊗ A
T

(p)
k

→ AT

for every morphism of trees σ :T → S between pruned trees in Ωn.

They must satisfy the usual identities.

This makes it obvious that the category of pruned operads is isomorphic to the category of
n-operads based on n-ordinals.

Proposition 3.1. If V is a cocomplete symmetric monoidal category then the forgetful functor

PUn : PO(n−1)
n (V ) → PColln(V )

has a left adjoint PFn and is monadic.
The free pruned n-operad monad on the category of pruned n-collections in Set is finitary and

Cartesian.

Remark 3.2. By slightly abusing notation we will denote the free pruned n-operad monad as
well as its functor part by PFn.
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Proof. The description of the required monad on a pruned collection X is analogous to the
description of the free n-operad functor. It is given by an obvious inductive process.

Let us call a pruned tree T an admissible expression of arity T . We also have an admissible
expression e of arity Un. If σ :T → S is a morphism of pruned trees and the admissible ex-
pressions x, x1, . . . , xk of arities S,T

(p)

1 , . . . , T
(p)
k respectively are already constructed then the

expression μσ (x;x1, . . . xk) is also an admissible expression of arity T . We also introduce an ob-
vious equivalence relation on the set of admissible expressions generated by pairs of composable
morphisms of pruned trees and by two equivalences T ∼ μ(T ; e, . . . , e) ∼ μ(e;T ) generated by
the identity morphism of T and the unique morphism T → Un. Notice however, that there are
morphisms of trees all of whose fibers (after the pruning operation) are equal to Un. We can
form an admissible expression μσ (S; e, . . . , e) corresponding to such a morphism but it is not
equivalent to S, unless σ is equal to the identity.

Everything else is in complete analogy with the case of free (n−1)-terminal n-operads [4]. �
Applying the general theory of internal algebras [4] we get

Corollary 3.1.1. The 2-functor of internal pruned n-operads is representable by a pruned
n-operad PHn. The object aT of the canonical internal operad in PHn

T is the terminal object
in this category. The nerve of PHn is obtained by a bar-construction on the terminal pruned
n-operad.

A more explicit description of PHn will be given later.
The functor of desymmetrisation for general (n − 1)-terminal n-operads factorises through

the category of pruned (n − 1)-terminal n-operads

SO(V )
Desn−−−→ PO(n−1)

n (V ) ↪→ O(n−1)
n (V ) (3.1)

where Desn is defined by the formulas identical to the formulas for the desymmetrisation functor
from [4]. If V is cocomplete the inclusion PO(n−1)

n (V ) ↪→ On(V ) has a left adjoint L. It follows
that the symmetrisation functor can also be factorised

SO(V )
Symn←−−− PO(n−1)

n (V ) L←− On(V ). (3.2)

Notice that we use the same notations for pruned versions of symmetrisation and desymmetri-
sation functors as we used for the unpruned case in [4]. We believe that this does not lead to
confusion since PO(n−1)

n (V ) is a full subcategory of O
(n−1)
n (V ). Moreover, we will use the same

notation in the reduced case in Section 4.
Again, as in the unpruned case [4], we get the following commutative square of adjunctions:

SO(Set)

�

�

PO(n−1)
n (Set)

�

�

��
Desn

Symn

Coll1(Set) PColln(Set).
�

�
Wn

Cn

F∞ U∞ PFn PUn (3.3)
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So, again, by the general theory of internal algebras, we have a representable 2-functor of internal
pruned n-operads on the 2-category of symmetric Cat-operads [4]. We will denote by phn the
symmetric categorical operad which represents this 2-functor.

The value of the composite F∞Cn on a pruned n-collection X is easy to describe. In arity
k it consists of all labelled planar trees with label {1, . . . , k} decorated by pruned n-trees and
elements of XT . So Theorem 2.3 from [4] provides us with the following description of the
operad phn.

The objects of phn are labelled planar trees decorated by pruned n-trees. Analogously to the
categorical operad hn in [4], the morphisms in phn are generated by simultaneous contractions
of the input edges of a vertex provided there exists a corresponding morphism in Ωn. We also can
grow an internal edge by introducing a decoration by the linear tree Un (see [4] for the analogous
description of hn).

The description we gave for the n-operad PHn in Corollary 3.1.1 is not very revealing. We
are going to make it more accessible by using some more structured planar trees we will call
composable.

Recall from [4] that the square (3.3) induces a map

β : Obj
(
PHn

) = PFn(1) → Desn

(
F∞

(
Cn(1)

))
.

This is not an injective transformation but it shows that to every object of PHn (an admissible
expression) we can naturally associate a planar tree decorated by n-ordinals. We will call it the
underlying tree of the admissible expression.

We define a notion of composable tree by induction. We call a corolla decorated by an n-
tree T (or e) a decorated tree composable to T . Suppose we have already defined a notion of
composable decorated tree for which their underlying trees have length less than or equal to l.

Let τ be an equivalence class of admissible expressions whose underlying decorated tree has
length l + 1. Suppose, that its root vertex v0 is decorated by a pruned tree S. We will call the tree
composable to an n-tree T if it is equipped with a morphism of n-trees σ :T → S with fibers Ti ,
1 � i � k, and for each i the ith branch at v0 is composable to T

(p)
i .

Example 3.1.

The following lemma is an n-operadic analogue of the trivial fact that, given a string of ele-
ments in a monoid, there is a canonical way to calculate its value by performing multiplication
always starting from the most right pair of elements. The value, however, does not depend on the
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method of multiplication. We equally could choose as canonical, multiplication from the left end
of the string. In the n-operad case, however, the situation is more subtle as Example 3.2 shows.

Lemma 3.2. For every equivalence class of admissible expressions of arity T , there is a unique
decorated tree composable to T representing this expression.

Proof. The proof is by a routine induction. �
So one can think of the objects of PHn

T as trees composable to T . The morphisms are gen-
erated by composition of some nodes but in contrast with symmetric operads this operation can
give a tree which lies outside PHn

T .

Example 3.2. The following tree is composable but we cannot produce the same composition if
we start to compose it from its root to its leaves. This is actually the combinatorial ‘raison d’être’
of Tamarkin’s counterexample to cellularity of the Getzler–Jones operad.

We also formulate some results about phn which can be proved following verbatim the proofs
of the parallel results for hn in [4]:

Theorem 3.1. There is a natural isomorphism Symn(PHn) � phn. This isomorphism induces an
isomorphism of nerves

N
(
phn

) → Symn

(
N

(
PHn

))
.

Theorem 3.2. Let A be a cocomplete symmetric Cat-operad and a be an internal pruned
n-operad in A. Then (

Symn(a)
)
k
� colim

phn
k

ãk

where ãk : phn
k → Ak is the operadic functor generated by the operad a.

Finally, coming back to the adjunctions (3.1), (3.2) we find one more interesting categorical
pruned n-operad in this picture, namely L(Hn). It comes together with a canonical morphism
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L(Hn) → PHn. Obviously, L(Hn) is a categorical pruned n-operad freely generated by an inter-
nal (not pruned!) n-operad. From this characterisation we deduce a description of L(Hn). The
objects are elements of the free pruned n-operad on the following pruned n-collection: for a
pruned tree T it consists of all full injections T → S. So, for any nonpruned n-tree S, we have
an object, which we will denote by S as well, in the category L(Hn)S(p) and these objects form
an internal n-operad. The generators for morphisms correspond to the morphisms of nonpruned
trees and have the form μ(S;T1, . . . , Tp) → T for a morphism of n-trees σ :T → S. Notice,
however, that this morphism generates a morphism between admissible expressions which cor-
responds to σ (p) :T (p) → S(p).

Conjecture 3.1. The operad N(L(Hn)) is a contractible simplicial operad.

If this conjecture is true then we would be able to prove that the operad N(hn) of [4] is
equivalent to the little n-disks operad. All our efforts to prove this conjecture have failed so
far because some morphisms in L(Hn) are going in opposite directions, which creates a lot of
combinatorial difficulties in analysing the homotopy type of L(Hn).

4. Reduced (n − 1)-terminal n-operads

We will call a symmetric operad A reduced if A0 = A1 = I the unit for tensor product, and the
operadic unit is given by the identity. Equivalently a reduced symmetric operad can be described
as a contravariant functor A from the subcategory of nonempty ordinals and injective morphisms
of the category Ωs [4] such that A([1]) = I (a reduced symmetric collection) plus operadic
composition for any surjection of finite sets. Operadic composition has to be natural with respect
to the injections. The maps of reduced symmetric operads (reduced symmetric collections) are
the maps of operads (natural transformations) which induce identity morphisms in arity 0 and 1.

We use the notation RSO(V ) for the category of reduced symmetric operads and RColl∞(V ) for
the category of reduced symmetric collections.

Observe that our category of reduced operads is just a subcategory of the category of reduced
operads of Berger and Moerdijk [6,7] since they do not require A1 to be a unit of V.

