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Abstract

In this paper, optimal Lp–Lq estimates are obtained for operators which average functions over poly-
nomial submanifolds, generalizing the k-plane transform. An important advance over previous work (e.g.,
[P. Gressman, Lp-improving properties of X-ray like transforms, Math. Res. Lett. 13 (5) (2006) 787–803])
is that full Lp–Lq estimates are obtained by methods which have traditionally yielded only restricted weak-
type estimates. In the process, one is led to make coercivity estimates for certain functionals on Lp for
p < 1.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

The object of study in this paper is the family of operators which integrate a function f over all
submanifolds given by polynomials in some appropriate coordinate system. On R

2, for example,
such an operator would map a polynomial p in a single variable to the integral of a function
f (x, y) over the graph y = p(x). To be more precise, fix any positive integers n, n′, and d . Let
Mn,d be the set of all multiindices of length n and degree at most d (recall that a multiindex is
simply an n-tuple of nonnegative integers, the degree of a multiindex α = (α1, . . . , αn) is denoted
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by |α| and equals
∑n

j=1 αj , and tα := ∏n
j=1 t

αj

j as well as α! := ∏n
j=1 αj !). Let Tn,n′,d be the

operator mapping functions on R
n ×R

n′
(written f (x, y) where x ∈ R

n and y ∈ R
n′

) to functions
on (Rn′

)Mn,d (thought of as the space of coefficients of an n′-tuple of polynomials in n variables
of degree at most d) given by

Tn,n′,df (u) :=
∫
Rn

f

(
t,

∑
α∈Mn,d

uαtα
)

dt (1)

(i.e., uα ∈ R
n′

for all α ∈ Mn,d and u = (uα)α∈Mn,d
). The purpose of this paper is to establish the

Lp mapping properties of the family (1).
This family (1), when d = 1, generalizes the classical k-plane transform. To see this, let

u0, . . . , uk ∈ R
n−k be vectors, and consider the following mapping into Mk,n, the space of all

affine k-planes in R
n:

σ(u0, u1, . . . , uk) := {
(t, u0 + u1t1 + · · · + uktk) ∈ R

n
∣∣ t = (t1, . . . , tk) ∈ R

k
}
.

Provided that ‖u1‖ + · · · + ‖uk‖ is small, the pull-back of the natural measure on Mk,n is com-
parable to the Lebesgue measure on R

(n−k)(k+1); furthermore, the pull-back of the Lebesgue
measure on the k-plane σ(u) is comparable to dt , that is,

C−1Tk,n−k,1f (u) �
∫

σ(u)

f � CTk,n−k,1f (u)

(where f is a nonnegative function). To obtain global inequalities, one simply averages over all
rotations f θ (x) := f (θ · x) for θ ∈ SO(n).

The Lp-boundedness (in both standard and mixed-norm spaces) of the classical k-plane trans-
form (including the Radon transform as a special case) was established in the 1980s in various
papers including, for example, the works of Christ [4], Drury [6–8], and Oberlin and Stein [11].
The classical estimate to be generalized by this paper is that the k-plane transform maps Lp(Rn)

to Lq(Mk,n) when p = n+1
k+1 and q = n + 1 (the restricted weak-type version was established by

Drury [6], and the full estimate by Christ [4]). By the remarks of the preceding paragraph, this
estimate is a special case of Theorem 1 after performing the prescribed average over rotations.

When d > 1, the corresponding operators are largely new. The family T1,n−1,d arose in earlier
work of the author [9] as examples of overdetermined, one-dimensional averaging operators. The
significance of the family T1,n−1,d in that paper is that such operators are, in some sense, less
degenerate than the classical X-ray transform; for example, the operators T1,n−1,d map L

p
comp to

L
q

loc for a larger set of indices (p, q) than does the classical X-ray transform. The main result
of that paper [9] was a family of restricted weak-type estimates; in this paper, the corresponding
strong estimates follow from Theorem 1 as well.

The Fourier integral operator realization of (1) has nondegenerate canonical relation, so earlier
theorems concerning overdetermined averaging operators, including recent work of Brandolini,
Greenleaf, and Travaglini [2] and Ricci and Travaglini [12], can be applied. The proofs of these
theorems are heavily concerned with the behavior of the operators (1) near L2 (and rely on os-
cillatory integral estimates in one form or another). Such theorems give suboptimal results in
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general, meaning that they are restricted to the study of Lp → Lp′
estimates for conjugate expo-

nents p,p′. Unlike these earlier results, this paper approaches the question from the standpoint
of geometric combinatorics (pioneered by Christ [5]), and is able to establish complete results.

It is useful to note that the operators (1) possess a variety of symmetries. First and
foremost is an (n + n′)-dimensional family of dilation symmetries: taking fδ,δ′(x, y) :=
f (δ1x1, . . . , δnxn, δ

′
1y1, . . . , δ

′
n′yn′) for arbitrary positive numbers δ1, . . . , δn, δ

′
1, . . . , δ

′
n′ induces

a scaling uδ,δ′
on the space (Rn′

)Mn,d by requiring Tn,n′,dfδ,δ′(u) = Tn,n′,df (uδ,δ′
). This fam-

ily will appear explicitly in Section 5. Likewise, the translations fh,h′(x, y) := f (x + h,

y + h′) induce a family of translation operators τh,h′
on (Rn′

)Mn,d by (again) requiring that
Tn,n′,dfh,h′(u) = Tn,n′,df (τh,h′

(u)). Although this family τh,h′
is not the usual family of trans-

lations on Euclidean space, it does possess many of the same properties, including that τh,h′
is

measure-preserving with respect to the Lebesgue measure du. Finally, functions in the range of
Tn,n′,d satisfy a family of PDEs (a fact first observed by F. John [10]). Let ∂α,j be differentia-
tion with respect to the j th component of uα for α ∈ Mn,d . For any j and k between 1 and n′
(inclusive) and any α,β, α̃, β̃ ∈ Mn,d satisfying α + β = α̃ + β̃ ,

[∂α,j ∂β,k − ∂α̃,j ∂β̃,k]Tn,n′,df (u) = 0

(in the sense of distributions) for any f .

1.2. Main theorems

The main theorems of this paper establish sharp Lp–Lq boundedness of (1) and related gener-
alizations. As already mentioned, an important feature (not found previously) of these theorems
is that full endpoint estimates are obtained, not simply restricted weak-type estimates. The first
theorem deals with the global and local Lp–Lq mapping properties of the family (1):

Theorem 1. The operator Tn,n′,d maps Lp(Rn ×R
n′

) to Lq((Rn′
)Mn,d ) if and only if p = 1+ n′d

n+1

and q = |Mn,d |p, where |Mn,d | = (
n+d
d

) := (n+d)!
n!d! is the number of multiindices of length n and

degree at most d . Furthermore, Tn,n′,d maps L
p
comp → L

q

loc if and only if (p−1, q−1) is in the
closed convex hull of the points (0,0), (1,1), (0,1) and

(
n + 1

n + n′j + 1
,

(
n + j

j

)−1
(n + 1)

(n + n′j + 1)

)

for j = 1, . . . , d .

