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1. Introduction

This work is a continuation of [4] where we began to develop a construction of algebraic
Frobenius manifolds from Drinfeld–Sokolov reduction to support a Dubrovin conjecture.

A Frobenius manifold is a manifold M with the structure of Frobenius algebra on the tangent
space Tt at any point t ∈ M with certain compatibility conditions [7]. We say M is semisimple
or massive if Tt is semisimple for generic t . This structure locally corresponds to a potential
satisfying a system of partial differential equations known in topological field theory as the
Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations. We say M is algebraic if, in the flat
coordinates, the potential is an algebraic function. Dubrovin conjecture is stated as follows:
Semisimple irreducible algebraic Frobenius manifolds with positive degrees correspond to quasi-
Coxeter (primitive) conjugacy classes in finite Coxeter groups. We discussed in [4] how the
examples of algebraic Frobenius manifolds constructed from Drinfeld–Sokolov reduction sup-
port this conjecture.

Let e be a regular nilpotent element in a simple Lie algebra g over C of rank r . By definition
a nilpotent element is called regular if its centralizer in g is of dimension r . We fix, by using
the Jacobson–Morozov theorem, a semisimple element h and a nilpotent element f such that
A = {e,h,f } is an sl2-triple. Then A is called regular sl2-triple. Let κ + 1 be the Coxeter
number of g. We prove the following

Theorem 1.1. The Slodowy slice

Q′ := e + ker adf (1.1)

has a natural structure of polynomial Frobenius manifold of degree κ−1
κ+1 .

By natural structure we mean that it can be formulated entirely in terms of the representation
theory of the regular sl2-triple A along with the closely related opposite Cartan subalgebra. Let
us recall some structures related to A. The element h ∈ A defines a Z-grading on g called the
Dynkin grading given as follows

g =
⊕
i∈Z

gi , gi = {
q ∈ g: adh(q) = iq

}
. (1.2)

Fix nonzero element a ∈ g−2κ . Then it follows from the work of Kostant [17] that y1 = e +
a is regular semisimple. The Cartan subalgebra h′ = ker ady1 is called the opposite Cartan
subalgebra and it is one of the main ingredients in our work. Let

1 = η1 � η2 � · · · � ηr−1 < ηr = κ (1.3)

be the exponents of g. Then the element y1 can be completed to a basis y1, . . . , yr for h′ having
the form
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yi = vi + ui, ui ∈ g2ηi
, vi ∈ g2ηi−2(κ+1). (1.4)

We define the coordinates (z1, . . . , zr ) on Q′ by setting for q ∈ Q′

zi(q) := 〈q|ui〉. (1.5)

Here 〈.|.〉 is the invariant bilinear form on g normalized such that 〈e|f 〉 = 1.
Our main idea is to use the theory of local bihamiltonian structures on a loop space to construct

the polynomial Frobenius manifold on Q′. Recall that a bihamiltonian structure on a manifold
M is two compatible Poisson brackets on M . It is well known that the dispersionless limit of a
local bihamiltonian structure on the loop space L(M) of a finite dimensional manifold M (if it
exists) always gives a bihamiltonian structure of hydrodynamic type on L(M):

{
t i (x), tj (y)

}
1 = g

ij

1

(
t (x)

)
δ′(x − y) + Γ

ij

1;k
(
t (x)

)
tkx δ(x − y),{

t i (x), tj (y)
}

2 = g
ij

2

(
t (x)

)
δ′(x − y) + Γ

ij

2;k
(
t (x)

)
tkx δ(x − y). (1.6)

This gives a flat pencil of metrics g
ij

1,2 on M provided that the two matrices g
ij

1 and g
ij

2 are non-
degenerate. A flat pencil of metrics, under the quasihomogeneity and the regularity conditions,
corresponds to a Frobenius structure on M [9] (see Section 2.1 for details).

We obtain a bihamiltonian structure on the affine loop space

Q = e + L(ker adf ) (1.7)

by using the Drinfeld–Sokolov reduction [6] (see also [4] or [15]). This reduction depends only
on the representation theory of A. It begins by defining a bihamiltonian structure P1 and P2
in L(g). The Poisson structure P2 is the standard Lie–Poisson structure and P1 depends on the
adjoint action of a. Main while, the space Q will be transversal to an action of the adjoint group
of L(n) on a suitable affine subspace

S := e + L(b) (1.8)

of L(g). Here

n :=
⊕
i�−2

gi , b :=
⊕
i�0

gi . (1.9)

It turns out that the space of local functionals with densities in the ring R of invariant differ-
ential polynomials of this action is closed under P1 and P2. This defines the Drinfeld–Sokolov
bihamiltonian structure P

Q
1 and P

Q
2 on Q since the coordinates zi(x) of Q can be interpreted as

generators of the ring R. The second reduced Poisson structure on Q is known in the literature
as classical W -algebras associated to principal nilpotent elements in g. Therefore, we call it
regular classical W -algebras. For a general definition for classical W -algebras see [16]. In [1]
they proved the Drinfeld–Sokolov reduction of P2 on Q is the same as Dirac reduction of P2
to Q. In particular, they obtained the following
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Proposition 1.2. (See [1].) The second Poisson bracket on Q take the form

{
z1(x), z1(y)

}Q

2 = εδ′′′(x − y) + 2z1(x)δ′(x − y) + z1
xδ(x − y),{

z1(x), zi(y)
}Q

2 = (ηi + 1)zi(x)δ′(x − y) + ηiz
i
xδ(x − y). (1.10)

We use this result and some facts about the structure of Lie–Poisson brackets on g to prove
the following

Theorem 1.3. The Drinfeld–Sokolov bihamiltonian structure on Q admits a dispersionless limit.
The corresponding bihamiltonian structure of hydrodynamic type gives a flat pencil of metrics
on the Slodowy slice Q′.