We also have a category of reduced nonsymmetric collections which we will denote by
RColl1(V ). These are contravariant functors on injective maps of Δ+ with the conditions
A([1]) = I. Recall from [15], that Δ+ is the full subcategory of Δ with nonempty ordinals
as objects.

The n-operadic counterpart of RSO(V ) will be the category RO(n−1)
n (V ) of reduced (n − 1)-

terminal n-operads.

Definition 4.1. A pruned (n − 1)-terminal n-operad A is called reduced if

AznU0 = AUn = I

and its unit is given by the identity. A morphism between two reduced n-operads is an n-operadic
morphism which induces identity morphisms in arity znU0 and Un.

Definition 4.2. Let Λ
inj
n be the category of pruned nondegenerate n-trees and their injective mor-

phisms. A reduced n-collection is a contravariant functor A from Λ
inj
n to V such that AUn = I.
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The definition of the category of reduced n-collections RCalln(V ) is obvious.
As for the reduced symmetric operads we have an equivalent characterisation of the reduced

(n − 1)-terminal operads.

Proposition 4.1. A reduced (n − 1)-terminal n-operad is given by a reduced n-collection A

together with a multiplication

μσ :AS ⊗ A
T

(p)
1

⊗ · · · ⊗ A
T

(p)
k

→ AT

for every surjection of n-trees σ :T → S, satisfying associativity and unitary axioms and natu-
rality with respect to injections of pruned trees.

Proposition 4.2. If V is a cocomplete symmetric monoidal category then the forgetful functor

RUn : RO(n−1)
n (V ) → RColln(V )

has a left adjoint RFn and is monadic.
The free reduced n-operad monad on the category of reduced n-collections in Set is finitary

and Cartesian.
The analogous statements hold for symmetric operads and reduced nonsymmetric collections.

Proof. Everything goes through in full analogy with the unpruned case. The only difference is
that we use only surjections of pruned trees and we require some more identifications:

e ∼ Un.

This identification leads to the effect that we do not have an underlying n-planar tree with a
vertex decorated by the linear tree Un. �

We also have a reduced desymmetrisation functor from the category RSO(V ) to the category
RO(n−1)

n (V ) which we again will denote by Desn and from general considerations of [4], we have
a commutative square of adjunctions

RSO(Set)

�

�

RO(n−1)
n (Set)

�

�

��
Desn

Symn

RColl1(Set) RColln(Set).
�

�
Wn

Cn

RF∞ RU∞ RFn RUn (4.1)

Hence, we can develop the theory of internal reduced n-operads. We denote by RHn the reduced
categorical n-operad freely generated by an internal reduced n-operad and by rhn the symmetric
categorical operad freely generated by an internal reduced n-operad.

Definition 4.3. An n-tree is called reduced if it is pruned, nondegenerate and is not equal to Un.

A planar tree decorated by n-ordinals is called reduced if all the decorations are reduced.



M.A. Batanin / Advances in Mathematics 211 (2007) 684–725 697
As in the pruned case, we have a natural transformation

γ :RFn → Desn

(
RF∞(Cn)

)
and have a description of the free reduced n-operad functor in terms of composable reduced
planar trees. There are, however, some changes in the definition of composable trees due to the
fact that we have an identity e = Un.

Again we define the composable trees by induction on the length of the underlying tree, but
this time for l = 1 we call a tree composable to T when it is a corolla decorated by an n-tree S

together with a quasibijection T → S. Suppose we have already defined the notion of composable
decorated tree for which the underlying trees have length less than or equal to l. Let τ be an
equivalence class of admissible expressions whose underlying decorated tree has length l + 1.

Suppose that its root vertex v0 is decorated by a pruned tree S. We will call the tree composable
to an n-tree T if it is equipped with a surjection of n-trees σ :T → S with fibers Ti , 1 � i � k,

and for each i the ith branch at v0 is composable to T
(p)
i . Notice that a branch can be empty if

the corresponding fiber of σ is the linear tree Un.

Lemma 4.1. For every equivalence class of admissible expressions of arity T there is a unique
reduced tree composable to T representing this expression.

A nice result is the following characterisation of the free reduced n-operad functor.

Theorem 4.1. The natural transformation γ is injective. The image of the inclusion

(RFn)T (1) ⊂ Desn

(
RF∞

(
Cn(1)

)
T

)
consists of labelled reduced trees decorated by n-ordinals which are dominated by the
n-ordinal T .

Proof. It is obvious that a labelled decorated tree from the image of γ is dominated by T . We
are going to describe a procedure which reconstructs a unique composable reduced decorated
tree from a labelled reduced planar n-tree dominated by T , so our theorem will follow from
Lemma 4.1.

We construct a composable tree by induction. Let a labelled decorated tree have length equal
to 1. So, this is a labelled corolla decorated by an n-ordinal S. Suppose we know that this tree
is dominated by an n-ordinal T . The last property means that the identity map of labels can
be extended to a quasibijection σ :T → S by Corollary 2.1.1. So we have a composable tree
μ(S; e, . . . , e) of length 1.

Suppose we have already constructed a composable decorated tree of length l for every la-
belled reduced n-planar tree of length l dominated by T . Let τ be a labelled n-planar tree
of length l + 1 such that at the root v0 we have an n-ordinal S. Let us define a surjection
f : |T | → |S| as follows:

f (i) = #v0(i).

The condition τ 	 T implies that if i <p j in T then either fn(i) = fn(j) or if they are not equal
then

f (i) = #v0(i) <r #v0(j) = f (j)
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for r � p or

f (j) = #v0(j) <r #v0(i) = f (i)

for r > p. So f is a surjection of ordinals.
Let T1, . . . , Tk be the list of fibers of f. It is not hard to see that the ith branch of τ at the vertex

v0 is dominated by the n-ordinal Ti. So we can proceed by induction and finish the proof. �
We now give a description of rhn. The objects of rhn are labelled planar trees decorated by

reduced n-trees. The morphisms are generated by simultaneous contractions of the input edges
of a vertex provided there exists a corresponding surjection in Ωn. From this description we
immediately get the following

Lemma 4.2. The categories rhn
k and RHn

T are finite.

There are no morphisms for growing internal edge like in the hn and phn cases. For this reason
the operad rhn is even a finite poset operad but we do not need this property here. This is quite
an important property, however, and we are going to consider it in a separate paper.

Similarly to the pruned case we have the following.

Proposition 4.3. The category RHn
T is isomorphic to the comma-category of rhn over its internal

operad object aT . The n-operad structure is given by the following ‘convolution’ product:
Given a surjection of pruned trees σ : T → S and objects in comma-categories

x → aS, x1 → a
T

(p)
1

, . . . , xk → a
T

(p)
k

,

we define an object of the comma-category over aT by the composite:

π(σ)−1m(x;x1, . . . , xk) → π(σ)−1m(aS;a
T

(p)
1

, . . . , a
T

(p)
k

) → aT

where m is multiplication in rhn and the last morphism is the structure morphism of the internal
operad a in rhn.

Theorem 4.2. There is a natural isomorphism Symn(RHn) � rhn. This isomorphism induces an
isomorphism of nerves

N
(
rhn

) → Symn

(
N

(
RHn

))
.

We also want to introduce an unbased version of reduced operads (we follow the terminology
of [18]). These are reduced symmetric operads without nullary operations and with A1 = I.

Notice, that we do not require A0 to be ∅ but simply forget about the 0-arity of our operads. This
is, of course, a linguistic difference but it helps to express the results nicely.

Definition 4.4. An unbased reduced n-operad in a symmetric monoidal category V consists of
a collection of objects AT ∈ V , one for every reduced n-tree T , and AUn = I, together with a
multiplication

μσ :AS ⊗ A (p) ⊗ · · · ⊗ A (p) → AT
T1 Tk
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for every surjection of n-trees σ :T → S, satisfying the usual associativity axiom and the unitar-
ity axiom with respect to the identity morphism I → AUn.

We will denote the category of unbased reduced symmetric operads by URSO(V ) and the
category of unbased reduced n-operads by URO(n−1)

n (V ). All the previous results about reduced
operads can be carried over to the unbased case. In particular, we have a categorical unbased
reduced operad RHn◦ representing internal unbased n-operads and a categorical unbased reduced
symmetric operad rhn◦ . It is not hard to see, however, that there are canonical operadic maps

RHn◦(+) → RHn

and

rhn◦(+) → rhn,

where RHn◦(+) is obtained from RHn◦ by adding ∅ in the arity znU0 (rhn◦(+) is obtained from
rhn◦ by adding ∅ in the arity 0) and these maps are isomorphisms in nondegenerate arities.

Finally, we want to produce a version of the symmetrisation formula. This formula for reduced
operads admits a nice enhancement.

The opposite of the Milgram poset (Jn
k)

op can be considered as a subcategory of rhn
k which

consists of labelled planar trees with only one decoration.