As indicated by the theorem (see Fig. 1 for an illustration of the Riesz diagram of a typical op-
erator), the local mapping properties of Tn,n′,d are far more complex than a non-overdetermined
averaging operator with nonvanishing rotational curvature (for example). If one moves to the
scale of mixed-norm spaces, the boundedness properties of Tn,n′,d become even more complex
because of natural “factorizations” which occur. For example, to prove the L

p
comp → L

q

loc esti-
mates, it suffices to prove only global estimates. This is because an Lp → Lq estimate for Tn,n′,j
implies mixed-norm boundedness of the form Lp → L∞(Lq) for Tn,n′,d when d > j , where
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Fig. 1. The operator T2,1,5 maps L
p
comp to L

q
loc precisely when (p−1, q−1) is in the shaded polygon shown above. The

nontrivial vertices are marked by dots.

the Lq -norm is taken over the variables uα for |α| � j . To see this, let π be the natural projec-
tion from (Rn′

)Mn,d to (Rn′
)Mn,j and let π̃ be the corresponding projection onto the orthogonal

complement of (Rn′
)Mn,j . It follows that

Tn,n′,df (u) = Tn,n′,j f
π̃(u)

(
π(u)

)
(2)

where f π̃(u)(t, x) := f (t, x + ∑
|α|>j uαtα). Thus

∫
π̃ (u)=v

∣∣Tn,n′,df (u)
∣∣q � C

∥∥f v
∥∥q

p
= C‖f ‖q

p

uniformly in v when Tn,n′,j maps Lp → Lq .
To identify many of the “trivial” L∞(Lq) estimates satisfied by the operators (1), it is useful

to restrict Tn,n′,d to somewhat general hyperplanes. In this paper, attention is fixed on coordinate
hyperplanes. Such hyperplanes will be identified by the coordinate axes they contain; the axes
themselves will be identified with elements in Mn,d × {1, . . . , n′}, so coordinate hyperplanes are
identified with subsets A ⊂ Mn,d ×{1, . . . , n′}. For each j = 1, . . . , n′, let Aj be the collection of
multiindices α for which (α, j) ∈ A. Then the restriction of Tn,n′,d to the coordinate hyperplane
given by A will be denoted TA; the explicit formula is simply

TAf (u) :=
∫
Rn

f

(
t,

∑
α∈A1

u(α,1)t
α, . . . ,

∑
α∈An′

u(α,n′)t
α

)
dt; (3)

for convenience, the following shorthand will be used in the future:

πA(t, u) :=
(

t,
∑

α∈A1

u(α,1)t
α, . . . ,

∑
α∈An′

u(α,n′)t
α

)
.

Of course, not all coordinate hyperplanes A will give rise to restricted operators TA which
have nontrivial Lp–Lq boundedness properties. In particular, if TA is to be bounded from any Lp
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to some Lq , it must be the case that the following conditions are satisfied (the proof of necessity
will be taken up in Section 5):

(1) (Dimensionality) There exists an integer #A such that, for any j = 1, . . . , n′, the cardinality
of Aj is #A.

(2) (Scaling) There exists an integer |A| such that
∑

j

∑
α∈Aj

α = |A|1, where 1 := (1, . . . ,1).
(3) (Spanning) The multiindices

⋃
j Aj span R

n as vectors.

Throughout this paper, the collection A will be called admissible when it satisfies the dimension-
ality and scaling conditions, along with a slightly stronger form of the spanning condition (to be
addressed in Section 2.2) and a further “nondegeneracy” condition:

(4) (Nondegeneracy) For each j = 1, . . . , n′, 0 ∈ Aj , where 0 = (0, . . . ,0).

With these definitions, the second main theorem of this paper is:

Theorem 2. Let A be admissible. Then TA maps L
|A|+#A

#A → L|A|+#A.

This theorem implies the global result of Theorem 1, since the collection A = Mn,d ×
{1, . . . , n′} (which corresponds to the trivial restriction of Tn,n′,d to the whole space on which
it is defined) is readily checked to be an admissible collection.

1.3. Examples

Theorems 1 and 2 have several corollaries which are interesting in their own right. The first
of these worth mentioning is similar to an earlier result of Ricci and Travaglini [12]:

Corollary 1. Given an n′-tuple of polynomials r := (r1, . . . , rn′) in n variables of degree at most
d (for d � 2), let μr be the measure on the graph of r (as a subset of R

n × R
n′

) given by

∫
ϕ(x, y) dμr(x, y) :=

∫
Rn

ϕ
(
t, r1(t), . . . , rn′(t)

)
dt. (4)

Then given any f ∈ Lp(Rn × R
n′

), p := 1 + n′d
n+1 ,

‖f � μr‖Lq(Rn×Rn′
)
< ∞ (5)

for almost every r , where q := (
n+d
d

)
p.

Proof. The idea of the proof is to express integration over y ∈ R
n′

and x ∈ R
n as integration over

coefficients of polynomials and thereby reduce (5) to Theorem 1. Understanding y is straight-
forward, but the x variable has more subtle properties which must be understood. The idea is
that the family of polynomials r(t + x) (with parameter x) is quite often, though not always,
an n-dimensional hypersurface in the space of polynomials. When this is the case, standard
change-of-variables arguments may be employed.
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By definition of convolution and an elementary change of variables, one has the formula

f � μr(x, y) =
∫

f
(−t, y − Φx(r)(t)

)
dt,

where Φ· is the group of transformations of polynomials given by Φx(r)(t) := r(t + x). Fix
any multiindices α1, . . . , αn of degree d − 1 and integers j1, . . . , jn, each in 1, . . . , n′, and con-
sider the mapping from R

n to R
n given by x �→ (∂α1 [Φx(r)]j1(0), . . . , ∂αn [Φx(r)]jn(0)) (here

the derivatives are in t , then t is set equal to zero). This mapping is an affine linear function
of x. Furthermore, the entries in the Jacobian matrix each depend linearly on the coefficients of
the degree d terms of r . Standard results from algebraic geometry dictate that the correspond-
ing mapping x �→ (∂α1 [Φx(r)]j1(0), . . . , ∂αn [Φx(r)]jn(0)) will be either degenerate for all r or
invertible for almost every r (comprising an open set).

Consider the choice α1 := (d − 1,0, . . . ,0), . . . , αn := (0,0, . . . ,0, d − 1) and j1 = · · · =
jn = 1. For any n′-tuple of polynomials r with r1(t) = ∑n

j=1 tdj , the mapping considered in the
previous paragraph is simply x �→ d(x1, . . . , xn), which is manifestly invertible. Therefore, for
this particular choice of α’s and j ’s, the mapping x �→ (∂α1 [Φx(r)]j1(0), . . . , ∂αn [Φx(r)]jn(0))

must be invertible for any r in some open set containing almost every n′-tuple of polynomials;
call the set of such r’s the set of invertibility. The standard change-of-variables argument gives
that for any sufficiently small ball B centered at an r in the set of invertibility, there is a constant
C such that, for any function g depending on n′-tuples of polynomials,∫

B

∫ ∫
g
(
Φx(r̃)

)
dx dy dr̃ � C‖g‖1;

here dr̃ is the Lebesgue integral over the coefficients of all n′-tuples of polynomials in B . To
obtain this inequality, one changes the order of integration so that the integrals in x and y are
performed before the αk th coefficient of the jk th polynomial for each k = 1, . . . , n and before the
constant coefficients α = 0 of each polynomial as well. If the remaining coefficients (compris-
ing r̃) are collectively referred to as v, the mapping (x, y, v) �→ Φx(r) has a constant, nonzero
Jacobian determinant (for each value of the frozen coefficients); after the change-of-variables
(x, y, v) �→ Φx(r), the integral dx dy dv is simply an integral over the space of (n′-tuples of)
polynomials. Taking g(r) := (