A large portion of this work is devoted to prove the nondegeneracy condition for the matrices
g

ij

1 and g
ij

2 obtained from the dispersionless limit of P
Q
1 and P

Q
2 , respectively. For this end we

use mainly two facts. First, the basis yi for h′ can be normalized in such away that the elements
ui in (1.4) are the highest weight vectors for irreducible A-submodules V i satisfying

g =
r⊕

i=1

V i,
〈
V i

∣∣V j
〉 = 0 if i �= j. (1.11)

Using this decomposition we introduce a basis

Xi
I ; i = 1, . . . , r; I = −ηi,−ηi + 1, . . . , ηi (1.12)

for g compatible with the adjoint action of A. Second, in the coordinates corresponding to this
basis Xi

I , it is very easy to obtain the linear terms of the generators zi(x) written as differential
polynomials in the coordinates of S. In the end we are able to prove

Proposition 1.4. The matrix g
ij

1 is nondegenerate and its determinant is equal to the determinant
of the matrix Aij = 〈yi |yj 〉.

The nondegeneracy condition for g
ij

2 will follow from a certain differential relation between
the entries of two matrices. Namely we have

∂zr g
ij

2 = g
ij

1 . (1.13)

The quasihomogeneity and the regularity conditions for the flat pencil of metrics fellows from
Proposition 1.2 and the quasihomogeneity of the entries of g

ij

2 when we assign degree 2ηi + 2
to zi . Finally we get the promised polynomial Frobenius manifold by using the work of [9].

We mention that from the work of Dubrovin [8] and Hertling [13] semisimple polynomial
Frobenius manifolds with positive degrees are already classified. They correspond to Coxeter
conjugacy classes in Coxeter groups. Dubrovin constructed all these polynomial Frobenius man-
ifolds on the orbit spaces of Coxeter groups using the results of [20]. There is another method to
obtain the classical W -algebra associated to regular nilpotent elements known in the literature as
Miura type transformation [6]. It was used in [12] (see also [5]) to prove that the dispersionless
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limit of the Drinfeld–Sokolov bihamiltonian structure gives the polynomial Frobenius manifold
defined on the orbit space of the corresponding Weyl group [8]. The proof depends also on the
invariant theory of Coxeter groups. In the present work we give a new method to obtain poly-
nomial Frobenius manifolds from the Drinfeld–Sokolov reduction which depending only on the
representation theory of principal sl2-triples.

2. Preliminaries

2.1. Frobenius manifolds and local bihamiltonian structures

Starting we want to recall some definitions and review the construction of Frobenius manifolds
from local bihamiltonian structure of hydrodynamics type.

A Frobenius manifold is a manifold M with the structure of Frobenius algebra on the tangent
space Tt at any point t ∈ M with certain compatibility conditions [7]. This structure locally
corresponds to a potential F(t1, . . . , t r ) satisfying the WDVV equations

∂ti ∂tj ∂tkF(t)ηkp∂tp∂tq ∂tnF(t) = ∂tn∂tj ∂tkF(t)ηkp∂tp∂tq ∂ti F(t) (2.1)

where (η−1)ij = ∂tr ∂ti ∂tj F(t) is a constant matrix. Here we assume that the quasihomogeneity
condition takes the form

r∑
i=1

diti∂ti F(t) = (3 − d)F(t) (2.2)

where dr = 1. This condition defines the degrees di and the charge d of the Frobenius structure
on M . If F(t) is an algebraic function we call M an algebraic Frobenius manifold.

Let L(M) denote the loop space of M , i.e. the space of smooth maps from the circle to M .
A local Poisson bracket {.,.}1 on L(M) can be written in the form [11]

{
ui(x), uj (y)

}
1 =

∞∑
k=−1

εk
{
ui(x), uj (y)

}[k]
1 . (2.3)

Here ε is just a parameter and

{
ui(x), uj (y)

}[k]
1 =

k+1∑
s=0

A
i,j
k,sδ

(k−s+1)(x − y), (2.4)

where A
i,j
k,s are homogeneous polynomials in ∂

j
x ui(x) of degree s (we assign degree j to ∂

j
x ui(x))

and δ(x − y) is the Dirac delta function defined by

∫
S1

f (y)δ(x − y)dy = f (x).

The first terms can be written as follows
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{
ui(x), uj (y)

}[−1]
1 = F

ij

1

(
u(x)

)
δ(x − y), (2.5){

ui(x), uj (y)
}[0]

1 = g
ij

1

(
u(x)

)
δ′(x − y) + Γ

ij

1k

(
u(x)

)
uk

xδ(x − y). (2.6)

Here the entries g
ij

1 (u), F ij

1 (u) and Γ
ij

1k (u) are smooth functions on the finite dimension space M .

We note that, under the change of coordinates on M the matrices g
ij

1 (u), F
ij

1 (u) change as a
(2,0)-tensors.

The matrix F
ij

1 (u) defines a Poisson structure on M . If F
ij

1 (u(x)) = 0 and {ui(x), uj (y)}[0]
1 �=

0 we say the Poisson bracket admits a dispersionless limit. If the Poisson bracket admits a dis-
persionless limit then {ui(x), uj (y)}[0]

1 defines a Poisson bracket on L(M) known as Poisson
bracket of hydrodynamic type. By nondegenerate Poisson bracket of hydrodynamic type we
mean those with the matrix g

ij

1 is nondegenerate. In this case the matrix g
ij

1 (u) defines a con-

travariant flat metric on the cotangent space T ∗M and Γ
ij

1k (u) is its contravariant Levi-Civita
connection [10].

Assume there are two Poisson structures {.,.}2 and {.,.}1 on L(M) which form a bihamiltonian
structure, i.e. {.,.}λ := {.,.}2 + λ{.,.}1 is a Poisson structure on L(M) for every λ. Consider the
notations for the leading terms of {.,.}1 given above and write the leading terms of {.,.}2 in the
form

{
ui(x), uj (y)

}[−1]
2 = F

ij

2

(
u(x)

)
δ(x − y), (2.7){

ui(x), uj (y)
}[0]

2 = g
ij

2

(
u(x)

)
δ′(x − y) + Γ

ij

2k

(
u(x)

)
uk

xδ(x − y). (2.8)

Suppose that {.,.}1 and {.,.}2 admit a dispersionless limit. In addition, assume the corresponding
Poisson brackets of hydrodynamics type are nondegenerate as well as the dispersionless limit
of {.,.}λ for generic λ. Then by definition g

ij

1 (u) and g
ij

2 (u) form what is called flat pencil of

metrics [9], i.e. g
ij
λ (u) := g

ij

2 (u) + λg
ij

1 (u) defines a flat metric on T ∗M for generic λ and its

Levi-Civita connection is given by Γ
ij
λk(u) = Γ

ij

2k (u) + λΓ
ij

1k (u).