Lemma 4.3. For every τ ∈ rhn
k the comma-category τ/(Jn

k)
op is nonempty and connected. So

(Jn
k)

op is a final subcategory of rhn
k [15].

Proof. For n = 1 the lemma is obviously true so we can assume that n � 2.

It is not hard to see that every object from rhn
k is dominated by one of the objects of (Jn

k)
op.

An object τ ∈ rhn
k is a labelled planar tree decorated by n-ordinals and, hence, determines a

canonical linear order on the set of its labels {1, . . . , k}. Without loss of generality we can assume
that this ordered set is the ordinal [k]. So it is dominated by the n-ordinal Mk

0 (see Section 2 for
notation).

Let τ ∈ rhn
k be dominated by T ′ and T ′′.

Again without losing generality we can assume that T ′′ = Mk
0 and T ′ can be obtained from

T ′′ by permuting the labels.
Let us construct a totally n-ordered set T which dominates τ and is dominated by both T ′

and T ′′.
To do this we apply the following reconstruction algorithm to T ′. Let i be the first label in

T ′ with respect to the linear order <0 and j be the second. If i < j in [k] then we define i <0 j

in T (1). If, however, j < i in [k] then we put i <1 j in T (1). We also put all the other labels
in T (1) to be in the same order as in T ′. So we have constructed an object of (Jn

k)
op which is

dominated by T ′ and also dominates τ.

Now we continue this process and do the same thing for the second and third consecutive
labels in T ′ then for the third and fourth and so on. In this way we construct a sequence of
n-ordered sets

τ 	 T = T (k−1) 	 T (k−2) 	 · · · 	 T (1) 	 T (0) = T ′.
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Finally, we observe, that i < j implies i <0 j or i <1 j or j <1 i in T by construction. This
means that T 	 T ′′ and we have finished the proof. �
Theorem 4.3. Let A be a cocomplete reduced symmetric Cat-operad and a be an internal re-
duced n-operad in A. Then

Symn(a)k � colim
rhn

k

ãk � colim
(Jn

k )op
ãk

where ãk : rhn
k → Ak is the operadic functor generated by a.

The analogous formula holds in the unbased case.

To be able to apply this theorem to the reduced operads in a symmetric monoidal category V,

we have to exhibit V as a categorical reduced symmetric operad similar to what was done in [4]
for the unreduced case. Our construction V • from [4] produces only an unreduced operad. In the
reduced case we define the reduced categorical symmetric operad V •• as follows

V ••
k =

{
V if k � 2,

1 if k = 0,1

with multiplication defined by iterated tensor product and trivial symmetric group action. It is
obvious that there is an isomorphism of the categories of internal reduced operads in V •• and
reduced operads in V (see [4] for this property in the unreduced case).

A comment has to be made about endomorphism operads in the reduced situation. First of all
we have to consider only the pointed case; i.e. we consider an object X of our closed symmetric
monoidal category V together with a fixed morphism I → X. For every k � 0 one can consider
the following pullback

V̄ (Xk,X)

�

V (Xk,X)

�

�

V (Ik, I ) V (I k,X).�

This symmetric collection has an obvious structure of an operad and we define the reduced
endomorphism symmetric operad REnd(X) as follows:

REnd(X)k = V̄
(
Xk,X

)
for k �= 1

and

REnd(X)1 = I.

An action of a reduced operad A on a pointed object X is then an operadic map A → REnd(X).

Usually an action of an operad on a pointed object is defined as an operad map from A to its
full endomorphism operad. It is obvious, however, that such an action can be factorised through
REnd(X), so our definition agrees with the usual one.
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We give the analogous obvious definition for the reduced endomorphism n-operad REndn(X).

Now, we will have a canonical isomorphism

Desn

(
REnd(X)

) � REndn(X)

as in the unreduced case. And, hence, similarly to the unreduced case we have

Theorem 4.4. For a reduced (n − 1)-terminal n-operad A, the categories of Symn(A)-algebras
and A-algebras are isomorphic.

5. Model structures on various categories of operads

Here we adapt the theory of [7] to the case of n-operads. Recall that one of the main technical
points of this theory is the existence of a cofibrantly generated model structure on the category
of reduced symmetric operads in a monoidal model category V. This structure is transferred
along the free symmetric operad functor from a model structure on symmetric collections in V

which in its turn is transferred along the free symmetric collection functor from the category of
nonsymmetric collections. The term transferred means that the weak equivalences (fibrations)
are precisely the morphisms which become weak equivalences (fibrations) after application of
the right adjoint functor.

Theorem 5.1. (Theorem 3.1 [7]) There exists a transferred model structure on the category of
reduced symmetric operads in a monoidal model category V if

• V is cofibrantly generated and its unit I is cofibrant;
• the comma category V/I has a symmetric monoidal fibrant replacement functor;
• V admits a commutative Hopf interval.

Theorem 5.2. (Theorem 3.2 [7]) If V is a Cartesian closed model category then there is a trans-
ferred model structure on the category of all symmetric operads in V provided

• V is cofibrantly generated and the terminal object of V is cofibrant;
• V has a symmetric monoidal fibrant replacement functor.

We already pointed out that our notion of reduced symmetric operad is stronger than that
of [7]. It is, however, not too hard to check that their proof works well in our situation. We only
have to take care of their construction of a cooperad T H from a commutative Hopf object H [7,
Proposition 1.1]. If we put T ′H1 = I , T ′Hn = H⊗n then T ′H is still a cooperad and it works
for the reduced operads in our sense like T H works in [7]. So Theorem 5.1 holds in our case
without any changes.

Moreover, following the method of [7] in the case of n-operads we can prove:

Theorem 5.3. There exists a transferred model structure on the category of reduced (n − 1)-
terminal n-operads in a monoidal model category V if

• V is cofibrantly generated and its unit I is cofibrant;
• the comma category V/I has a symmetric monoidal fibrant replacement functor;
• V admits a commutative Hopf interval.
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Moreover, the commutative square (4.2) is a square of Quillen adjunctions.
The analogous theorem holds in the unbased case.

Theorem 5.4. If V is a Cartesian closed model category then there is a transferred model struc-
ture on the categories of (n−1)-terminal n-operads in V and pruned (n−1)-terminal n-operads
in V provided

• V is cofibrantly generated and the terminal object of V is cofibrant;
• V has a symmetric monoidal fibrant replacement functor.

The corresponding commutative squares of adjunctions are squares of Quillen adjunctions.

Examples of monoidal categories satisfying the conditions of these theorems are given in [7].
The most important for us are the categories of simplicial sets, the category Top of compactly
generated topological spaces, and the category Ch(R) of chain complexes over a commutative
ring R with unit. We note that the category of chain complexes satisfies the hypothesis of The-
orem 5.1 and the categories of simplicial sets and topological spaces satisfy the assumptions of
Theorem 5.2.

The weak equivalences (fibrations) between topological or simplicial n-operads are therefore
operadic maps which are termwise weak equivalences (fibrations) in simplicial sets and Top.

The weak equivalences (fibrations) between chain n-operads are those operadic maps which are
termwise quasi-isomorphisms (epimorphisms).

Since many of our categorical operads are given by a bar-construction we would like to inves-
tigate now what are the homotopy theoretic properties of the bar-construction for n-operads in
general. We will do it for the general case of (n−1)-terminal n-operads. The pruned and reduced
cases are similar.

In addition, suppose V is enriched in simplicial sets with simplicial hom-functor V S(−,−)

satisfying

V S(X,Y ) = V S
(
I,V (X,Y )

)
(5.1)

where V (X,Y ) is the internal hom-functor in V. Then the categories of n-collections and
n-operads become simplicially enriched. For two (n − 1)-terminal n-collections X,Y, we de-
fine its simplicial set of morphisms as

CollSn(X,Y ) =
∏

T ∈Trn

V S(XT ,YT ).

As in [4], let (Fn,μ, ε) be the free (n− 1)-terminal n-operad monad. Then for two n-operads
A, B we define their simplicial set of morphisms as the equalizer

CollSn(FnA,B)CollSn(A,B)
��OperS

n(A,B) �

with the obvious horizontal morphisms generated by the operadic structures of A and B .
If V has tensors and cotensors with respect to simplicial sets then the categories O

(n−1)
n (V )

and Coll(n−1)
n (V ) also have them. In particular, one can speak about the total object for a simpli-
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cial n-operad (n-collection) A�. By definition this is the coend

Tot
(
A�

) =
[n]∈Δ+∫

An ⊗ Δn,

where Δn = Δ+([n + 1],−) is the standard simplex of dimension n.
Let X be an (n − 1)-terminal n-operad in C. Then the bar-construction B(Fn,Fn,X) of X is

the total object of the simplicial operad

Fn(X) �� F2
n(X) F3

n(X)
��� . . .