∫
f (−t, y − r(t)) dt)q gives∫

B

‖f � μr̃‖q
q dr̃ � C‖Tn,n′,df ‖q

q,

which, by Theorem 1, implies (5) for almost every r̃ near r . �
Another important corollary of Theorem 2 deals with restrictions TA which are not overde-

termined at all. This happens, for example, when n′ = 1 and #A = n. In this case, Theorem 2
reduces to the following:

Corollary 2. Let α1, . . . , αn be multiindices on R
n which are linearly independent as vectors and

sum to (σ, . . . , σ ) for some integer σ . Then the averaging operator on R
n × R given by

Rf (y0, . . . , yn) :=
∫

f
(
t, y0 + y1t

α1 + · · · + ynt
αn

)
dt

is bounded from L
n+1+σ

n+1 to Ln+1+σ .
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1.4. About the proof

As mentioned earlier, the proof is based on combinatorial tools introduced by Christ [5] and
expanded upon by Tao and Wright [13] and many others. As in these works, the idea is to con-
sider the bilinear form induced by (1) and iterate kernel flows of the corresponding projection
operators. Because of the concrete nature of the operators (1), a coordinate dependent approach
will be used, and much of the general geometry found, for example, in Tao and Wright [13] or
earlier work of the author [9], will be suppressed.

As in [9], an essential feature of the proof is that the kernel flows are “lifted” to a higher-
dimensional space in order to make the necessary change-of-variables arguments. A new feature
introduced here is that all inequalities are shown to behave well with respect to tensor products
(meaning that the “lifted” inequalities are again lifted to product spaces of arbitrarily high dimen-
sion). This allows one to deduce strong-type inequalities from the tensored restricted weak-type
inequalities, as in earlier work of Bennett, Carbery, and Wright [1] and Carbery [3]. Unlike these
earlier situations, however, there is no natural “tensor-invariance” to exploit. Instead, there are
several new, nontrivial estimates which must be established to reproduce the earlier argument in
the current, more general, case.

The rest of this paper proceeds as follows: Section 2 is devoted to establishing a number of
inequalities concerning the Lebesgue measure (and certain Lp-spaces for 0 < p < 1) which are
essentially combinatorial in nature. These inequalities will be necessary to establish the main
theorem using the standard approach of geometric combinatorics. Section 3 is concerned with
the introduction of tensor-product inequalities. In particular, it is demonstrated in this section
how one deduces strong-type inequalities from tensored restricted weak-type inequalities, and
the tensor-product behavior of certain inequalities from Section 2 is addressed as well. Section 4
gives the proof of Theorem 2 (and hence Theorem 1 as well), and Section 5 establishes the
necessity of various conditions of the main theorems.

2. Measure inequalities

2.1. Interpolation of monomial-weight measures

The first result of this section is an interpolation inequality for measures on R
n which are equal

to the Lebesgue measure times a monomial weight. Let dμ(x) := |x1|−1 · · · |xn|−1 dx1 · · ·dxn,
and for any s ∈ R

n+, let

|E|s :=
∫
E

∣∣xs
∣∣dμ(x) :=

∫
E

n∏
j=1

|xj |sj −1 dx.

To prove an interpolation inequality for these measures | · |s , the first step is to determine the
measure-theoretic properties of certain extremal sets. Since it is relatively straightforward, the
sharp constants are given both in Proposition 1 and Lemma 1.

Proposition 1. Let v1, . . . , vn ∈ R
n and s ∈ R

n+ be such that v1, . . . , vn are linearly independent
and s is in the interior of the convex cone generated by v1, . . . , vn. Let σ ∈ R

n+ be such that
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s = ∑n
j=1 σjvj . Then for any a ∈ R

n+, the set Ea
v := {x ∈ R

n | ∑n
i=1 a−1

i |x|vi � 1} satisfies

∣∣Ea
v

∣∣
s
= 2n aσ

V

∏n
j=1 Γ (σj )

Γ (1 + |σ |) (6)

where V is the absolute value of the determinant of the matrix with columns v1, . . . , vn.

Proof. In the integral
∫

χEa
v
(x)

∏n
j=1 |xj |sj −1 dx, make the change of variables ui = a−1

i xvi .
The linear independence of the vi ’s guarantees that this map is one-to-one and onto on R

n+ (by
symmetry, this is the only orthant on which the integral need be computed). The (i, j)-entry
of the Jacobian matrix of this change is precisely a−1

i vi,j x
vi x−1

j , so the absolute value of the
determinant is V

∏n
j=1 x−1

j

∏n
i=1 ui . It follows that xs dμ(x) = aσ V −1uσ dμ(u) and hence

∣∣Ea
v

∣∣
s
= 2naσ V −1

∫
T

uσ dμ(u)

where T is the simplex {u ∈ R
n+ | ∑

ui � 1}. A straightforward induction argument (using
Euler’s identity for the Beta function) computes this integral and gives (6). �
Lemma 1. Let w1, . . . ,wn ∈ R

n+ be linearly independent, and let s ∈ R
n+ be in the interior of

the convex hull of the wj ’s and 0. Let θ0, . . . , θn be such that
∑n

j=0 θj = 1 and s = ∑n
j=1 θjwj .

Then

|E|s � 2nθ0

n∏
j=0

θ
−θj

j

[∏n
j=1 Γ (θj θ

−1
0 )

WΓ (θ−1
0 )

]θ0 n∏
j=1

|E|θj
wj

(7)

where W is the absolute value of the determinant of the matrix with columns w1, . . . ,wn.

Proof. Let aj := |E|wj
and g(x) := ∑n

j=1 θj a
−1
j |x|wj −s . By construction of the function g,∫

E
g(x)|x|s dμ(x) = 1− θ0. Let Gλ := {x ∈ R

n | g(x) < λ}. The quantity |Gλ|s can be evaluated
using Proposition 1: simply take vj := wj − s and σj := θj θ

−1
0 . Elementary computations give

that V = θ0W (the matrix of v’s “factors” as the w-matrix and a matrix involving only the θ ’s).
Combining these observations, Proposition 1 dictates that

|Gλ|θ0
s = 2nθ0λ1−θ0

n∏
j=0

θ
−θj

j

[∏n
j=1 Γ (θj θ

−1
0 )

WΓ (θ−1
0 )

]θ0 n∏
j=1

|E|θj
wj

. (8)

Along these same lines,
∫
Gλ

g(x)|x|s dμ(x) = λ|Gλ|s(1 − θ0); this is because |G|wj
=

λ|G|s |E|wj
by Proposition 1 as well. Now choose λ so that |Gλ|s = |E|s . Then 1 − θ0 =∫

E
g(x)|x|s dμ(x) �

∫
Gλ

g(x)|x|s dμ(x). To see this, simply observe that the integral over
E \Gλ is necessarily greater than the integral over Gλ \E (and therefore the value of the integral
decreases if all the parts of E outside Gλ are moved inside Gλ). Since

∫
Gλ

g(x)|x|s dμ(x) =
λ|E|s(1 − θ0), it follows that λ|E|s � 1. Multiplying both sides of (8) by |E|1−θ0

s , recalling that
|Gλ|s = |E|s and using the inequality λ|E|s � 1 give (7). �
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In practice, the following corollary of Lemma 1 will be more useful than Lemma 1 itself. At
this point, accounting for constants becomes a chore and will be neglected.