Definition 2.1. A contravariant flat pencil of metrics on a manifold M defined by the matrices
g

ij

1 and g
ij

2 is called quasihomogeneous of degree d if there exists a function τ on M such that
the vector fields

E := ∇2τ, Ei = gis
2 ∂sτ,

e := ∇1τ, ei = gis
1 ∂sτ (2.9)

satisfy the following properties

(i) [e,E] = e.
(ii) LE( , )2 = (d − 1)( , )2.

(iii) Le( , )2 = ( , )1.
(iv) Le( , )1 = 0.
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Here for example LE denote the Lie derivative along the vector field E and ( , )1 denote the
metric defined by the matrix g

ij

1 . In addition, the quasihomogeneous flat pencil of metrics is
called regular if the (1,1)-tensor

R
j
i = d − 1

2
δ
j
i + ∇1iE

j (2.10)

is nondegenerate on M .

The connection between the theory of Frobenius manifolds and flat pencil of metrics is en-
coded in the following theorem

Theorem 2.2. (See [9].) A contravariant quasihomogeneous regular flat pencil of metrics of
degree d on a manifold M defines a Frobenius structure on M of the same degree.

It is well known that from a Frobenius manifold we always have a flat pencil of metrics but
it does not necessary satisfy the regularity condition (2.10). In the notations of (2.1) from a
Frobenius structure on M , the flat pencil of metrics is found from the relations

ηij = g
ij

1 ,

g
ij

2 = (d − 1 + di + dj )η
iαηjβ∂tα ∂tβ F. (2.11)

This flat pencil of metric is quasihomogeneous of degree d with τ = t1. Furthermore we have

E =
∑

i

di t
i∂ti , e = ∂tr . (2.12)

2.2. Regular nilpotent element and opposite Cartan subalgebra

We review some facts about regular nilpotent elements in simple Lie algebra we need to
perform the Drinfeld–Sokolov reduction. In particular, we recall the concept of the opposite
Cartan subalgebra and we introduce a particular basis for g compatible with the action of a given
regular sl2-triple.

Let g be a simple Lie algebra over C of rank r . We fix a regular nilpotent element e ∈ g. By
definition a nilpotent element is called regular if ge := ker ad e has dimension equals to r . Using
the Jacobson–Morozov theorem we fix a semisimple element h and a nilpotent element f in g

such that {e,h,f } generate sl2 subalgebra A ⊂ g, i.e.

[h, e] = 2e, [h,f ] = −2f, [e, f ] = h. (2.13)

Then A is called regular sl2-triple. We normalize the invariant bilinear from 〈.|.〉 on g such that
〈e|f 〉 = 1. The affine space

Q′ = e + gf (2.14)

is called the Slodowy slice. Let
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1 = η1 < η2 � η3 � · · · � ηr−1 < ηr (2.15)

the exponents of the Lie algebra g. We will refer to the number ηr by κ . Recall that κ + 1 is the
Coxeter number of g and the exponents satisfy the relation

ηi + ηr−i+1 = κ + 1. (2.16)

We also recall that for all simple Lie algebras the exponents are different except for the Lie
algebra of type D2n the exponent n − 1 appears twice.

Consider the restriction of the adjoint representation of g to A. Under this restriction g de-
composes to irreducible A-submodules

g =
⊕

V i (2.17)

with dimV i = 2ηi +1 [14]. We normalize this decomposition by using the following proposition

Proposition 2.3. There exists a decomposition of g into a sum of irreducible A-submodules
g = ⊕r

i=1 V i in such a way that there is a basis Xi
I , I = −ηi,−ηi + 1, . . . , ηi in each V i ,

i = 1, . . . , r satisfying the following relations

Xi
I = 1

(ηi + I )! ad eηi+IXi−ηi
, I = −ηi,−ηi + 1, . . . , ηi (2.18)

and

〈
Xi

I ,X
j
J

〉 = δi,j δI,−J (−1)ηi−I+1
(

2ηi

ηi − I

)
. (2.19)

Furthermore

adhXi
I = 2IXi

I ,

ad eXi
I = (ηi + I + 1)Xi

I+1,

adf Xi
I = (ηi − I + 1)Xi

I−1. (2.20)

Proof. The proof that one could compose the Lie algebra as irreducible A-submodules satisfy-
ing (2.18) and (2.20) is standard and can be found in [14] or [17]. Let g = ⊕r

i=1 V i be such
decomposition. It is easy to prove 〈V i |V j 〉 = 0 in the case ηi �= ηj by applying the step oper-
ators ad e and using the invariance of the bilinear form. Hence the proof is reduced to the case
of irreducible A-submodules of the same dimension. But there is at most two irreducible sub-
modules of the same dimension. Assume V i1 and V i2 have the same dimension and denote the
corresponding basis X

i1
I and X

i1
J , respectively. Then one can prove by using the step operator ad e

that the subspaces V i1 and V i2 are orthogonal if and only if 〈Xi1
0 |Xi2

0 〉 = 0. But it obvious that

the restriction of the invariant bilinear form to X
i1
0 and X

i2
0 is nondegenerate. Hence by applying

the Gram–Schmidt procedure we can assume that 〈Xi1 |Xi2〉 = 0. Therefore, we can assume that
0 0
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the given decomposition satisfying 〈V i |V j 〉 = 0 if i �= j . It remains to obtain the normalization
(2.19). From the invariance of the bilinear form we have

〈
h.Xi

I

∣∣Xi
J

〉 = (2I )
〈
Xi

I

∣∣Xi
J

〉
(2.21)

while

−〈
Xi

I

∣∣h.Xi
J

〉 = −(2J )
〈
Xi

I

∣∣Xi
J

〉
. (2.22)

Therefore 〈Xi
I |Xj

J 〉 = 0 if I + J �= 0. We calculate using the step operator ad e where I � 0 the
value