Theorem 5.5. Let V be a model category which satisfies the conditions of Theorem 5.4, has a
simplicial enrichment V S(−,−) satisfying (5.1), and which is a simplicial model category with
respect to these structures [11]. Let X be an (n − 1)-terminal n-operad in V with cofibrant
underlying n-collection. Then the canonical operad morphism

ρ :B(Fn,Fn,X) → X

is a cofibrant replacement for X in the model category of (n − 1)-terminal n-operads.
The analogous theorem holds in the pruned case and in the reduced and unbased reduced

case if V satisfies the assumptions of Theorem 5.3.

Proof. It follows from the general properties of bar-construction [17] that the morphism ρ is a
deformation retraction in Coll

(n−1)
n . Hence, ρ is a trivial fibration of operads.

It remains to prove that B(Fn,Fn,X) is a cofibrant n-operad. Let f :E → B be a trivial
fibration of n-operads.

We have to show that any operadic map B(Fn,Fn,X) → B can be lifted to E.

B

�

E

�

f

B(Fn,Fn,X)
��

��
���

By construction this amounts to the following lifting problem in the category of cosimplicial
spaces

OperS
n(F�

nX,B)

�

OperS
n(F�

nX,E)

�

f �

Δ�

��
��

���

where Δ� is the cosimplicial simplicial set consisting of standard simplices. Since Δ� is cofibrant
in the Reedy model structure [11] it remains to show that f � is a trivial fibration.
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We follow a method developed in [2]. We have to prove that in the diagram

Mi(OperS
n(F�

nX,B))

�

Mi(OperS
n(F�

nX,E))

�

Mif
�

�
�
�
�
�
�
��	











�
�

��

OperS
n(F i+1

n X,B)

OperS
n(F i+1

n X,E)

Wi

�

�

ωi

the canonical map ωi to the pullback is a trivial fibration. In this diagram Mi(−) is the ith
matching object of the corresponding cosimplicial object [11].

According to Lemma 2.3 from [2] the diagram above is isomorphic to the diagram

CollSn(Li−1F�−1
n X,B).

�

CollSn(Li−1F�−1
n X,E)

�

Mif
�

�
�
�
�
�
�
��	











�
�
��

CollSn(F i
nX,B)

CollSn(F i
nX,E)

Wi

�

�

ωi φi

ψi

Here, Li(F�−1
n (X)) is the latching object [11] for the augmented cosimplicial object F�−1

n (X)

in CollSn(V ), and φi , ψi are generated by the canonical morphism

li−1 :Li−1F�−1
n X → F i

nX.

If we show that this morphism is a cofibration, then ωi will be a trivial fibration by the axioms
for a simplicial model category.

We will actually prove that li−1 is an isomorphism onto a summand.
It was proved in [4, Theorem 9.1] that the kth iteration of the functor Fn is given by the

following formula:

Fk
n (X)T =

∐
W1

f1←−W2
f2←−··· fk−1←−−Wk

X̃(Wk), (5.2)

where f1, . . . , fk−1 are morphisms in Hn
T .

The coface operators in F�−1
n (X) are canonical inclusions on the summands corresponding to

the operators of insertion of the identities to the chain

W1
f1←− W2

f2←− · · · fk−1←−−− Wk.

The rest of the proof follows in complete analogy with Lemma 4.1 of [2].
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The proof in the reduced and unbased cases are analogous. Notice that, in our version of
the category of reduced operads, any reduced collection is automatically well pointed in the
sense of [7] so we do not include this condition in the formulation of the reduced version of our
theorem. �
Theorem 5.6. The simplicial n-operads N(Hn), N(PHn), N(RHn◦) are cofibrant n-operads
in the categories of (n − 1)-terminal simplicial n-operads, (n − 1)-terminal simplicial pruned
n-operads and unbased reduced (n − 1)-terminal simplicial pruned n-operads respectively.

The simplicial symmetric operads N(hn), N(phn) are cofibrant simplicial symmetric operads.
The unbased reduced symmetric operad N(rhn◦) is cofibrant in the category of unbased re-

duced symmetric operads.
The same theorem is true for the geometric realisations of these operads and for the reduced

operad of chain complexes of RHn◦ and rhn◦ .

Proof. The nerves of the above n-operads are bar-constructions on the terminal n-collection in
the corresponding categories. In these categories the terminal n-collection is obviously a cofi-
brant collection.

The cofibrantness of N(hn), N(phn) and N(rhn◦) follows from the corresponding Quillen
adjunctions between n-operads and symmetric operads and the fact that in these cases the sym-
metrisation functor commutes with nerves.

The topological and chain versions of the theorem follow from the general considerations
of [7]. �
Remark 5.1. The nerves of RHn and rhn are not cofibrant. The reason is that 1 is not a cofibrant
reduced n-collection.

6. Fulton–Macpherson operad and Getzler–Jones decomposition

The operadic structure on compactified moduli space of configurations of points in 
n was
first observed by Getzler and Jones in [9]. Here we use an explicit approach of [14,19] to describe
this compactification.

Let modn
[k] be the quotient of the configuration space

Confk
(
n

) = {
(x1, . . . , xk) ∈ (
n

)k ∣∣ xi �= xj if i �= j
}

with respect to the obvious action of the (n + 1)-dimensional Lie group Gn of affine transfor-
mations of the form u �→ λu + v, where λ > 0 is a real number and v is a vector from 
n. The
functions

uij (x1, . . . , xk) = xj − xi

‖xj − xi‖ , 1 � i, j � k, i �= j,

di,j,l(x1, . . . , xk) = ‖xi − xj‖
, 1 � i, j, l � k, i �= j, j �= l, i �= l
‖xi − xl‖
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embed modn
[k] into a compact space

Γk

[
n
] =

∏
1�i,j�k

i �=j

Sn−1 ×
∏

1�i,j,l�k
i �=j, j �=l, i �=l

[0,∞].

The kth space of the Fulton–Macpherson operad fmn is obtained as the closure of the moduli
space modn[k] inside Γk[
n]. Notice, that we use here a reduced version of fmn meaning that
we put fmn

0 = 1. If we forget about nullary operations we will get the unbased version of the
Fulton–Macpherson operad which we will denote by fmn◦ . Notice also that in [9,14] the Fulton–
Macpherson operad means fmn◦ .

In [9,14,18,19] the following properties of fmn were established:

• fmn is a reduced symmetric operad weakly equivalent to the little n-cube operad;
• fmn◦ is an unbased reduced cofibrant operad weakly equivalent to the unbased little n-cube

operad;
• set theoretically fmn is the free reduced operad on the reduced symmetric collection modn[•];• fmn

k is a manifold with corners;
• fm1 is isomorphic to the Stasheff operad of associahedra.

Later in this paper we will use notations uij and dijl for the coordinates of points in fmn. The
following lemma describes the behaviour of these coordinates under operadic multiplication.

Lemma 6.1. Let σ : [n] → [k] be a surjection in Ωs. Then

uij

(
μ(x;x1, . . . , xk)

) =
{

uij (xl) if σ(i) = σ(j) = l,

uσ(i′)σ (j ′)(x) if σ(i) �= σ(j)

where i′, j ′ are images of i, j in the fiber of σ over l.

Similarly

dijl

(
μ(x;x1, . . . , xk)

) =
⎧⎨
⎩

di′j ′l′(xs) if σ(i) = σ(j) = σ(l) = s,

0 if σ(i) = σ(j) �= σ(l),

dσ(i)σ (j)σ (l)(x) if σ(i) �= σ(j) �= σ(l), σ (i) �= σ(l).

All other values of dijl(μ(x;x1, . . . , xk)) can be deduced from the above table and the following
relations between dijk [19]:

dijkdikj = dijkdikldilj = dijkdjkidkij = 1.

Proof. The proof can be obtained using the explicit formulas for the operadic multiplication in
fmn from [16] or techniques from [19]. �

Following Joyal [12] we give a definition of a generalised n-tree.

Definition 6.1. A generalised n-tree X is a chain of partially ordered sets and functions

Rn ρn−1−−−→ Rn−1 ρn−2−−−→ · · · ρ1−→ R1 ρ0−→ R0 = 1
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such that the induced order on ρ−1
i (a) is linear for all 0 � i � n − 1 and a ∈ Ri.

A topological n-tree is an n-tree for which all Ri are endowed with a topology and all ρi are
continuous functions.

The definition of a morphism of generalised n-trees (also from [12]) coincides verbatim with
the definition of morphism of finite n-trees in [4].

Consider the following topological n-tree 
�n:


n → 
n−1 → ·· · → 
1 → 
0 = 0

where morphisms are projections on the first coordinates. We introduce the n-tree structure on

�n by ordering the fiber of each projection according to its natural order. Now, for every pruned
n-tree T , one can consider the space of all injective n-tree morphisms from T to 
�n. This space
is the classical Fox–Neuwirth cell FNT corresponding to T [8]. We will consider it as an open
submanifold of configurations of points with the labelling prescribed by the order in T [6,8,9,25].

Example 6.1.

The group Gn obviously acts on FNT and we call the corresponding quotient space a Getzler–
Jones cell Modn

T .