Corollary 3. Let w1, . . . ,wN ∈ R
n+ for N � n have a sub-n-tuple which is linearly independent.

Then for any positive θ0, . . . , θN satisfying
∑N

j=0 θj = 1, there exists a constant C < ∞ such
that

|E|s � C

N∏
j=1

|E|θj
wj

(9)

where s = ∑N
j=1 θjwj .

Proof. Suppose that w1, . . . ,wn are linearly independent. If N = n, then Lemma 1 gives pre-
cisely the desired conclusion; assume, then, that N > n. Let ϕ := ∑N

j=n+1 θj . Hölder’s inequality
immediately gives that

|E|
ϕ−1

∑N
j=n+1 θj wj

�
N∏

j=n+1

|E|ϕ−1θj
wj

. (10)

On the other hand, Lemma 1 gives that

|E|(1−ϕ)−1
∑n

j=1 θj wj
� C

n∏
j=1

|E|(1−ϕ)−1θj
wj

(11)

because the w’s satisfy the independence condition, and

(1 − ϕ)−1
n∑

j=1

θj = (1 − ϕ)−1(1 − ϕ − θ0) < 1.

But Hölder’s inequality also dictates that

|E|s � |E|ϕ
ϕ−1

∑N
j=n+1 θj wj

|E|1−ϕ

(1−ϕ)−1
∑n

j=1 θj wj
,

so taking a convex combination of (10) and (11) gives (9). �
2.2. Vandermonde means

Suppose A is an admissible subset of Mn,d × {1, . . . , n′}. Let xj ∈ R
n for j = 1, . . . ,#A, and

for k = 1, . . . , n′, let Vk(x) be the determinant of the #A × #A matrix whose j,m-entry is x
αm

j

(where α1, . . . , α#A is an enumeration of Ak). The product of these functions Vk will be called
the Vandermonde polynomial associated to A, and denoted VA, that is:

VA(x) :=
n′∏

Vk(x). (12)

k=1
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If, for example, n = n′ = 1 and A = 0,1, . . . , d , then VA is exactly the d th classical Vander-
monde polynomial (modulo, of course, a factor of ±1).

To establish Theorem 2, it will be necessary to have an estimate for the expectation of |VA(x)|
when the xj ’s (j = 1, . . . ,#A) are randomly chosen points. It will suffice for the purposes here
to prove that

∫ ∣∣VA(x)
∣∣ #A∏
j=1

∣∣fj (xj )
∣∣dx1 · · ·dxA � c

#A∏
j=1

‖fj‖Lp(Rn) (13)

where p := #A
#A+|A| < 1 (many more such inequalities are, in fact, true, but will not be needed

here). Along the way, the strengthened spanning condition for A will be encountered.
The proof of (13) begins with a definition. Given a Lebesgue-measurable set E ⊂ R

n, let
Sj (E) be the set given by

{
(y1, . . . , yn) ∈ R

n
∣∣∣ |yj | < 1

2

∫
χE(y1, . . . , yj−1, s, yj+1, . . . , yn) ds

}
.

By Fubini’s theorem, this set is well defined (up to a set of measure zero); it is called the Steiner
symmetrization with respect to the hyperplane Pj := {(y1, . . . , yn) ∈ R

n | yj = 0}. Observe that
the intersection of Sj (E) with any line � pointing in the j th coordinate direction is simply a line
segment with center in Pj . Moreover, the measure of Sj (E) is the same as the measure of E, and
if f (y) is any nonnegative measurable function which does not depend on yj , then

∫
E

f (y)dy =∫
Sj (E)

f (y) dy (both of these facts follow almost directly from Fubini’s theorem). The following
propositions illustrate how Steiner symmetrization will be useful here. Heuristically, if one wants
to estimate the integral of a function |f | on a set E, the function f may be replaced by a simpler
function if, in exchange, the set E is replaced by a Steiner-symmetrized version of itself.

Proposition 2. Let I ⊂ R be some (possibly infinite) interval, and let f be a function in Ck(I)

(for some fixed k � 1) which satisfies the inequality f (k)(t) � 1 for all t ∈ I . There exists a
constant ck > 0 such that, for any measurable set E ⊂ I ,

∫
E

∣∣f (t)
∣∣dt � ck

∫
S(E)

|t |k
k! dt. (14)

Proof. The first step is to establish the inequality (14) in the case when E is an interval. Let
E := [a, b] ⊂ I , δ := b−a

k+1 , and aj := a + jδ for j = 0, . . . , k + 1. By the fundamental theorem
of calculus (and an elementary induction argument on k), the following identity holds for all
f ∈ Ck(I) when [a, b] ⊂ I :

k∑
j=0

(−1)k−j

(
k

j

) aj+1∫
a

f (t) dt =
δ∫
· · ·

δ∫
f (k)(a + t1 + · · · + tk+1) dt1 · · ·dtk+1.
j 0 0
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The right-hand side is at least δk+1 by virtue of the pointwise estimate for f (k); majorizing the
left-hand side in the standard way gives that

(
k

j0

) b∫
a

∣∣f (t)
∣∣dt � |b − a|k+1

(k + 1)k+1
(15)

where j0 = k
2 or k+1

2 when k is even or odd, respectively. This inequality (15) is precisely (14)
by virtue of the fact that |E| = |b − a|.

Let Fλ := {t ∈ I | |f (t)| � λ}. The set Fλ is a union of no more than k disjoint, closed intervals
(between any two connected components of Fλ, f ′ must vanish; but f ′ can vanish only k − 1
times by Rolle’s theorem). The inequality (15) can thus be used to estimate

∫
Fλ

|f (t)|dt by
restricting to subintervals and summing. The right-hand side of a k-fold sum of (15) is minimized
(given |Fλ|) when each subinterval has measure 1

k
|Fλ|; thus

∫
Fλ

∣∣f (t)
∣∣dt � j0!(k − j0)!

k!kk(k + 1)k+1
|Fλ|k+1. (16)

Now |Fλ| is clearly a nondecreasing function of λ; as λ → ∞, it must also be the case that
|Fλ| → |I | (because |f | is bounded on any finite subinterval of I ). Inner and outer regularity of
the Lebesgue measure, coupled with the fact that |{t ∈ I | |f (t)| = λ}| = 0 (solutions to f (t) =
±λ are isolated thanks to the derivative inequality), give that |Fλ| is a continuous function of λ

as well. Therefore, given an arbitrary measurable set E ⊂ I , there exists a unique minimal λ > 0
such that |E| = |Fλ|. But ∫

E

∣∣f (t)
∣∣dt �

∫
E∩Fλ

∣∣f (t)
∣∣dt + λ|E \ Fλ|

since |f (t)| > λ outside Fλ. Since |E| = |Fλ|, |E \ Fλ| = |Fλ \ E|; then

λ|E \ Fλ| �
∫

Fλ\E

∣∣f (t)
∣∣dt.

