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Abstract

The inverse spectral problem of recovering pencils of second-order differential operators on the
half-line with turning points is studied. We establish properties of the spectral characteristics, give a
formulation of the inverse problem, prove a uniqueness theorem and provide a constructive procedure
for the solution of the inverse problem.
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1. Introduction

We consider the differential equation

y′′(x) + (
ρ2r(x) + iρq1(x) + q0(x)

)
y(x) = 0, x � 0, (1)

on the half-line with nonlinear dependence on the spectral parameter ρ. Let a,ω > 0, and
let

r(x) =
{−ω2 for x ∈ [0, a),

1 for x � a,
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i.e., the weight-function r(x) changes the sign in an interior point, which is called the
turning point. The functions qj (x) are complex-valued, q1(x) is absolutely continuous,

and (1 + x)q
(ν)
j (x) ∈ L(0,∞) for 0 � ν � j � 1.

Differential equations with nonlinear dependence on the spectral parameter and with
turning points arise in various problems of mathematics as well as in applications (see
[1–9] for details). In this paper we study the inverse problem for singular non-selfadjoint
indefinite pencil (1). Inverse problems of spectral analysis consist in recovering operators
from their spectral characteristics. For the classical Sturm–Liouville operator the inverse
problem has been studied fairly completely (see [10–16] and the references therein). Some
aspects of the inverse problem theory for differential pencils without turning points were
studied in [17–23] and other works. In [24–29] the inverse problem was investigated for
differential equations with turning points but with linear dependence on the spectral para-
meter.

Indefinite differential pencils with turning point produce essential qualitative modifica-
tions in the investigation of the inverse problem. To study the inverse problem in this paper
we use the method of spectral mappings [30] connected with ideas of the contour integral
method. In Section 2 we obtain properties of the spectral characteristics of boundary value
problems for pencil (1). In Section 3 we give a formulation of the inverse problem and
prove the uniqueness theorem for the solution of this inverse problem. In Section 4 we
provide a constructive procedure for the solution of the inverse problem considered.

2. Properties of the spectral characteristics

We consider the boundary value problem L for Eq. (1) on the half-line x > 0 with the
boundary condition

U(y) := y′(0) + (β1ρ + β0)y(0) = 0, (2)

where the coefficients β1 and β0 are complex numbers and β1 �= ±ω. The last condition
excludes from the consideration Regge-type problems [31] which require a separate inves-
tigation (see [32]).

Let ϕ(x,ρ) and S(x,ρ) be solutions of Eq. (1) under the initial conditions ϕ(0, ρ) = 1,
U(ϕ) = 0, S(0, ρ) = 0, S′(0, ρ) = 1. For each fixed x � 0, the functions ϕ(m)(x,ρ) and
S(m)(x,ρ), m = 0,1, are entire in ρ. Moreover,〈

ϕ(x,ρ), S(x,ρ)
〉 ≡ 1, (3)

where 〈y, z〉 := yz′ − y′z, since by virtue of Liouville’s formula for the Wronskian [33]
〈ϕ(x,ρ), S(x,ρ)〉 does not depend on x.

Denote Π± := {ρ: ± Imρ > 0}, Π0 := {ρ: Imρ = 0}. By the well-known method (see,
for example, [1,34,35]) we get that for x � a, ρ ∈ Π±, there exists a solution e(x,ρ) of
Eq. (1) (which is called the Jost-type solution) with the following properties:

1◦ For each fixed x � a, the functions e(m)(x,ρ), m = 0,1, are holomorphic for ρ ∈ Π+
and ρ ∈ Π− (i.e., they are piecewise holomorphic).
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2◦ The functions e(m)(x,ρ), m = 0,1, are continuous for x � a, ρ ∈ Π+ and ρ ∈ Π− (we
differ the sides of the cut Π0). In other words, for real ρ, there exist the finite limits

e
(m)
± (x,ρ) = lim

z→ρ, z∈Π±
e(m)(x, z).

Moreover, the functions e(m)(x,ρ), m = 0,1 are continuously differentiable with re-
spect to ρ ∈ Π+ \ {0} and ρ ∈ Π− \ {0}.

3◦ For x → ∞, ρ ∈ Π± \ {0}, m = 0,1,

e(m)(x,ρ) = (±iρ)m exp
(±(

iρx − Q(x)
))(

1 + o(1)
)
, (4)

where

Q(x) = 1

2

x∫
0

q1(t) dt. (5)

4◦ For |ρ| → ∞, ρ ∈ Π±, m = 0,1, uniformly in x � a,

e(m)(x,ρ) = (±iρ)m exp
(±(

iρx − Q(x)
))[1], (6)

where [1] := 1 + O(ρ−1).