Recall that the functor Wn : RColl1 → RColln, Wn(A)T = A|T | has a left adjoint

Cn : RColln → RColl1, Cn(B)[k] =
∐

|T |=[k]
BT .

The configuration space Confk(
n) admits the classical Fox–Neuwirth decomposition

Confk
(
n

) =
⋃

|T |=[k],π∈Σk

πFNT .

This means that there is a bijective continuous map of collections

ε :S
(
Cn(FN•)

) → Conf•
(
n

)
,

where S : RColl1 → RColl∞ is the functor of symmetrisation of reduced nonsymmetric collec-
tions. The inverse bijection is not continuous. Certainly ε is equivariant with respect to the action
of Gn and so we have a stratification of the moduli space of configurations

modn
[k] =

⋃
πModn

T

|T |=[k],π∈Σk
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and a corresponding continuous bijection which we will denote by the same letter

ε :S
(
Cn

(
Modn•

)) → modn[•]. (6.1)

The free reduced symmetric operad functor RF∞ is factorized as RF s · S, where RF s is the
free reduced symmetric operad functor on reduced symmetric collections. So we have a bijective
continuous map of operads

RF∞
(
Cn

(
Modn•

)) � RF s

(
S
(
Cn

(
Modn•

))) →RF s

(
modn[•]

) → fmn. (6.2)

We would like to get a description of Modn
T in terms of the functions uij . Let S̊

n−p−1
+ denote

the open (n − p − 1)-hemisphere in 
n, 0 � p � n − 1:

S̊
n−p−1
+ =

{
(x1, . . . , xn) ∈ 
n

∣∣∣∣ x2
1 + · · · + x2

n = 1,

xp+1 > 0 and xi = 0 if 1 � i � p

}

and let

S̊
n−p−1
− =

{
(x1, . . . , xn) ∈ 
n

∣∣∣∣ x2
1 + · · · + x2

n = 1,

xp+1 < 0 and xi = 0 if 1 � i � p

}
.

The closure of S̊
n−p−1
+ will be denoted S

n−p−1
+ and the closure of S̊

n−p−1
− will be denoted

S
n−p−1
− . Observe, that

S̊n−r−1+ ⊂ S
n−p−1
+ for r � p and S̊n−r−1− ⊂ S

n−p−1
+ for r > p.

Lemma 6.2. For a pruned n-tree T , |T | = k, k � 0, the Getzler–Jones cell Modn
T is equal to the

set

{
x ∈ modn

[k]
∣∣∣∣ uij (x) ∈ S̊

n−p−1
+ if i <p j in T ,

uij (x) ∈ S̊
n−p−1
− if j <p i in T

}
.

It is a contractible open manifold of dimension E(T )−n−1 where E(T ) is the number of edges
in the tree T .

Proof. Obvious from the definition of Modn
T . �

Definition 6.2. The dimension of an n-pruned tree T �= Un is the integer

dim(T ) = E(T ) − n − 1.

We also put dim(Un) = 0.

In virtue of (6.2) the decomposition (6.1) can be extended to a decomposition of fmn [9].
Following [25] we will call it the Getzler–Jones decomposition. The cells of this decomposition
are indexed by labelled reduced planar trees, i.e. by the objects of rhn with vertices decorated by
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points of Getzler–Jones cells. We will call such a space indexed by an object τ ∈ rhn a gener-
alised Getzler–Jones cell and will denote it Modn

τ . Since the generalised Getzler–Jones cells do
not intersect each other we have a correctly defined map

τ : fmn → Obj
(
rhn

)
.

Lemma 6.3. Let x ∈ Modn
τ then

uij (x) ∈ S̊
n−p−1
+

if i <p j in τ(x) or

uij (x) ∈ S̊
n−p−1
−

if j <p i in τ(x).

Proof. The proof is easily obtained by induction on the length of τ and Lemmas 6.1, 6.2. �
The Getzler–Jones decomposition is not a cellular decomposition or stratification of fmn since

the boundary of the closure of a Getzler–Jones cell may not be equal to the union of low-
dimensional Getzler–Jones cells as was first observed by Tamarkin (see [25] for a description
of Tamarkin’s counterexample).

However, the following is true4:

Proposition 6.1. The closure of the Getzler–Jones cell KT = cl(Modn
T ) is a manifold with cor-

ners homeomorphic to a ball of dimension dim(T ).

Proof. We have to use the original description of fmn
k in terms of the iterated blow-up of (
n)k

along its fat diagonal [9,18,25]. Consider the closure of the Getzler–Jones cell Modn
T in (
n)k.

The intersection of this subspace with each of the diagonals is a manifold, so restricting the
Fulton–Macpherson blow-up procedure we get a manifold with corners homeomorphic to a ball
since the blow-up does not change the topological type of the manifold. This manifold is home-
omorphic to the closure of Modn

T in fmn. �
7. Getzler–Jones operad

Let us take RFn(Modn•) to be the free reduced n-operad generated by the reduced n-collection
Modn• . Then we have a canonical inclusion of n-operads

γ :RFn

(
Modn•

) → RDesn

(
RF∞

(
Cn

(
Modn•

)))
.

Consider the composite Φ

RFn

(
Modn•

) γ−→ RDesn

(
RF∞

(
Cn

(
Modn•

))) → RDesn

(
RF s

(
modn[•]

)) → RDesn

(
fmn

)
which is an injective continuous map of n-operads.

4 I am grateful to Ezra Getzler and Sasha Voronov who explained this fact to me.
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Definition 7.1. The Getzler–Jones n-operad GJn is the image of Φ. This is a reduced (n − 1)-
terminal n-operad.

If we forget about operations with degenerate arity, we obtain the unbased Getzler–Jones
n-operad GJn◦ .

Proposition 7.1. Let T �= Un be a nondegenerate pruned n-tree. The following topological
spaces are equal:

• GJn
T ;

• ⋃
τ	T Modn

τ ;
• Kontsevich–Soibelman space [14]

XT =
{
x ∈ fmn

|T |
∣∣∣∣ uij (x) ∈ S

n−p−1
+ if i <p j in T ,

uij (x) ∈ S
n−p−1
− if j <p i in T

}
.

Proof. The equality

GJn
T =

⋃
τ	T

Modn
τ

readily follows from the definitions and Theorem 4.1.
Let us prove that

XT =
⋃
τ	T

Modn
τ .

The inclusion

⋃
τ	T

Modn
τ ⊂ XT

is obvious from Lemma 6.3. Let us prove the inverse inclusion.
Let x ∈ XT . We have to prove that τ(x) 	 T . Let i <p j in τ(x). Then, by Lemma 6.3, again

uij (x) ∈ S̊
n−p−1
+ . Since x ∈ XT two possibilities exist. Either i <r j in T for some r and then

uij (x) ∈ Sn−r−1+ or j <q i in T for some q and uij (x) ∈ S
n−q−1
− .

In the first case we have x ∈ S̊
n−p−1
+ ∩ Sn−r−1+ which is possible only if r � p. In the second

case x ∈ S̊
n−p−1
+ ∩ S

n−q−1
− and this is possible only if q < p. So τ is dominated by T . �

Corollary 7.1.1. The space GJn
T is a closed subspace of fmn

|T |.

Now we will study the properties of GJn and its cousin GJn◦ .

Theorem 7.1. The operad GJn is contractible.
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Proof. For n = 2 Kontsevich and Soibelman prove contractibility of XT in [14, Proposition 7].
Unfortunately the details are left to the reader. So we will follow their idea and prove it for
arbitrary n (but only for n-ordinals, not arbitrary complimentary orders as in [14]).

As in [14] we will use induction on the number of tips of a tree T . If T has only two tips then
obviously the space XT is S

n−p−1
+ , where p is the index of the unique nonempty order on {1,2}.

Suppose we have proved this theorem for all T with |T | = [k]. Let T be a tree with |T | =
[k + 1], and let T ′ be an n-tree which is obtained from T by cutting off the most right branch.
Then we have an injection

T ′ → T

which induces a map π :XT → XT ′ .
Let a ∈ XT ′ be a point. Let us suppose that a belongs to the cell Modn

T ′ . We will show that the
fiber of π is homeomorphic to a disk of dimension n − p. Here, p is such that k <p k + 1 in T .

Since the fiber obviously depends only on configurations of points the labels of which belong
to the most right branch of the tree T ′, then without loss of generality we can assume that T ′ is
a suspension of some (n − 1)-tree and k <0 k + 1 in T . The manifold Modn

T ′ is diffeomorphic to
the intersection of the space of configurations of points

(
x1

1 , . . . , xn
1

)
,
(
x1

2 , . . . , xn
2

)
, . . . ,

(
x1
k , . . . , xn

k

) ∈ (
n
)k

which belong to the hyperplane x1 = 0, with x1 = 0 and xn
k = 1 with the Fox–Neuwirth cell

FNT ′ . Let (x1 = 0, x2, . . . , xk) be the image of a in this space. In its turn Modn
T is diffeomorphic

to the space of configurations of points x1, . . . , xk+1 in 
n such that x1, . . . , xk belongs to the
previous intersection and xk+1 is in the open positive halfspace x1 > 0.