〈
Xi

I

∣∣Xi
−I

〉 = 1

(ηi − I )

〈
Xi

I

∣∣e.Xi
−I−1

〉
= −1

ηi − I

〈
e.Xi

I

∣∣Xi
−I−1

〉
= (−1)(ηi − I + 1)

ηi − I

〈
Xi

I+1

∣∣Xi
−I−1

〉

= (−1)ηi−I (ηi − I + 1)(ηi − I + 2) . . .2ηi

(ηi − I )(ηi − I − 1) . . . (1)

〈
Xi

ηi

∣∣Xi−ηi

〉
= (−1)ηi−I

(
2ηi

ηi − I

)〈
Xi

ηi

∣∣Xi−ηi

〉
. (2.23)

The result follows by multiplying Xi
I by the value of −〈Xi

ηi
|Xi−ηi

〉−1. We note that the formula
(2.19) will give the same result when replacing I with −I . This ends the proof. �

Note that the normalized basis for V 1 are X1
1 = −e, X1

0 = h, X1−1 = f since it is isomorphic
to A as a vector subspace.

The element h defines a Z-grading on g called the Dynkin grading given as follows

g =
⊕
i∈Z

gi , gi = {
q ∈ g: adh(q) = iq

}
. (2.24)

It is well known that gi = 0 if i is odd and

b =
⊕
i�0

gi (2.25)

is a Borel subalgebra with

n =
⊕
i�−2

gi = [b,b] (2.26)

is a nilpotent subalgebra. Note that the subalgebra gf has a basis Xi−η , i = 1, . . . , r and

i
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b = gf ⊕ ad e(n). (2.27)

Hence Q′ is transversal to the orbit of e under the adjoint group action.
In order to introduce the concept of opposite Cartan subalgebra we need to summarize Kostant

results about the relation between the regular nilpotent element e and Coxeter conjugacy class in
Weyl group of g.

Theorem 2.4. (See [17].) The element y1 = e+Xr−2κ is regular semisimple. Denote h′ the Cartan
subalgebra containing y1, i.e. h′ := ker ady1 and consider the adjoint group element w defined
by w := exp π i

κ+1 adh. Then w acts on h′ as a representative of the Coxeter conjugacy class in the
Weyl group acting on h′. Furthermore, the element y1 can be completed to a basis yi, i = 1, . . . , r

for h′ having the form

yi = vi + ui, ui ∈ g2ηi
, vi ∈ g2ηi−2(κ+1)

and such that yi is an eigenvector of w with eigenvalue exp 2π iηi

κ+1 .

Remark 2.5. Kostant proved this theorem by writing the regular nilpotent element e as the sum
of the root vectors corresponding to simple roots. It will follow then Xr−2κ is a constant multipli-
cation of the root vector corresponding to the negative of the maximum root. These assumptions
will follow easily if we choose the root vectors with respect to the Cartan subalgebra h contains
h and ordering the roots with respect to h [2].

Let a denote the element Xr−2κ . The element y1 = e + a is called a cyclic element and the
Cartan subalgebra h′ = ker ady1 is called the opposite Cartan subalgebra. We fix a basis yi for
h′ satisfying the theorem above. It is easy to see that ui, i = 1, . . . , r form a homogeneous basis
for ge . We assume the basis yi is normalized such that

ui = −Xi
ηi

. (2.28)

Form construction this normalization does not effect y1.
Let us define the matrix of the invariant bilinear form on h′

Aij := 〈yi

∣∣yj 〉 = −〈
Xi

ηi

∣∣vj

〉 − 〈
vi

∣∣Xi
ηj

〉
, i, j = 1, . . . , r. (2.29)

The following proposition summarizes some useful properties we need in the following sections.

Proposition 2.6. The matrix Aij is nondegenerate and antidiagonal with respect to the exponents
ηi , i.e. Aij = 0, if ηi + ηj �= κ + 1. Moreover, the commutators of a and Xi

ηi
satisfy the relations

〈[a,Xi
ηi

]|Xj

ηj −1〉
2ηj

+ 〈[a,X
j
ηj

]|Xi
ηi−1〉

2ηi

= Aij (2.30)

for all i, j = 1, . . . , r .
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Proof. The matrix Aij is nondegenerate since the restriction of the invariant bilinear form to a
Cartan subalgebra is nondegenerate. The fact that it is antidiagonal with respect to the exponents
follows from the identity

〈yi |yj 〉 = 〈wyi |wyj 〉 = exp
(ηi + ηj )π i

κ + 1
〈yi |yj 〉 (2.31)

where w := exp π i
κ+1 adh. For the second part of the proposition we note that the commutator of

y1 = e + a and yi = vi − Xi
ηi

gives the relation

[e, vi] = [
a,Xi

ηi

]
, i = 1, . . . , r. (2.32)

Which in turn gives the following equality for every i, j = 1, . . . , r

〈[
a,Xi

ηi

]∣∣Xj

ηj −1

〉 = 〈[e, vi]
∣∣Xj

ηj −1

〉 = −〈
vi

∣∣[e,Xj

ηj −1

]〉
= −2ηj

〈
vi

∣∣Xj
ηj

〉
(2.33)

but then

〈[a,Xi
ηi

]|Xj

ηj −1〉
2ηj

+ 〈[a,X
j
ηj

]|Xi
ηi−1〉

2ηi

= −〈
vi

∣∣Xj
ηj

〉 − 〈
vj

∣∣Xi
ηi

〉 = Aij . � (2.34)

3. Drinfeld–Sokolov reduction

We will review the standard Drinfeld–Sokolov reduction associated with the regular nilpotent
element [6] (see also [4]).