Therefore, among all measurable sets in I with measure |E|, the integral on the left-hand side of
(14) is minimized for Fλ. Furthermore,

∫
S(E)

|t |k dt = 2−k|E|k+1/(k + 1) (by definition of the
Steiner symmetrization). Combining with (16) gives

∫
E

∣∣f (t)
∣∣dt � 2k j0!(k − j0)!

kk(k + 1)k

∫
S(E)

|t |k
k! dt,

which is precisely the desired inequality. �
At this point, one must impose an ordering on the set of multiindices. Throughout the re-

mainder of this section, the dictionary order on multiindices will be used; that is, given two
multiindices α, β , of length n, one says that α � β if and only if the smallest index i for which
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αi 
= βi (if it exists) satisfies αi < βi . It is an elementary exercise to check that this does, in fact,
define a total ordering on the set of multiindices of a given length, and consequently, any finite
subset Aj of such multiindices has a maximal element.

The next proposition contains the main inequality which will be needed to establish (13). In
essence, it is a generalization of Proposition 2 to higher dimensions. As before the trade-off is
that integrals of (somewhat arbitrary) functions are replaced by integrals of monomials over a
symmetrized set—in this case, the symmetrization is an n-fold symmetrization with respect to
the n coordinate directions (and the order of the symmetrizations is determined by the order on
multiindices that was just chosen).

Proposition 3. For any positive integer n′, and for j = 1, . . . , n′, let Aj be a collection of multi-
indices (of length n) such that #Aj = #A1 < ∞ for all j . For each j , let max(Aj ) be the maximal
element of Aj , and let A′

j := Aj \ {max(Aj )}. Then there exists a constant c depending only on
the max(Aj )’s such that, for any measurable set E ⊂ R

n and any x′ ∈ (Rn)#A1−1,

∫
E

∣∣∣∣∣
n′∏

j=1

VAj
(x, x′)

∣∣∣∣∣dx � c

∣∣∣∣∣
n′∏

j=1

VA′
j
(x′)

∣∣∣∣∣
∫
E∗

∣∣x∑n′
j=1 max(Aj )

∣∣dx,

where
∏

j VAj
is the Vandermonde polynomial associated to A, and E∗ := Sn(· · · (S1(E)) · · ·).

Proof. This lemma follows from repeated application of the sublevel inequality of Proposition 2.

For any k > [max(Aj )]1, it must be true that ∂k

∂xk
1
VAj

(x, x′) = 0. This is because VAj
is linear in

the monomials xα for α ∈Aj ; if the derivative did not vanish, it would contradict the maximality

of max(Aj ). Let β := ∑n′
j=1 max(Aj ). Suppose x = (x1, . . . , xn); by Proposition 2,

∫
χE(x)

∣∣∣∣∣
n′∏

j=1

VAj
(x, x′)

∣∣∣∣∣dx1 � cβ1

∫
χS1(E)(x)

|xβ1
1 |

β1!

∣∣∣∣∣ ∂β1

∂x
β1
1

n′∏
j=1

VAj
(x, x′)

∣∣∣∣∣dx1

since the differentiated quantity on the right-hand side is independent of x1. Repeating for
x2, . . . , xn, it must be the case that

∫
E

∣∣∣∣∣
n′∏

j=1

VAj
(x, x′)

∣∣∣∣∣dx �
n∏

i=1

cβi

∫
E∗

|xβ |
β!

∣∣∣∣∣
(

∂

∂x

)β n′∏
j=1

VAj
(x, x′)

∣∣∣∣∣dx.

The differentiated quantity on the right-hand side is independent of x entirely; moreover, by the
Leibniz rule,

(
∂

∂x

)β n′∏
j=1

VAj
(x, x′) =

∑
· · ·

∑
1 n′

[
n′∏

j=1

β!
γ j !

(
∂

∂x

)γ j

VAj
(x, x′)

]
.

γ +···+γ =β
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Since the multiindices γ j sum to β , and ∂
γ j

x VAj
≡ 0 if γ j > max(Aj ), it follows that all terms

on the right-hand side vanish except for the term γ j = max(Aj ), j = 1, . . . , n′, and hence

∫
E

∣∣∣∣∣
n′∏

j=1

VAj
(x, x′)

∣∣∣∣∣dx �
n∏

i=1

cβi

∣∣∣∣∣
n′∏

j=1

(
∂

∂x

)max(Aj ) VAj
(x, x′)

(max(Aj ))!

∣∣∣∣∣
∫
E∗

∣∣xβ
∣∣dx.

Cramer’s rule dictates that the product in absolute values on the right-hand side is precisely
|∏j VA′

j
(x′)|, completing the proof. �

With the aid of Proposition 3, the desired inequality (13) concerning Vandermonde means is
quickly established. This is precisely the purpose of the following theorem. In the process, the
strengthened spanning condition (referred to in Section 1.2) will be employed. Recall that the
spanning condition already stated is that, for any admissible A, the monomials in A1, . . . ,An′
collectively span R

n as vectors. The strengthened spanning condition goes as follows. Let
α1,k < α2,k < · · · < α#A,k be the ordered enumeration of Ak relative to the dictionary order,
and let βj := ∑n′

j=1 αj,k for j = 1, . . . ,#A. The strengthened spanning condition holds when
β1, . . . , β#A span R

n as vectors. After the proof of Theorem 3, this condition will be examined
more closely, but first comes the main result of this section:

Theorem 3. Let A be an admissible subset of Mn,d ×{1, . . . , n′} which satisfies the strengthened
spanning condition given above. Then (13) holds, that is, there exists a constant c > 0 such that

∫ ∣∣VA(x)
∣∣ #A∏
j=1

∣∣fj (xj )
∣∣dx1 · · ·dx#A � c

#A∏
j=1

‖fj‖Lp(Rn)

for any measurable functions fj , where p := #A
#A+|A| < 1.

Proof. By repeated application of Proposition 3, it follows that there exists some c > 0 such that,
for all measurable sets Ej ⊂ R

n,

∫ ∣∣VA(x)
∣∣ #A∏
j=1

χEj
(xj ) dx � c

#A∏
j=1

∣∣E∗
j

∣∣
1+βj

(using the notation of Section 2.1; here 1 := (1, . . . ,1)). Because the left-hand side is symmetric,
the sets E2, . . . ,E#A may be permuted to obtain a family of inequalities while E1 remains fixed.
Taking the geometric mean of all these inequalities gives that

∫ ∣∣VA(x)
∣∣ #A∏
j=1

χEj
(xj ) dx � c

∣∣E∗
1

∣∣( #A∏
′

#A∏
j=2

∣∣E∗
j

∣∣
1+βj ′

) 1
#A−1
j =2
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(where the observation that |E1|1+β1 = |E1|1 = |E1| has been quietly exploited). Since A is

admissible, |A|1 = ∑#A
j=2 βj , so

∑#A
j=2 1 + βj = (#A − 1 + |A|)1 as well. For any scalars

c2, . . . , c#A,

#A∑
j=2

cj (1 + βj ) =
#A∑
j=2

(
cj + |A|−1

#A∑
k=2

ck

)
βj .