Let r be a sufficiently small number such that the closed balls Br(xi) of radius r with the
centre xi , 1 � i � k, do not intersect each other. And let R be sufficiently big such that the union
of all Br(xi) belongs to the interior of the ball BR(0). Let C(a, r,R) be the manifold with corners

C(a, r,R) =
{

x ∈ 
n
∣∣ x1 � 0, x ∈ BR(0), x ∈ 
n

∖(
k⋃

i=1

int
(
Br(xi)

))}
.

Example 7.1.

We claim, that there is a homeomorphism from C(a, r,R) to the fiber of π over a.
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To construct such a homeomorphism we first choose an r1 > r and R1 < R such that the
Br1(xi) still do not intersect and their union is still in the interior of the ball BR1(0). For a fixed
1 � i � k let

ψi(y) = r(‖y‖ − r)

r1(r1 − r)
(y − xi) + xi,

for y ∈ C(a, r,R) such that r � ‖y − xi‖ � r1. And let

ψ∞(y) = R(R1 − R)y

(R − ‖y‖)R1

for y ∈ C(a, r,R) such that R1 � ‖y‖ < R.

We can construct a map F from C(a, r,R) to the positive halfspace x1 � 0 with the following
properties:

• the restriction of F on C(a, r1,R1) is a homeomorphism of manifolds with corners;
• F(y) = ψi(y) if r � ‖y − xi‖ � r1;
• F(y) = ψ∞(y) if R1 � ‖y‖ < R.

Now we construct a map F ′ from C(a, r,R) to π−1(a) to be equal at a point y ∈ C(a, r,R)

to

lim
m→∞

(
uij

(
x1, . . . , xk,F (ym)

)
, dij l

(
x1, . . . , xk,F (ym)

))

where {ym} is an arbitrary sequence from the interior of C(a, r,R) which converges to y.

Obviously, F ′ is correctly defined and continuous. It also maps injectively the interior of
C(a, r,R) to the intersection of π−1(a) with Modn

T . Points from the boundaries of B(xi, r) are
mapped injectively to the points of intersections of π−1(a) and Modn

c where c is the Getzler–
Jones cell corresponding to a map of trees σ :T → T ′, σ(k + 1) = i, σ(j) = j , j � k. This
intersection is homeomorphic to the hemisphere S̊n−1+ .

Points from the hyperplane x1 = 0 are mapped under F ′ to the points of the Getzler–Jones cell
corresponding to the configuration (x1, . . . , xk, y) and, finally, points from the outer hemisphere
boundary of C(a, r,R) are mapped to the Getzler–Jones cell corresponding to the map of trees
σ :T → M2

0 , σ(i) = 1 if 1 � i � k and σ(k + 1) = 2.

It is not difficult to check that F ′ is bijective and so it is a homeomorphism since both spaces
are compact.

Suppose now a belongs to a generalized Getzler–Jones cell in XT ′ then the fiber π−1(a) can
be glued from the manifolds C(bt , rt ,Rt ), t ∈ Vertex(τ (a)), by the following inductive proce-
dure. First we construct C(b0, r0,R0) where b0 is the projection of a to the configuration which
decorates the root vertex v0 of τ(a). Then we consider the vertices v1, . . . , vs which can be con-
nected to v0 by exactly one edge. We then construct C(bl, rl,Rl), 1 � l � s, where bl is the
corresponding projection of a. By scaling up or down the configurations bl if necessary we al-
ways can make R1 = R2 = · · · = Rs = r0. So we construct the next manifold by gluing the outer
hemisphere C(bl, rl,Rl) to the inner hemisphere of C(b0, r0,R0) in the place l.
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Example 7.2. The following example illustrates the proof. Here

T = [5] ρ−→ [3] → [1],
ρ(1) = ρ(2) = ρ(3) = 1, ρ(4) = 2, ρ(5) = 3

and the Getzler–Jones cell corresponds to the map σ : T ′ → S of 2-trees

S = [2] → [1] → [1], σ (1) = σ(2) = 1, σ (3) = σ(4) = 2.

Obviously, this inductive procedure stops after a finite number of steps and produces a con-
tractible manifold. �
Theorem 7.2. The operad GJn◦ is a cellular object in URO(n−1)

n (Top); in particular, it is cofi-
brant.

Proof. First recall some terminology [7]. We will work in the category of unbased reduced
n-operads and unbased reduced n-collections and we will call them simply n-operads and
n-collections. Let A ∈ URO(n−1)

n (Top). Let

Vn : URO(n−1)
n (Top) → URColln(Top)

be the forgetful functor with left adjoint RF◦
n. Let ω :Vn(A) → K be a cofibration of

n-collections. The cellular extension A → A[ω] generated by ω is the following pushout in
URO(n−1)

n (Top):

RF◦
nVn(A)

�

RF◦
n(K)

�

�

A A[ω]�

where the left vertical map is the counit of the adjunction.
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We will prove that GJn◦ can be obtained as a sequential colimit of cellular extensions starting
from the initial n-operad.

Consider a filtration of the n-collection Modn• by the following subcollections Modn•(m),
m � 0.

Modn
T (m) =

{
Modn

T if dim(T ) � m,

∅ if dim(T ) > m.

We have an inclusion for every m

Φm :RF◦
n

(
Modn•(m)

) →RF◦
n

(
Modn•

) → GJn◦ .

The image GJn◦(m) of this inclusion is closed and, hence, a compact suboperad of GJn◦ . More-
over,

GJn◦ � colim
m

GJn◦(m).

We want to show that GJn◦(m) ⊂ GJn◦(m+1) is a cellular extension generated by a cofibration.
Indeed, let us consider the following n-collection k(m + 1),

kT (m + 1) =
{

Vn(GJn◦(m))T ∪ Modn
T if dim(T ) = m + 1,

Vn(GJn◦(m))T if dim(T ) �= m + 1.

For every n-tree T , kT (m + 1) is a closed subspace of Vn(GJn◦)(m + 1)T . Moreover, if
dim(T ) = m + 1 then Proposition 6.1 implies that there exists a homeomorphism

Sdim(T ) → Bd(KT ) = Bd
(
cl

(
Modn

T

))
such that we have the following pushout in Top:

∐
T ,dim(T )=m+1 Sdim(T )

�

Vn(GJn◦(m))T

�

�

∐
T ,dim(T )=m+1 Bdim(T ) kT (m + 1).�

Hence, the inclusion

ωm+1 :Vn

(
GJn◦(m)

) ⊂ k(m + 1)

is a cofibration in the category of unbased reduced n-collections.
Besides that, we have a map of n-operads

RF◦
n

(
k(m + 1)

) → GJn◦(m + 1)

generated by the obvious map of collections k(m + 1) → GJn◦(m + 1).
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We also can construct another n-collection

lT (m + 1) =
{

Vn(RF◦
n(Modn•(m)))T � Modn

T if dim(T ) = m + 1,

Vn(RF◦
n(Modn•(m)))T if dim(T ) �= m + 1

with a bijective continuous map of n-collections

l(m + 1) → k(m + 1),

a cofibration

ςm+1 :Wn

(
RF◦

n

(
Modn•(m)

)) ⊂ L(m + 1), (7.1)

and a map

RF◦
n

(
l(m + 1)

) →RF◦
n

(
Modn•(m + 1)

)
.

The cofibration (7.1) is actually a canonical coprojection into a coproduct.
All these maps of operads can be organised into a commutative cube

RF◦
n(Vn(RF◦

n(Modn•(m))))

�

� RF◦
n(l(m + 1))

�
RF◦

n(Modn•(m)) � RF◦
n(Modn•(m + 1)).

RF◦
n(Vn(GJn◦(m)))

�

� RF◦
n(l(m + 1))

�
GJn◦(m) � GJn◦(m + 1)

�
��

�
��

�
��

�
��

The front square of this cube is a pushout in the category of n-operads because ςm+1 is a co-
projection and the free operad functor preserves colimits. All maps from the front square to the
back square are continuous bijections. So the induced morphism from RF◦

n(Modn•(m + 1)) to
the pushout P of the back square must be a continuous bijection as well, and, hence, the induced
map α :P → GJn◦(m + 1) is a continuous bijection.

Moreover, the vertical map RF◦
n(l(m + 1)) → RF◦

n(Modn•(m + 1)) admits a section. It fol-
lows that RF◦

n(k(m+1))T → PT is epi. Since RF◦
n(l(m+1))T is a finite coproduct of compact

spaces the space PT is compact. Therefore, α is an isomorphism and we have proved our theo-
rem. �

By definition we have an inclusion GJn → Desn(fmn), and, by adjunction, a canonical mor-
phism

Symn

(
GJn

) → fmn.
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Theorem 7.3. This canonical map from Symn(GJn) to fmn is an isomorphism. The analogous
result holds in the unbased case.