We introduce the following bilinear form on the loop algebra L(g):

(u|v) =
∫
S1

〈
u(x)

∣∣v(x)
〉
dx, u, v ∈ L(g), (3.1)

and we identify L(g) with L(g)∗ by means of this bilinear form. For a functional F on L(g) we
define the gradient δF (q) to be the unique element in L(g) such that

d

dθ
F (q + θ ṡ)

∣∣∣∣
θ=0

=
∫
S1

〈δF |ṡ〉dx for all ṡ ∈ L(g). (3.2)

Recall that we fixed an element a ∈ g such that y1 = e+a is a cyclic element. Let us introduce
a bihamiltonian structure on L(g) by means of Poisson tensors

P2(v)
(
q(x)

) = 1

ε

[
ε∂x + q(x), v(x)

]
,

P1(v)
(
q(x)

) = 1

ε

[
a, v(x)

]
. (3.3)

It is well known fact that these define a bihamiltonian structure on L(g) [18].
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We consider the gauge transformation of the adjoint group G of L(g) given by

q(x) → exp ad s(x)
(
∂x + q(x)

) − ∂x (3.4)

where s(x), q(x) ∈ L(g). Following Drinfeld and Sokolov [6], we consider the restriction of this
action to the adjoint group N of L(n).

Proposition 3.1. (See [4,19].) The action of N on L(g) with Poisson tensor

Pλ := P2 + λP1 (3.5)

is Hamiltonian for all λ. It admits a momentum map J to be the projection

J : L(g) → L(n)+

where n+ is the image of n under the Killing map. Moreover, J is Ad∗-equivariant.

We take e as regular value of J . Then

S := J−1(e) = L(b) + e, (3.6)

since b is the orthogonal complement to n. It follows from the Dynkin grading that the isotropy
group of e is N . Let R be the ring of invariant differential polynomials of S under the action
of N . Then the set R of functionals on S which have densities in the ring R is closed under P2
and P1. Another proof of this result can be found in [6].

Recall that the space Q is defined as

Q := e + L
(
gf

)
. (3.7)

The following proposition identified S/N with the space Q.

Proposition 3.2. (See [6].) The space Q is a cross section for the action of N on S, i.e. for any
element q(x) + e ∈ S there is a unique element s(x) ∈ L(n) such that

z(x) + e = (
exp ad s(x)

)(
∂x + q(x)

) − ∂x ∈ Q. (3.8)

The entries of z(x) are generators of the ring R of differential polynomials on S invariant under
the action of N .

Hence we have an isomorphism between the set of functionals on Q and the set R. Therefore,
Q has a bihamiltonian structure P

Q
1 and P

Q
2 from P1 and P2, respectively. The reduced Poisson

structure P
Q
2 is known as classical W -algebra associated to the regular nilpotent element e. For

a formal definition of classical W -algebras see [16].
The generators of the invariant ring R will have nice properties when we use the normalized

basis we developed in last section. Let us begin by writing the equation of gauge fixing (3.8) after
introducing a parameter τ as follows
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q(x) + e = τ

r∑
i=1

ηi∑
I=0

qI
i (x)Xi

−I + e ∈ S,

z(x) + e = τ

r∑
i=1

zi(x)Xi−ηi
+ e ∈ Q,

s(x) = τ

r∑
i=1

ηi∑
I=1

sI
i (x)Xi

−I ∈ L(n).

Then Eq. (3.8) expands to

r∑
i=1

zi(x)Xi−ηi
+

r∑
i=1

ηi∑
I=1

(ηi − I + 1)sI
i Xi

−I+1

=
r∑

i=1

ηi∑
I=0

qI
i (x)Xi

−I −
r∑

i=1

ηi∑
I=1

∂xs
I
i (x)Xi

−I + O(τ ). (3.9)

It obvious that any invariant zi(x) has the form

zi(x) = q
ηi

i (x) − ∂xs
ηi

i + O(τ )

= q
ηi

i (x) − ∂xq
ηi−1
i + O(τ ). (3.10)

That is, we obtained the linear terms of each invariant zi(x). Furthermore, since 〈e|f 〉 = 1 then
z1(x) has the expression

z1(x) = q1
1 (x) − ∂xs

1
1 + τ

〈
e
∣∣[s1

i (x)Xi
−1, q

0
i Xi

0

]〉
+ 1

2
τ
〈
e
∣∣[s1

i (x)Xi
−1,

[
sI
i (x)Xi

−1, e
]]〉

. (3.11)

Which is simplified by using the identity

[
s1
i (x)Xi

−1,
[
sI
i (x)Xi

−1, e
]] = −[

s1
i (x)Xi

−1, q
0
i (x)Xi

0

]
(3.12)

and

〈
e
∣∣[s1

i (x)Xi
−1, q

0
i Xi

0

]〉 = −〈[
s1
i (x)Xi

−1, e
]∣∣q0

i (x)Xi
0

〉 = (
q0
i (x)

)2〈
Xi

0

∣∣Xi
0

〉
(3.13)

with s1
1(x) = q0

1 (x) to the expression

z1(x) = q1
1 (x) − ∂xq

0
1 (x) + 1

2
τ

∑
i

(
q0
i (x)

)2〈
Xi

0

∣∣Xi
0

〉
. (3.14)

The invariant z1(x) is called a Virasoro density and the expression above agree with [1].
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We observe that the reduced bihamiltonian structure can be calculated as follows. We write
the coordinates of Q as differential polynomials in the coordinates of S by means of Eq. (3.9)
and then apply the Leibnitz rule. For u,v ∈ R the Leibnitz rule have the following form

{
u(x), v(y)

}
λ

= ∂u(x)

∂(qI
i )(m)

∂m
x

(
∂v(y)

∂(qJ
j )(n)

∂n
y

({
qI
i (x), qJ

j (y)
}
λ

))
. (3.15)

Our analysis will relay on the quasihomogeneity of the invariants zi(x) in the coordinates of
q(x) ∈ L(b) and their derivatives. This property is summarized in the following corollary

Corollary 3.3. If we assign degree 2J + 2l + 2 to ∂l
x(q

J
i (x)) then zi(x) will be quasihomoge-

neous of degree 2ηi + 2. Furthermore, each invariant zi(x) depends linearly only on q
ηi

i (x) and

∂xq
ηi−1
i (x). In particular, zi(x) with i < n does not depend on ∂l

xq
ηr
r (x) for any value l.