As vectors in R
n, the right-hand side can assume any value for appropriate choice of the cj ’s

(since the matrix with off-diagonal entries |A|−1 and diagonal entries 1 + |A|−1 is invertible).
Therefore, the vectors 1 + βj span R

n as well, and so one may employ Lemma 1 (or more
precisely, inequality (9)) to conclude that

∫ ∣∣VA(x)
∣∣ #A∏
j=1

χEj
(xj ) dx � c

∣∣E∗
1

∣∣ #A∏
j=2

∣∣E∗
j

∣∣1+ |A|
#A−1

(for some new constant c). Recalling |E∗
j | = |Ej |, this inequality becomes a restricted weak-type

estimate for (13). By standard machinery, this estimate may be summed to obtain Lorentz space
inequalities. In this case, the result is that

∫ ∣∣VA(x)
∣∣ #A∏
j=1

∣∣fj (xj )
∣∣dx � c‖f1‖L1(Rn)

#A∏
j=2

‖fj‖Lp1,1(Rn)

where p−1
1 := 1+ |A|

#A−1 . Now the fj ’s are permuted again, this time including f1. The geometric
mean of these permuted inequalities is precisely

∫ ∣∣VA(x)
∣∣ #A∏
j=1

∣∣fj (xj )
∣∣dx � c

#A∏
j=1

‖fj‖
1

#A
L1 ‖fj‖1− 1

#A
Lp1,1 .

By the standard convexity inequalities for Lorentz space quasi-norms, the proof is complete. �
Concerning the strengthened spanning condition: it should be noted that the strengthened

spanning condition depends on the order which is imposed on multiindices. The βj ’s themselves
may change if, for example, one takes a different dictionary ordering on Mn,d (reordering the
coordinate axes, for example). If, however, one is in the situation that Aj = Ak for all j, k, the
strengthened spanning condition reduces to the spanning condition mentioned in the introduction.
This is because each βj is necessarily equal to n′αj for some αj ∈ Aj , and changing the ordering
on Mn,d simply reorders the βj ’s. Situations in which this occurs (and, hence, the two spanning
conditions are equivalent) include that of Theorem 1 and Corollary 2, as well as the case of
codimension 1 averaging operators (n′ = 1).

3. Tensor inequalities

In this section, two propositions are established concerning the relationship (first observed by
Carbery [3]) between strong-type estimates for an operator and restricted weak-type estimates



358 P.T. Gressman / Advances in Mathematics 214 (2007) 344–365
for the tensor products of that operator. Propositions 4 and 5 each shed a small amount of light
on this relationship from different perspectives. The overarching idea is that weak-Lp norms do
not naturally behave well under tensor products, e.g., the weak-Lp(RN) norm of

∏N
j=1 f (xj )

is in general greater than the N th power of the weak-Lp(R) norm of f . If, by chance, there is
some control on the growth of these norms as N → ∞, then one can gain information about the
regularity of f . Conversely, if one has extra information about f it can be possible to control the
growth as N → ∞. Propositions 4 and 5 each establish this principle in one direction; as noted in
the statements themselves, the implications go both ways. To prove the converse of Proposition 5,
one mimics the proof of Proposition 4 and so on. The converses have been omitted only because
they are not necessary here.

To simplify notation throughout the rest of this paper, bold will be used to indicate objects in
a product space. For example, the variable u will, from here on, denote a point in R

A. The bold
version, u, is to be understood as an element of (RA)N . If an operation (which is not bold) is
performed on a tensor (bold) variable, it is to be understood as a component-wise operation. For
example,

πA(t,u) := (
πA

(
t1, u1), . . . , πA

(
tN ,uN

))

where, as noted, u := (u1, . . . , uN) ∈ (RA)N and t := (t1, . . . , tN ) ∈ (Rn)N . Functions which
are not meant to be applied component-wise (i.e., functions which have nontrivial behavior on
product spaces) and sets in product spaces will also be bold.

Proposition 4. The operator TA maps Lp(Rn × R
n′

) to Lq(RA) (1 < p,q < ∞) if (and only
if ) there exists a constant C such that, for all positive integers N ,

∫
(RA)N

TA(χF)(u)χG(u) du � CN |F| 1
p |G|1− 1

q (17)

for all measurable F ⊂ (Rn × R
n′

)N and G ⊂ (RA)N , where TA is the N -fold tensor product
of TA, i.e.,

TAf(u) =
∫

(Rn)N

f
(
πA(t,u)

)
dt.

Proof. Let f ∈ Lp(Rn × R
n′

) and g ∈ Lq ′
(RA); for each integer j , let Fj := {x ∈ R

n × R
n′ |

2j−1 � |f (x)| < 2j } and likewise for Gj . Now, for each positive integer M , let fM(x) :=∑
|j |�M 2jχFj

(x) and so on for gM . The functions fM and gM converge monotonically as
M → ∞ to functions majorizing |f (x)| and |g(x)|, respectively. Therefore (by the monotone
convergence theorem)

∣∣∣∣
∫

TAf (u)g(u)du

∣∣∣∣ � sup
∫

TAfM(u)gM(u)du.

M
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For each fixed M and every positive integer N ,

(∫
TAfM(u)gM(u)du

)N

=
∑

|j |�NM

∑
|j ′|�NM

2j+j ′
∫

TAχFj
(u)χGj ′ (u) du

where Fj := ⋃{Fj1 × · · · × FjN
| j1 + · · · + jn = j, |j1|, . . . , |jN | � M} (and likewise for Gj ′ ).

To see that this is true, simply write the left-hand side as an N -fold product of integrals and group
the terms accordingly. By the hypothesis of this proposition, then,

(∫
TAfM(u)gM(u)du

)N

� CN
∑

|j |�NM

∑
|j ′|�NM

2j+j ′ |Fj |
1
p |Gj ′ | 1

q′ .

Applying Jensen’s inequality to each sum on the right-hand side gives that the right-hand side is
itself dominated by

CN(2NM + 1)
1
p′ + 1

q

( ∑
|j |�NM

2jp|Fj |
) 1

p
( ∑

|j ′|�NM

2j ′q ′ |Gj ′ |
) 1

q′
.

Next observe that the sums over j and j ′ (inside the parentheses) are nothing other than ‖fM‖Np
p

and ‖gM‖Nq ′
q ′ . Taking N th roots and letting N → ∞, it must be the case that

∣∣∣∣
∫

TAf (u)g(u)du

∣∣∣∣ � sup
M

C‖fM‖p‖gM‖q ′ .

But fM(x) � 2|f (x)| and gM(x) � 2|g(x)|, so the right-hand side is dominated by ‖f ‖p‖g‖q ′ .
Therefore the operator TA must be bounded. �
Proposition 5. Let V be any C∞ function on (Rk)m, and let 0 < pj < 1 for j = 1, . . . ,m. Then
there exists a constant c > 0 such that

∫ ∣∣V(x1, . . . ,xm)
∣∣ m∏
j=1

χEj
(xj ) dx1 · · ·dxm � cN

m∏
j=1

|Ej |
1

pj (18)

(where |V(x1, . . . ,xm)| is the component-wise product
∏N

j=1 |V (x
j

1 , . . . , x
j
m)|) for all measur-

able sets Ej ⊂ (Rk)N if (and only if ) there exists a constant c > 0 such that

∫ ∣∣V(x1, . . . , xm)
∣∣ m∏
j=1

∣∣fj (xj )
∣∣dx1 · · ·dxm � c

m∏
j=1

‖fj‖L
pj (Rk) (19)

for all functions fj on R
k .