Proof. The canonical map

RFn

(
Modn•

) → GJn

is a continuous bijection. Hence, after application of Symn to this map we have a composite of
continuous bijections

RF∞
(
Cn

(
Modn•

)) → Symn

(
RFn

(
Modn•

)) → Symn(GJ).

We also have the following commutative diagram

RF∞(Cn(Modn•))k

�

Symn(RFn(Modn•))

�

�

Fs(modn
[k]) Symn(GJn)� fmn �

where the composite of the left vertical and horizontal maps is a continuous bijection by (6.2).
Hence, the canonical map from Symn(GJn) to fmn is a continuous bijection, as well. By for-
mula (4.3) the space Symn(GJn)k is a finite colimit of compact spaces, hence, it is compact and
therefore the bijection between Symn(GJn) and fmn is a homeomorphism. �
8. n-operads and En-operads

We finally are able to consider some applications of the results obtained.

Theorem 8.1. The operad fmn◦ is a cellular object in the category of unbased reduced symmetric
operads. In particular, it is cofibrant.

Proof. This is an easy consequence of the fact that Symn is a left Quillen functor. �
Remark 8.1. The cofibrantness of fmn◦ was first claimed in [9] without a proof. To the best
of our knowledge the proof first appeared in [18] and uses a comparison between fmn◦ and its
Boardman–Vogt W -construction.

For a categorical operad A we will denote by |A| the geometric realisation of the nerve of A.

Theorem 8.2. The operad |rhn◦| is strongly homotopy equivalent to fmn◦ .

Proof. Both n-operads |RHn◦| and GJn◦ are fibrant, cofibrant and contractible. Hence, they are
strongly homotopy equivalent. So are their images under Symn. �
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Remark 8.2. The Getzler–Jones decomposition of fmn◦ is not a regular CW-decomposition so
we cannot take the poset of its cells and form a categorical operad as was proposed in [9].
However, the previous corollary shows that rhn◦ is an appropriate substitute for this nonexistent
poset operad.

Theorem 8.3. There is a chain of weak operadic equivalences between |rhn| and fmn.

Proof. The operad |RHn| is the bar-construction on the terminal reduced n-operad. So, we have
a zig–zag

B(RFn,RFn,1) ← B
(
RFn,RFn,GJn

) → GJn

which, after symmetrization, gives the following zig–zag of morphisms of symmetric operads

∣∣rhn
∣∣ ← SymnB

(
RFn,RFn,GJn

) → fmn (8.1)

by Theorem 4.2. If we forget about nullary operations, we get the zig–zag of weak operadic
equivalences

∣∣rhn◦
∣∣ ← SymnB

(
RF◦

n,RF◦
n,GJn◦

) → fmn◦

since it can be obtained by symmetrisation from the zig–zag of equivalences of fibrant cofibrant
operads

∣∣RHn◦
∣∣ ← B

(
RF◦

n,RF◦
n,GJn◦

) → GJn◦ .

Hence, the zig–zag (8.1) consists of weak equivalences. �
Recall that the iterated monoidal category operad mn contains an internal n-operad [4]. It is

easy to see that mn is a reduced categorical symmetric operad and its internal n-operad is also a
reduced internal n-operad. So we have a canonical map of operads

kn : rhn → mn.

Recall also that the inclusion of the Milgram poset

(
Jn
k

)op → mn
k

induces a weak equivalence on the nerves [1].
The following theorem provides an alternative proof of Theorem 8.3.

Theorem 8.4. The map of operads N(kn) :N(rhn) → N(mn) is a weak equivalence.

Proof. By Theorems 4.2 and 4.3, we have

N
(
rhn

k

) � colim
(Jn)op

˜N
(
RHn

)
T
.

k
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It is trivial to check that ˜N(RHn)(−) is a Reedy cofibrant functor on (Jn
k)

op because

colim
T ←T ′, T �=T ′

˜N
(
RHn

)
T ′ → ˜N

(
RHn

)
T

= N
(
RHn

)
T

is a monomorphism. Therefore,

hocolim
(Jn

k )op

˜N
(
RHn

)
T

→ colim
(Jn

k )op

˜N
(
RHn

)
T

is a weak equivalence. But N(RHn
T ) is contractible, hence, we have a weak equivalence

hocolim
(Jn

k )op
N

(
Jn
k/T

) → hocolim
(Jn

k )op

˜N
(
RHn

)
T
.

So in the commutative square

hocolim(Jn
k )op N(Jn

k/T )

�

N(Jn
k )

�

�

hocolim(Jn
k )op ˜N(RHn)T

N(rhn
k)

�

both horizontal and left vertical arrows are weak equivalences and, therefore, the right vertical
arrow is a weak equivalence.

Finally, the functor (Jn
k )

op → mn
k is factorised as

(
Jn
k

)op → rhn
k → mn

k

and the statement of our theorem follows. �
Corollary 8.4.1. The canonical map |rhn◦| → |mn◦| provides a cofibrant replacement for |mn◦|
where mn◦ is the unbased version of mn.

There is a canonical map ψ : phn → rhn since rhn contains an internal pruned operad. We
actually can restrict ψ to a subcategory of phn which consists of objects which do not contain
degenerate decorations. Obviously, the last subcategory is a deformation retract of phn. The
deformation retraction is given by the following composite (dropping off of dead leaves):

μ
(
T ; znU0, x1, . . . , xk

) → μ
(
T ; znU0,μ(Un, x1), . . . ,μ(Un, xk)

)
= μ

(
μ

(
T ; znU0,Un, . . . ,Un

);x1, . . . , xk

) → μ
(
T ′; znU0, x1, . . . , xk

)
,

where T ′ is obtained from T by dropping off a branch which corresponds to the degenerate fiber.
So we will consider this subcategory as the domain of ψ but abusing notation will call it phn.

Let τ ∈ rhn
k be a labelled tree decorated by pruned n-trees. Obviously, an object from the fiber

of ψ over τ will be a labelled planar tree decorated by pruned n-trees such that the reduction of it
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(i.e. the deletion of all vertices of valency 2 together with their decorations) is τ. The morphisms
are insertion of a vertex of valency 2 decorated by Un and deletion of such decorations. The
following lemma is obvious from this description.

Lemma 8.1. The reduced decorated tree τ considered as an object of the fiber ψ−1(τ ) is a
terminal object of this fiber.

Lemma 8.2. The operadic morphism ψ has a (nonoperadic) section

s : rhn → phn

which maps an object τ to the terminal object τ in ψ−1.

Proof. To define s on morphisms we have to define it on generators and then check correctness.
We define it on a generator corresponding to a surjection σ : T → S equal to the composite

μ
(
S;T (p)

1 , . . . , T
(p)
k

) → μ
(
S;T (p)

1 , . . . ,Un, . . . , T
(p)
k

) → T

where we insert e → Un in the places where σ has one-tip fibers. It is routine to check the
relations. �

From these two lemmas we have

Theorem 8.5. The operadic functor ψ induces a weak equivalence of simplicial operads

N(ψ) :N
(
phn

) → N
(
rhn

);
so all three operads N(phn), N(rhn), N(mn) are En-operads.

A pruned topological n-operad A will be called contractible provided the unique map to the
terminal n-operad is a weak equivalence i.e. every AT is a contractible topological space.

Theorem 8.6. Let A be a contractible pruned n-operad in the category of compactly generated
Hausdorff spaces such that every AT is a cofibrant topological space and let X be an algebra
of A. Then X has a structure of an En-space, so up to group completion X is an n-fold loop
space.

Proof. Since X is an algebra of A it is also an algebra of Symn(A) and, by Theorem 3.2,
Symn(A) � colimphn

k
Ãk. It is not hard to check that the sequence hocolimphn

k
Ã∗ has the structure

of an operad and, moreover, the canonical map

hocolim
phn

k

Ãk → colim
phn

k

Ãk (8.2)

is operadic. But hocolimphn
k
Ãk has the same homotopy type as phn

k because of contractibility

of AT . So X is an algebra of a En-operad hocolimphn
k
Ãk. �

Example 8.1. It is still possible for X from the previous theorem to be an Em-space for m > n.
For example, if B is any E∞-operad, then A = Desn(B) is contractible but Symn(A) � B .
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A similar theorem holds for reduced n-operads in the category Ch(R) of chain complexes
over a commutative ring with unit R.

Let M be a reduced n-operad in Ch(R) which has MT = R for every pruned tree. A reduced
n-operad in Ch(R) equipped with an augmentation A → M will be called contractible provided
its augmentation is a weak equivalence.

The method used in the proof of Theorem 8.6 can be used without change to prove the fol-
lowing.

Theorem 8.7. Let A be a contractible reduced n-operad in Ch(R) such that AT is a chain
complex of projective R-modules for every T . Let X be an algebra of A. Then X admits an
action of a symmetric reduced operad weakly equivalent to the operad of R-chains of the little
disk operad.