Let us fix the following notations for the leading terms of the Drinfeld–Sokolov bihamiltonian
structure on Q

{
zi(x), zj (y)

}Q

1 =
∞∑

k=−1

εk
{
zi(x), zj (y)

}[k]
1 ,

{
zi(x), zj (y)

}Q

2 =
∞∑

k=−1

εk
{
zi(x), zj (y)

}[k]
2 , (3.16)

where

{
zi(x), zj (y)

}[−1]
1 = F

ij

1

(
z(x)

)
δ(x − y),{

zi(x), zj (y)
}[0]

1 = g
ij

1

(
z(x)

)
δ′(x − y) + Γ

ij

1k

(
z(x)

)
zk
xδ(x − y),{

zi(x), zj (y)
}[−1]

2 = F
ij

2

(
z(x)

)
δ(x − y),{

zi(x), zj (y)
}[0]

2 = g
ij

2

(
z(x)

)
δ′(x − y) + Γ

ij

2k

(
z(x)

)
zk
xδ(x − y). (3.17)

3.1. The nondegeneracy condition

In this section we find the antidiagonal entries of the matrix g
ij

1 with respect to the exponents

of g, i.e. the entry g
ij

1 with ηi + ηj = κ + 1. Our goal is to prove this matrix is nondegenerate.
Let Ξi

I denote the value 〈Xi
I |Xi

I 〉 and we set

[
a,Xi

I

] =
∑
j

�
ij
I X

j
I−ηr

.

By definition, for a functional F on g

δF (x) =
∑ ηi∑ 1

Ξi

δF
δqI (x)

Xi
I (3.18)
i I=0 I i
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and the Poisson brackets of two functionals I and F on g reads

{I, F }1 = 〈
δI(x)

∣∣[a, δF (x)
]〉 = ∑

i

ηi∑
I=0

∑
j

�
ij
I

Ξi
I

δI
δqκ−I

j (x)

δF
δqI

i (x)
. (3.19)

Therefore, the Poisson brackets in coordinates have the form

{
qκ−I
j (x), qI

i (y)
}

1 = �
ij
I

Ξi
I

δ(x − y). (3.20)

Recall that the Poisson bracket {v(x),u(y)}Q1 of elements u,v ∈ R is obtained by the Leibnitz
rule which expands as

{
v(x),u(y)

}Q

1 =
∑
i,I ;j

∑
l,h

�
ij
I

Ξi
I

∂v(x)

∂(qκ−I
j )(l)

∂l
x

(
∂u(y)

∂(qI
i )(h)

∂h
y

(
δ(x − y)

))

=
∑
i,I ;j

∑
l,h,m,n

(−1)h
(

h

m

)(
l

n

)
�

ij
I

Ξi
I

∂v(x)

∂(qκ−I
j )(l)

(
∂u(x)

∂(qI
i )(h)

)m+n

δh+l−m−n(x − y).

Here we omitted the ranges of the indices since no confusion can arise. Let A(v,u) denote the
coefficient of δ′(x − y)

A(v,u) =
∑
i,I,J

∑
h,l

(−1)h(l + h)
�

ij
I

Ξi
I

∂v(x)

∂(qκ−I
j )(l)

(
∂u(x)

∂(qI
i )(h)

)h+l−1

. (3.21)

Obviously, we obtain the entry g
ij

1 from A(zi , zj ).

Lemma 3.4. If ηi + ηj < κ + 1 then A(zi, zj ) = 0. In particular, the matrix g
ij

1 is lower antidi-
agonal with respect to the exponents of g and the antidiagonal entries are constants.

Proof. We note that if v(x) and u(x) are in R and quasihomogeneous of degree θ and ξ , respec-
tively, then A(v,u) will be quasihomogeneous of degree

θ + ξ − (2κ + 2) − 4.

The proof is completed by observing that the generators zi(x) of the ring R is quasihomogeneous
of degree 2ηi + 2. �
Proposition 3.5. The matrix g

ij

1 is nondegenerate and its determinant is equal to the determinant
of the matrix Aij defined in Proposition 2.6.

Proof. From the last lemma we need only to consider the expression A(zn, zm) with ηn + ηm =
κ + 1. Here
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A
(
zn, zm

) =
∑
i,I,J

∑
h,l

(−1)h(l + h)
�

ij
I

Ξi
I

∂zn(x)

∂(qκ−I
j )(l)

(
∂zm(x)

∂(qI
i )(h)

)h+l−1

(3.22)

where zm and zn are quasihomogeneous of degree 2ηm + 2 and 2κ − 2ηm + 4, respectively. The
expression ∂zm(x)

∂(qI
i )(h)

gives the constrains

2I + 2 � 2ηm + 2,

2κ − 2I + 2 � 2κ − 2ηm + 4, (3.23)

which implies

ηm − 1 � I � ηm.

Therefore the only possible values for the index I in the expression of A(zn, zm) that make sense
are ηm and ηm − 1. Consider the partial summation of A(zn, zm) when I = ηm. The degree of
zm yields h = 0 and that zm depends linearly on q

ηm

i . But then Eq. (3.10) implies i is fixed and
equals to m. A similar argument on zn(x) we find that the indices l and j are fixed and equal to
1 and n, respectively. But then the partial summation when I = ηm gives the value

�mn
ηm

Ξm
ηm

∂zn(x)

∂(q
κ−ηm
n )(1)

∂zm(x)

∂(q
ηm
m )(0)

= −�mn
ηm

Ξm
ηm

.

We now turn to the partial summation of A(zn, zm) when I = ηm − 1. The possible values for h

are 1 and 0. When h = 0 we get zero since l and h can only be zero. When h = 1 we get, similar
to the above calculation, the value

(−1)
�mn

ηm−1

Ξi
I

∂zn(x)

∂(q
κ−ηm
n )(0)

∂zm(x)

∂(q
ηm−1
m )(1)

= �mn
ηm−1

Ξm
ηm−1

.