Proof. On the left-hand side of (18), consider first the integral dx1
1 · · ·dx1

m. By (19), there exists
a constant c such that
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∫ ∣∣V(x1, . . . ,xm)
∣∣ m∏
j=1

χEj
(xj ) dx1

1 · · ·dx1
m

� c

N∏
i=2

∣∣V (
xi

1, . . . , x
i
m

)∣∣ m∏
j=1

(∫ (
χEj

(xj )
)pj dx1

j

) 1
pj

.

This inequality may be integrated with respect to x2
1 , . . . , x2

m; again (19) may be applied. Using
the identity

∥∥∥∥
(∫ (

χEj
(xj )

)pj dx1
j

) 1
pj

∥∥∥∥
L

pj (x2
j )

=
(∫ (

χEj
(xj )

)pj dx1
j dx2

j

) 1
pj

,

one proceeds by induction on N , arriving at (18). �
4. Proof of Theorem 2

With the machinery of the previous sections in hand, the proof of Theorem 2 may now be
undertaken. By Proposition 4, it suffices to show that the uniform estimate (17) holds. This
section is devoted to the proof of (17).

Throughout this section, the variable t will represent a point in R
n, and u will represent a

point in R
A. For any s ∈ R

n, let ϕs
l : Rn × R

A → R
n × R

A be given by

ϕs
l (t, u) := (t + s, u). (20)

Let A◦ := A \ {(0, j)}j=1,...,n′ . For x ∈ R
A◦

, let ϕ̂x
r be the function from R

n × R
A to R

A with
components

ϕ̂x
r (t, u)(α,j) :=

{
u(0,j) − ∑

β∈A◦
j
xβ tβ, α = 0,

u(α,j) + x(α,j), α 
= 0,

for any (α, j) ∈A. Similarly, let ϕx
r : Rn × R

A → R
n × R

A be given by

ϕx
r (t, u) := (

t, ϕ̂x
r (t, u)

)
. (21)

These maps ϕs
l and ϕx

r are nothing more than the kernel flow maps which appear in the work of
Tao and Wright [13], for example. An important feature which distinguishes this proof from Tao
and Wright’s earlier work is that the flows ϕs

l and ϕx
l may be multidimensional flows.

Just as in the work of Christ [5], one of the major components of this proof is a change-of-
variables argument involving a Jacobian determinant of a repeated composition of flow maps. In
that case, the structure of the composition was fairly straightforward (arising from the repeated
composition (T ∗T )n/2). Here, in contrast, the flows are more complicated, and the change-of-
variables argument takes place in a “lifted” space (as also occurs for X-ray like transforms [9]).
For any measurable set F ⊂ R

n × R
n′

, let

IA[F ](t, u) :=
∫ ∣∣VA(t, t + s)

∣∣ #A−1∏
χF

(
πAϕ

sj
l ϕx

r (t, u)
)
ds dx (22)
j=1
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where |VA(t, t + s)| := |VA(t, t + s1, . . . , t + s#A−1)|. This functional is the centerpiece of the
change-of-variables argument, as demonstrated by the following proposition:

Proposition 6. For any (t, u) ∈ R
n × R

A and any measurable F ⊂ R
n × R

n′
,

IA[F ](t, u) = |F |#A−1.

Furthermore, for any (t,u) ∈ (Rn)N × (RA)N and any measurable F ⊂ (Rn × R
n′

)N ,

IA[F](t,u) = |F|#A−1,

where IA is the N -fold tensor product of IA.

Proof. For each k = 1, . . . , n′, let φk,s,t,u : RA◦
k → R

#A−1 be the map with components

φ
k,s,t,u
j (x) := u(0,k) +

∑
α∈A◦

k

x(α,k)

[
(t + sj )

α − tα
] + u(α,k)(t + sj )

α

for j = 1, . . . ,#A − 1. The dimensionality constraint on A guarantees that φk,s,t,u is a map
between spaces of the same dimension when s, t, and u are fixed. The Jacobian matrix of φk,s,t,u

has as its (j, (α, k))-entry (t + sj )
α − tα (that is, in the j th row and the column corresponding to

(α, k)). The absolute value of the determinant is precisely |Vk(t, t + s)|, defined at the beginning
of Section 2.2; to see this, simply note that the former determinant can be obtained from the
latter by subtracting the t-row from all remaining rows. Now, in the x-integral appearing in (22),
make the changes of variables yk := φk,s,t,u(x). This is permitted for almost every s since VA
vanishes on a closed set of measure zero (and each φk,s,t,u depends on different x-variables).
Direct computation shows that

πAϕ
sj
l ϕx

r (t, u) = (
t + sj ,

(
φ

k,s,t,u
j (x)

)
k=1,...,n′

)
.

It follows that

IA[F ](t, u) =
∫ #A−1∏

j=1

χF

(
t + sj , (y1j , . . . , yn′j )

)
ds dy.

After a trivial change of variables, the right-hand side is easily seen to equal |F |#A−1.
As for the functional IA, the exact same changes of variables can be performed on each of the

factors, giving the same conclusion as in the single factor case. �
Before proceeding, it is useful to recall the isoperimetric formulation of restricted weak-type

estimates as introduced by Tao and Wright [13]. Given measurable sets F ⊂ (Rn × R
n′

)N and
G ⊂ (RA)N , let � be the subset of (Rn × R

n′ × R
A)N given by

χ�(t,u) := χF
(
πA(t,u)

)
χG(u).
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By Proposition 4, to prove Theorem 2, it suffices to show that there is a constant C < ∞ inde-
pendent of N , F, G, and � such that

|�| � CN |F| #A
#A+|A| |G|1− 1

#A+|A| . (23)

This inequality will be established via a careful analysis of the functional IA. By Proposition 6,
one has the identity

|F|#A−1|�| =
∫

IA[F](t,u)χ�(t,u) dtdu.

Using the definition of IA and Fubini’s theorem, the order of integration can be changed so that
the integration in t and u comes before the integrals in the sj ’s and x. Next make the change of
variables (t,u) → ϕ−x

r (t,u). This is simply a translation of the u’s, so the Jacobian determinant
must equal exactly 1.Thus |F|#A−1|�| is exactly equal to

∫ [∫ ∣∣VA(t, t + s)
∣∣ #A−1∏

j=1

χF
(
πAϕ

sj
l (t,u)

)
ds

][∫
χ�

(
ϕx

r (t,u)
)
dx

]
dtdu (24)

(where the integrals have again been reordered and the change x → −x has been made). The fol-
lowing proposition will be used to estimate the second term in brackets in (24) so that Theorem 3
can be applied via Proposition 5:

Proposition 7. There exists a nonempty subset F′ ⊂ F such that

[∫
χ�

(
ϕx

r (t,u)
)
dx

]
� 1

2

|�|
|F| χF′

(
πA(t,u)

)
(25)

and, for any p � 1,

∫ (∫
χF′

(
πA(t,u)

)
dt

)p

χG(u) du �
(

1

2

|�|
|G|

)p

|G|. (26)

Proof. By definition of � and the fact that πAϕx
r (t, u) = πA(t, u), it must be the case that, for

each pair (t,u),

∫
χ�

(
ϕx

r (t,u)
)
dx = χF

(
πA(t,u)

) ∫
χG

(
ϕ̂x

r (t,u)
)
dx.