Finally, Theorems 7.2 and 7.3 imply that we can obtain the full solution of the coherence
problem of n-fold loop spaces in the spirit of Stasheff’s original work [20,21] using cells KT

for higher n-trees instead of associahedra. This was first claimed by Getzler and Jones but some
doubts appeared since Tamarkin came up with his counterexample. Our Theorems 7.2 and 7.3 do
confirm that the fmn◦-algebra structure is equivalent to the existence of a sequence of inductive
extensions of higher homotopies from the boundaries of KT to their interior even though GJT is
not always a PL-ball. The exact combinatorics of KT will be discussed in a future paper. Here
we just give a few examples of the manifolds KT which can be drawn on paper.

If n = 1 and T = [m] then KT = Km, the Stasheff associahedron as was said before.
If n = 2 we have two one-dimensional manifolds commonly known as associator and braid-

ing.

We also have three 2-dimensional polytopes: a pentagon and two hexagons, and two
3-dimensional polytopes, the associahedron K5 and a 3-dimensional polytope well known in
the theory of Yang–Baxter operators.
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Finally we have three 3-dimensional polytopes (there should be a copy of the first one we do
not show here) which can be found in the paper of Bar-Natan [5].

It is recommended to the reader to try to draw up all the polytopes KT of dimension less than
or equal to 3 with n = 3 (there will be only three of them which are different from the above
polytopes) and n = 4 (only one new polytope).

9. Swiss-Cheese type n-operads and their symmetrisation

This is a short section in which we define reduced (both based and unbased) Swiss-Cheese
type n-operads and show that the techniques developed in the previous sections are powerful
enough to easily carry out the main results for classical operads to the case of Swiss-Cheese type
operads.

The Swiss-Cheese type operads (SC-operads or SC type operads for short) were introduced
by Voronov in [24] with motivation to describe a finite-dimensional model of the moduli space
of genus-zero Riemann surfaces from open-closed string theory. The importance of this class of
operads was also understood by Kontsevich in [13] who explained that the category of algebras
of Voronov’s Swiss-Cheese operad is a natural place for developing a theory of deformation
complexes and its higher-dimensional generalisation.

Recall first [24] that a symmetric reduced SC-operad in a symmetric monoidal category V

is a special symmetric coloured operad with two colours and consists of a collection Ak,l of
objects of V indexed by pairs of natural numbers with an action of the product of the symmetric
groups Σk ×Σl. We also require that A0,0 = A1,0 = A0,1 = I for a reduced operad. The operadic
multiplication is represented by a family of morphisms

Ak,l ⊗ (Aa1,b1 ⊗ · · · ⊗ Aak,bk
) ⊗ (A0,c1 ⊗ · · · ⊗ A0,cl

)

→ Aa1+···+ak, b1+···+bk+c1+···+cl

which must satisfy some natural associativity, equivariancy and unitarity conditions.
For the unbased case (which is actually considered in [13,24]) we forget about the space A0,0.

Notice that we have two symmetric operads here: A•,0 and A0,•. An algebra of such an operad
consists of a pair of objects (X1,X2) such that A•,0 acts on X1 and A0,• acts on X2 and all the
other spaces Ak,l provide the interplay between these two actions.

The main example of an unbased reduced symmetric SC-operad is Voronov’s Swiss-Cheese
operad SCn whose (k, l)-space is the space of l disjoint n-disks and k disjoint n-semidisks in a
big n-semidisk

Bn+ = {
(x1, . . . , xn) ∈ 
n

∣∣ x2
1 + · · · + x2

n � 1, x1 � 0
}
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Notice that our presentation of SCn
k,l is different from Voronov’s picture in [24]. He defines Bn+

by requiring xn � 0. It is more convenient for us to ask x1 � 0, however, because it makes the
relations between SCk,l and the Getzler–Jones decomposition more evident.

Definition 9.1. A coloured pruned n-tree is a pruned n-tree T equipped with a map of trees

ξT :T → M2
0

such that the induced n-ordinal structure on ξ−1(1) is a suspension over (n − 1)-tree or a degen-
erate n-tree.

One can think of a coloured n-tree as an n-tree with a distinguished (coloured by 1) most left
branch, which can be empty however.

Definition 9.2. A coloured morphism between coloured trees σ :T → S is a morphism of under-
lying trees such that ξS(σ (a)) = 1 for a ∈ ξ−1(1).

In other words σ sends the distinguished branch of T to the distinguished branch of S. Every
coloured morphism between n-trees can be restricted to the distinguished branches of these trees.
Since these branches are suspensions of n-trees, one can consider the restriction of a morphism
as a morphism between (n − 1)-trees.

A coloured morphism between coloured n-trees is an injection if the underlying morphism
of trees is an injection. A coloured morphism between coloured n-trees is a surjection if the un-
derlying morphism of trees is a surjection. One can take a fiber of a coloured surjection between
n-trees and then the fibers obtain canonical colouring.

Definition 9.3. A reduced SC type n-operad in a symmetric monoidal category V is a collection
AT ∈ V where T runs over all coloured pruned n-trees such that

AU1
n

= AU2
n

= I and AznU0 = I,

where U1
n is a linear tree with its unique tip coloured by 1 and U2

n is a linear tree with its tip
coloured by 2. This collection is equipped with a morphism

mσ :AS ⊗ A
T

(p)
1

⊗ · · · ⊗ A
T

(p)
k

→ AT

for every coloured morphism of trees σ : T → S between coloured pruned n-trees. They must
satisfy the obvious associativity and unitarity conditions.

For an unbased reduced SC-operad we use collections without degenerate trees and define
multiplication only with respect to surjections of coloured trees.

Immediately from the definition we see that as in the symmetric case an SC type n-operad A

gives rise to two operads AznUn,• and A•,znUn if we consider its restriction to the n-trees with no
branches with colour 1 or to the trees with no branches coloured 2. But unlike in the symmetric
case these two operads are of different types: AznUn,• is an n-operad but A•,znUn is an (n − 1)-
operad.
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The reduced SC type n-operads form a category and we have a desymmetrisation functor
from symmetric reduced SC-operads to the reduced SC type n-operads. All the machinery of
Section 4 is then applicable to the Swiss-Cheese case. We denote by SCSymn the corresponding
functor of symmetrisation and by scrhn the free reduced symmetric SC-operad freely generated
by an internal reduced SC type n-operad. We have the following analogue of Theorem 4.3

Theorem 9.1. Let A be a cocomplete reduced symmetric categorical n-operad of SC type and x

be an internal reduced SC type n-operad in A then

(
SCSymn(a)

)
k,l

� colim
scrhn

k,l

x̃k,l

where x̃k,l : scrhn
k,l → Ak,l is the operadic functor representing the operad x.

In addition,

(
SCSymn(a)

)
0,• � Symn(AznUn,•),(

SCSymn(a)
)
•,0 � Symn−1(A•,znUn).

The analogous formula holds in the unbased case.

The unbased Swiss-Cheese analogue of the Fulton–Macpherson operad scfmn◦ was defined by
Voronov in [24]. The definition of its based version scfmn is obvious. It is also obvious now how
to define the analogue of the Getzler and Jones operad SCGJn. A little gift for us is that, for a
pruned coloured n-tree T , the spaces SCGJn

T and GJn
T coincide. So we have the proof of our

next theorem almost for free:

Theorem 9.2. The following analogues of Theorems 7.1–7.3, 8.1–8.3 hold:

• The operad SCGJn is contractible and SCGJn◦ is a cellular and contractible unbased re-
duced SC type n-operad.

• The canonical map

SCSymn

(
SCGJn

) → scfmn

is an isomorphism. The analogous result holds in the unbased case.
• The operad scfmn◦ is cellular.
• The operad |scrhn◦| is strongly homotopy equivalent to scfmn◦ .
• There is a chain of weak operadic equivalences between |scrhn| and scfmn.

It is not hard now to give the definitions of the endomorphism SC n-operad of a pair of
objects X1,X2 ∈ V and of the category of algebras of an SC n-operad. The desymmetrisation
functor preserves the endomorphism operad and, hence, symmetrisation preserves the category
of algebras. Analogously to Theorems 8.6 and 8.7 we have

Theorem 9.3. Let A be a contractible reduced SC type n-operad in the category of compactly
generated Hausdorff spaces such that every AT is a cofibrant topological space and let (X1,X2)
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be an algebra of A. Then (X1,X2) admits an action of a symmetric SC-operad weakly equivalent
to Voronov’s reduced Swiss-Cheese operad.

Theorem 9.4. Let A be a contractible reduced SC type n-operad in Ch(R) such that AT is a
chain complex of projective R-modules for every T . Let (X1,X2) be an algebra of A. Then
(X1,X2) admits an action of a symmetric reduced SC-operad weakly equivalent to the operad of
R-chains of the Voronov’s reduced Swiss-Cheese operad.

Analogous theorems hold in the unbased case.
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