Hence we end with the expression

A
(
zn, zm

) = �mn
ηm−1

Ξm
ηm−1

− �mn
ηm

Ξm
ηm

= 〈[a,Xn
ηn

]|Xm
ηm−1〉

2ηm

+ 〈[a,Xm
ηm

]|Xn
ηn−1〉

2ηn

= Amn

where we derive the last equality in Proposition 2.6. Hence the determinate of g
ij

1 equals to the
determinant of Amn which is nondegenerate. �
3.2. Differential relation

We want to observe a differential relation between the first and the second Poisson brackets.
This relation is a consequence of the fact that zr(x) is the only generator of the ring R which
depends explicitly on qκ(x) and this dependence is linear.
r
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Proposition 3.6. The entries of matrices of the reduced bihamiltonian structure on Q satisfy the
relations

∂zr F
ij

2 = F
ij

1 ,

∂zr g
ij

2 = g
ij

1 . (3.24)

Proof. The fact that we calculate the reduced Poisson structure by using Leibnitz rule and zr (x)

depends on qκ
r (x) linearly, means that the invariant zr (x) will appear on the reduced Poisson

bracket {zi(x), zj (y)}Q2 only as a result of the following “brackets”

[
qκ−I
j (x), qI

i (y)
] := qκ

r (x)
�

ij
I

Ξi
I

δ(x − y) (3.25)

which are the terms of the second Poisson bracket on L(g) depending explicitly on qκ
r (x). We

expand the “brackets” [zi(x), zj (y)] by imposing the Leibnitz rule. We find the coefficient of
δ(x − y) and δ′(x − y) are, respectively,

B =
∑
i,I,J

∑
h,l

(−1)h
�

ij
I

Ξi
I

qκ
r (x)

∂zi(x)

∂(qκ−I
j )(l)

(
∂zj (x)

∂(qI
i )(h)

)h+l

,

D =
∑
i,I,J

∑
h,l

(−1)h(l + h)
�

ij
I

Ξi
I

qκ
r (x)

∂zi(x)

∂(qκ−I
j )(l)

(
∂zj (x)

∂(qI
i )(h)

)h+l−1

. (3.26)

Obviously, we have ∂zr F
ij

2 from ∂qκ
r
B and ∂zr g

ij

2 from ∂qκ
r
D. But we see that ∂qκ

r
D is just the

coefficient A(zi, zj ) of δ′(x − y) of {zi(x), zj (y)}Q1 . This proves that

∂zr g
ij

2 = g
ij

1 .

A similar argument shows that

∂zr F
ij

2 = F
ij

1 . �
4. Some results from Dirac reduction

We recall that the Poisson bracket {.,.}Q2 can be obtained by performing the Dirac reduction
of {.,.}2 on Q. We derive from this some facts concerning the dispersionless limit of the bihamil-
tonian structure on Q. Let n denote the dimension of g.

Let ξI , I = 1, . . . ,n be a total order of the basis Xi
I such that

1. The first r are

X1−η1
< X2−η2

< · · · < Xr−ηr
. (4.1)
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2. The matrix

〈ξI |ξJ 〉, I, J = 1, . . . ,n (4.2)

is antidiagonal.

Let ξ∗
I denote the dual basis of ξI under 〈.|.〉. Note that if ξI ∈ gμ then ξ∗

I ∈ g−μ.
We extend the coordinates on Q to all L(g) by setting

zI
(
b(x)

) := 〈
b(x) − e

∣∣ξ∗
I

〉
, I = 1, . . . ,n. (4.3)

Let us fix the following notations for the structure constants and the bilinear form on g

[
ξ∗
I , ξ∗

J

] :=
∑

cIJ
K ξ∗

K, g̃IJ = 〈
ξ∗
I

∣∣ξ∗
J

〉
. (4.4)

Now consider the following matrix differential operator

F
IJ = εg̃IJ ∂x + F̃ IJ . (4.5)

Here

F̃ IJ =
∑
K

(
cIJ
K zK(x)

)
.

Then the Poisson brackets of P2 will have the form

{
zI (x), zJ (y)

}
2 = F

IJ 1

ε
δ(x − y). (4.6)

Proposition 4.1. (See [1].) The second Poisson bracket {.,.}Q2 can be obtained by performing
Dirac reduction of {.,.}2 on Q.

A consequence of this proposition is the following

Proposition 4.2. (See [1].)

{
z1(x), z1(y)

}
2 = εδ′′′(x − y) + 2z1(x)δ′(x − y) + z1

xδ(x − y),{
z1(x), zi(y)

}
2 = (ηi + 1)zi(x)δ′(x − y) + ηiz

i
xδ(x − y). (4.7)

For the rest of this section we consider three types of indices which have different ranges;
capital letters I, J,K, . . . = 1, . . . ,n, small letters i, j, k, . . . = 1, . . . , r and Greek letters
α,β, δ, . . . = r + 1, . . . ,n. Recall that the space Q is defined by zα = 0.

We note that the matrix F̃ IJ defines the finite Lie–Poisson structure on g. It is well known
that the symplectic subspaces of this structure are the orbit spaces of g under the adjoint group
action and we have r global Casimirs [18]. Since the Slodowy slice Q′ = e + gf is transversal
to the orbit of e, the minor matrix F̃ αβ is nondegenerate. Let F̃αβ denote its inverse.
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Proposition 4.3. (See [4].) The Dirac formulas for the leading terms of {.,.}Q2 are given by

F
ij

2 = (
F̃ ij − F̃ iβ F̃βαF̃ αj

)
, (4.8)

g
ij

2 = g̃ij − g̃iβ F̃βαF̃ αj + F̃ iβ F̃βαg̃αϕF̃ϕγ F̃ γj − F̃ iβ F̃βαg̃αj . (4.9)

Now we are able to prove the following

Proposition 4.4. The Drinfeld–Sokolov bihamiltonian structure on Q admits a dispersionless
limit. The corresponding bihamiltonian structure of hydrodynamic type gives a flat pencil of
metrics on the Slodowy slice Q′.