Let F′ be the subset of F such that

χF′
(
πA(t,u)

) ∫
χG

(
ϕ̂x

r (t,u)
)
dx � 1 |�|

χF′
(
πA(t,u)

); (27)

2 |F|
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F′ is well defined because the integral over χG depends only on πA(t,u), not on (t,u) itself.
Because F′ ⊂ F, the left-hand side of (25) is greater than the left-hand side of (27); thus (25) is
vacuously true in this case. On the other hand, it must also be the case that

χF\F′
(
πA(t,u)

) ∫
χG

(
ϕ̂x

r (t,u)
)
dx � 1

2

|�|
|F| χF\F′

(
πA(t,u)

)
.

Now integrate both sides with respect to t and u(0,1), . . . ,u(0,n′) (and only these particular u’s;
the rest are left fixed). A change of variables can now be made on both sides. On the left, the
change to be made is (t′,u′) := ϕx

r (t,u) (that is, t′,u′ depend on x, t and the u(0,j)’s); on the
right, the change is y := πA(t,u). Both changes are volume preserving, giving

∫
χF\F′

(
πA(t′,u′)

)
χG(u′) dt′ du′ � 1

2

|�|
|F| |F \ F′|.

Subtracting both sides from |�| gives (26) for p = 1. Applying Jensen’s inequality gives all
remaining p. �

The proof of Theorem 2 concludes as follows: combining the previous proposition with the
identity (24), it follows that |F|#A−1|�| is greater than or equal to

1

2

|�|
|F|

∫ [∫ ∣∣VA(t, t + s)
∣∣χF′

(
πA(t,u)

) #A−1∏
j=1

χF
(
πAϕ

sj
l (t,u)

)
dsdt

]
χG(u) du.

Observe that πAϕ
sj
l (t,u) = πA(t + sj ,u); thus by Theorem 3 and Proposition 5, there is a con-

stant c > 0 which is independent of F, G, �, and N such that the quantity in brackets is at
least

cN

(∫
χF′

(
πA(t,u)

)
dt

)#A+|A|

for each value of u (since F may be everywhere replaced by F′ with impunity). Now by (26), it
follows that

|F|#A−1|�| � cN

2

|�|
|F|

(
1

2

|�|
|G|

)#A+|A|
|G|,

which is precisely of the desired form (23) after elementary manipulations.

5. Necessity

5.1. Admissibility criteria

An important condition of Theorem 2 is that the set A be admissible. As mentioned in the
introduction, many of the admissibility criteria are, in fact, necessary for Lp boundedness to
hold in any form at all. By scaling, it is fairly straightforward to see that the dimensionality and
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scaling assumptions are necessary, and that only one global Lp → Lq estimate can hold. Let
δ ∈ R

n+ and δ′ ∈ R
n′
+ . For any function f on R

n × R
n′

, the (δ, δ′) dilation of f is defined to be

fδ,δ′(s,w) := f
(
t1δ1, . . . , tnδn,w1δ

′
1, . . . ,wn′δ′

n′
)
.

Likewise, for any function g on the parameter space, let

gδ,δ′
(u) := δ−1g

({
δ′
j δ

−αu(α,j)

}
(α,j)∈A

)
,

where 1 is the multiindex (1, . . . ,1). The standard change-of-variables argument shows that
TA(fδ,δ′) = (TAf )δ,δ

′
. Furthermore,

‖fδ,δ′‖p = δ
− 1

p
1
δ′− 1

p
1‖f ‖p and

∥∥gδ,δ′∥∥
q

= δ
−1+ 1

q
v
δ′− 1

q
v′‖g‖q,

where v := ∑
(α,j)∈A α and v′ := (v′

1, . . . , v
′
n′) with vj equal to the cardinality of Aj . By the

usual arguments, for any Lp → Lq estimate to hold, it must be the case that

v

q
=

(
1 − 1

p

)
1 and

v′

q
= 1

p
.

Thus the scaling and dimensionality conditions on A are necessary for TA to be bounded at all,
and when satisfied, TA can map Lp → Lq only when p = |A|+#A

#A and q = |A| + #A.
Next, consider what happens when A fails to satisfy the (weak) spanning condition; that is,

suppose that the monomials in A := ⋃
j Aj span only some subspace of R

n (when interpreted
as vectors). Let β1, . . . , βm be linearly independent monomials which span the same subspace
as

⋃
j Aj , and let βm+1, . . . , βn be linearly independent vectors such that β1, . . . , βn span R

n.

Now let ER ⊂ R
n be the set on which 1 � |xβj | � 2 for j = 1, . . . ,m and 1 � |xβj | � R for

j = m + 1, . . . , n. To compute the measure of this set use the change-of-variables yj := xβj , as
in Proposition 1. One obtains |ER| = C|lnR|n−m. Now let fR be the characteristic function on
R

n ×R
n′

of the set ER times the ball of radius 1 centered at the origin in R
n′

. For all u sufficiently
near zero, TAfR(u) also grows like |lnR|n−m (since

∑
u(α,j)t

α will be bounded for all t ∈ ER).
If it is to be the case that ‖TAfR‖q � C‖fR‖p , taking R → ∞ shows that p must be less than
q . This, however, cannot happen because of the dimensionality and scaling conditions.

5.2. Local Lp estimates of Theorem 1

To conclude, consider the necessity claims of Theorem 1. The necessary constraints on global
boundedness of Tn,n′,d are easily established by the same scaling argument used to demonstrate
the necessity of the dimensionality and scaling conditions. The only new feature of Theorem 1
not present in Theorem 2 is the claim concerning local Lp estimates.

For each δ > 0, let Fδ ⊂ R
n × R

n′
and Gδ ⊂ (Rn′

)Mn,d be given by Fδ := {(t, s) | |tj | � δ,

|sk| � Cδl} and Gδ := {u | |u(α,j)| � δmax{l−|α|,0}} (for some fixed constant C). Elementary
counting shows that |Fδ| = Cn′

δn+n′l and |Gδ| = δK , where K := n′(n+l
n+1

)
. If C is fixed suit-

ably large, it will be the case that
∫
Gδ

Tn,n′,dχFδ = δn|Gδ| since |∑|α|�d u(α,j)t
α| � Cδl for

all u ∈ Gδ . If T is to be bounded from Lp to Lq , it must therefore be the case that δn|Gδ| �
C′|Fδ|1/p|Gδ|1/q ′

. Letting δ → 0, the inequality can hold for some C′ only when the exponent
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of δ on the left-hand side is greater than the exponent on the right. This gives the necessary
inequalities

n + n′

q

(
n + l

n + 1

)
� n + ln′

p
(28)

for l = 1, . . . , d .
Finally, let F ′

δ := {(t, s) | |tj | � 1, |sk| � Cδ} and G′
δ := {u | |u(α,j)| � δ}. In this case,

|F ′
δ| = Cn′

δn′
and |G′

δ| = δK ′
where K ′ := n′(n+d

d

)
. Proceeding as before, it follows that∫

G′
δ
Tn,n′,dχF ′

δ
= |G′

δ|, and after computing exponents, that

n′

q

(
n + d

d

)
� n′

p
. (29)

The constraints (28) combined with (29) give precisely the necessity conditions of Theorem 1,
illustrated in Fig. 1.
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