Proof. We note that (4.8) is the formula of the Dirac reduction of the Lie–Poisson brackets of g

to the finite space Q′. The fact that Slodowy slice is transversal to the orbit space of the nilpotent
element and this orbit has dimension n − r yield F

ij

2 is trivial. From Proposition 4.2 it follows

that g
ij

2 is not trivial. This proves that the brackets {.,.}Q2 admit a dispersionless limit. From

Propositions 3.5 and 3.6 it follows that {.,.}Q1 admits a dispersionless limit and the matrix g
ij

2 is

nondegenerate. Therefore, the two matrices g
ij

1 and g
ij

2 define a flat pencil of metrics on Q′. �
Now we want to study the quasihomogeneity of the entries of the matrix g

ij

2 . We assign the
degree μI + 2 to zI (x) if ξ∗

I ∈ gμI
. These degrees agree with those given in Corollary 3.3. We

observe that degree zn−I+1 equal to −μI + 2 from our order of the basis, and an entry F̃ IJ is
quasihomogeneous of degree μI + μJ + 2 since [gμI

,gμJ
] ⊂ gμI +μJ

.
The following proposition proved in [3]

Proposition 4.5. The matrix F̃βα restricted to Q is polynomial and the entry F̃βα is quasihomo-
geneous of degree −μβ − μα − 2.

Proposition 4.6. The entry g
ij

2 is quasihomogeneous of degree 2ηi + 2ηj .

Proof. We will derive the quasihomogeneity from the expression (4.9). We know that the matrix
g̃IJ is constant antidiagonal, i.e. gIJ = CIδI

n−J+1 where CI are nonzero constants. In particular
gij = 0. Now for a fixed i we have

g̃iβ F̃βαF̃ αj = CiF̃n−i+1,αF̃ αj .

But then the left hand sight is quasihomogeneous of degree

μj + μα + 2 − μα − (−μi) − 2 = μj + μi = 2ηi + 2ηj .

A similar argument shows that F̃ iβ F̃βαg̃αj is quasihomogeneous of degree 2ηi + 2ηj . Let us
consider

F̃ iβ F̃βαg̃αϕF̃ϕγ F̃ γj =
∑

CαF̃ iβF̃βαF̃n−α+1,γ F̃ γj .
α
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Then any term in this summation will have the degree

μi + μβ + 2 − μβ − μα − 2 − μn−α+1 − μγ − 2 + μγ + μj + 2 = 2ηi + 2ηj .

This completes the proof. �
5. Polynomial Frobenius manifold

Let us consider the finite dimension manifold Q′ defined by the coordinates z1, . . . , zn. We
will obtain a natural polynomial Frobenius structure on Q′.

The proof of the following proposition depends only on the quasihomogeneity of the ma-
trix g

ij

1 .

Proposition 5.1. (See [8].) There exist quasihomogeneous polynomials coordinates of degree di

in the form

t1 = 1

κ + 1
z1

and

t i = zi + T i
(
z1, . . . , zi−1), i > 1

such that the matrix g
ij

1 (t) is constant antidiagonal.

For the remainder of this section, we fix coordinates (t1, . . . , tn) satisfying the proposition
above. The following proposition emphasis that under this change of coordinates some entries of
the matrix g

ij

2 remain invariant.

Proposition 5.2. The second metric g
ij

2 (t) have the following entries

g
1,n
2 (t) = ηi + 1

κ + 1
t i . (5.1)

Proof. We know from Proposition 4.2 that in the coordinates zi the matrix g
ij

2 (z) has the fol-
lowing entries

g
1,n
2 (z) = (ηi + 1)zi . (5.2)

Let E′ denote the Euler vector field give by

E′ =
∑

i

ηi + 1

κ + 1
zi∂zi . (5.3)

Then from the quasihomogeneity of t i we have E′(t i) = ηi+1
κ+1 t i . The formula for change of

coordinates and the fact that t1 = 1
κ+1z1 give the following

g1j (t) = ∂za t1∂zb tj gab
2 (z) = E′(tj ) = ηj + 1

tj . � (5.4)

κ + 1
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We arrive to our basic result

Theorem 5.3. The flat pencil of metrics on the Slodowy slice Q′ obtained from the dispersionless
limit of Drinfeld–Sokolov bihamiltonian structure on Q (see Theorem 4.4) is regular quasihomo-
geneous of degree κ−1

κ+1 .

Proof. In the notations of Definition 2.1 we take τ = t1 then

E = g
ij

2 ∂tj τ∂ti = 1

κ + 1

∑
i

(ηi + 1)t i∂ti ,

e = g
ij

1 ∂tj τ∂ti = ∂tr . (5.5)

We see immediately that

[e,E] = e.

The identity

Le( , )2 = ( , )1 (5.6)

follows from and the fact that ∂tr = ∂zr and Proposition 3.6. The fact that

Le( , )1 = 0 (5.7)

is a consequence from the quasihomogeneity of the matrix g
ij

1 (see Lemma 3.4). We also obtain
from Proposition 4.6

LE( , )2 = (d − 1)( , )2 (5.8)

since

LE( , )2
(
dti, dtj

) = E
(
g

ij

2

) − ηi + 1

κ + 1
g

ij

2 − ηj + 1

κ + 1
g

ij

2 = −2

κ + 1
g

ij

2 . (5.9)

The (1,1)-tensor

R
j
i = d − 1

2
δ
j
i + ∇1iE

j = ηi

κ + 1
δ
j
i (5.10)

is obviously nondegenerate. This completes the proof. �
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It follows from Theorems 5.3 and 2.2 that Q′ has a Frobenius structure
of degree κ−1

κ+1 from the dispersionless limit of Drinfeld–Sokolov bihamiltonian structure. This
Frobenius structure is polynomial since in the coordinates t i the potential F is constructed from
Eqs. (2.11) and we know from Proposition 4.5 that the matrix g

ij

2 is polynomial. �
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5.1. Conclusions and remarks

The results of the present work can be generalized to a certain class of distinguished nilpotent
elements in simple Lie algebras. In particular, we notice that the existence of opposite Cartan sub-
algebras is the main reason behind the examples of algebraic Frobenius manifolds constructed in
[4] which are associated to distinguished nilpotent elements in the Lie algebra of type F4. In [4]
we discussed how these examples support Dubrovin conjecture. Our goal is to develop a method
to uniformize the construction of all algebraic Frobenius manifolds that can be obtained from
distinguished nilpotent elements in simple Lie algebras by performing the generalized Drinfeld–
Sokolov reduction. Similar treatment of the present work for algebraic Frobenius manifolds that
can be obtained from subregular nilpotent elements in simple Lie algebras is now under prepara-
tion.
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