We extend e(x,ρ) to the segment [0, a] as a solution of Eq. (1) which is smooth for
x � 0, i.e.,

e(m)(a − 0, ρ) = e(m)(a + 0, ρ), m = 0,1. (7)

Then the properties 1◦–2◦ remain true for x � 0.
The Jost-type solution e(x,ρ), x � 0 is a generalization of the classical Jost solution for

the Sturm–Liouville equation (see [10–12]).
Denote

Δ(ρ) := U
(
e(x,ρ)

)
. (8)

The function Δ(ρ) is called the characteristic function for the boundary value problem L.

The function Δ(ρ) is holomorphic in Π+ and Π−, and for real ρ there exist the finite limits

Δ±(ρ) = lim
z→ρ, z∈Π±

Δ(z).

Moreover, the function Δ(ρ) is continuously differentiable for ρ ∈ Π± \ {0}.

Lemma 1. For |ρ| → ∞, ρ ∈ Π±, the following asymptotical formula holds:

Δ(ρ) = ρ

2
exp

(±(
iρa − Q(a)

))(
(β1 − ω)(1 ∓ i/ω) exp

(
ωρa − iQ(a)/ω

)[1]
+ (β1 + ω)(1 ± i/ω) exp

(−ωρa + iQ(a)/ω
)[1]). (9)

Proof. Denote Π1± := {ρ: ±Reρ > 0}. Let {yk(x,ρ)}k=1,2, x ∈ [0, a], ρ ∈ Π1±, be the
Birkhoff-type fundamental system of solutions of Eq. (1) on the interval [0, a] with the
asymptotics for |ρ| → ∞, m = 0,1,

y
(m)

(x,ρ) = (
(−1)kωρ

)m exp
(
(−1)k

(
ωρx − iQ(x)/ω

))[1] (10)
k
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(see [1,34,35]). Then

e(x,ρ) = b1(ρ)y1(x,ρ) + b2(ρ)y2(x,ρ), x ∈ [0, a]. (11)

Using (6), (7) and (10), we obtain for ρ ∈ Π±, k = 0,1,

(−1)k exp
(−ωρa + iQ(a)/ω

)[1]b1(ρ) + exp
(
ωρa − iQ(a)/ω

)[1]b2(ρ)

= (±i/ω)k exp
(±(

iρa − Q(a)
))[1].

Calculating b1(ρ) and b2(ρ) from this algebraic system and substituting the result into
(11), we arrive at the following asymptotical formula for |ρ| → ∞, ρ ∈ Π±, m = 0,1,
x ∈ [0, a],

e(m)(x,ρ) = (ωρ)m

2
exp

(±(
iρa − Q(a)

))
× (

(−1)m(1 ∓ i/ω) exp
(
ωρa − iQ(a)/ω

)
exp

(−ωρx + iQ(x)/ω
)[1]

+ (1 ± i/ω) exp
(−ωρa + iQ(a)/ω

)
exp

(
ωρx − iQ(x)/ω

)[1]). (12)

Together with (2) and (8) this yields (9). Lemma 1 is proved. �
Similarly one can calculate

e(0, ρ) = 1

2
exp

(±(
iρa − Q(a)

))(
(1 ∓ i/ω) exp

(
ωρa − iQ(a)/ω

)[1]
+ (1 ± i/ω) exp

(−ωρa + iQ(a)/ω
)[1]), (13)

Δ̇(ρ) = ρ

2

( ± iωa2) exp
(±(

iρa − Q(a)
))

× (
(β1 − ω)(1 ∓ i/ω) exp

(
ωρa − iQ(a)/ω

)[1]
− (β1 + ω)(1 ± i/ω) exp

(−ωρa + iQ(a)/ω
)[1]) (14)

as |ρ| → ∞, ρ ∈ Π±, where Δ̇(ρ) := d
dρ

Δ(ρ).
It follows from (9) that for sufficiently large |ρ|, the function Δ(ρ) has simple zeros of

the form

ρk = 1

ωa
(kπi + iQ/ω + κ ± κ1) + O

(
1

k

)
, (15)

where Q := Q(a), and

κ = 1

2
ln

β1 + ω

β1 − ω
, κ1 = 1

2
ln

i + ω

i − ω
. (16)

Here ln z := ln |z| + i arg z, arg z ∈ [0,2π). Denote

Λ′± = {
ρ ∈ Π±: Δ(ρ) = 0

}
, Λ′ = Λ′+ ∪ Λ′−,

Λ′′± = {
ρ ∈ R: Δ±(ρ) = 0

}
, Λ′′ = Λ′′+ ∪ Λ′′−,

Λ± = Λ′± ∪ Λ′′±, Λ = Λ+ ∪ Λ−.

Obviously, Λ = Λ′ ∪ Λ′′, Λ′ is a countable unbounded set, and Λ′′ is a bounded set.



V. Yurko / J. Math. Anal. Appl. 320 (2006) 439–463 443
We put

Φ(x,ρ) = e(x,ρ)

Δ(ρ)
. (17)

The function Φ(x,ρ) is a solution of Eq. (1), and on account of (2), (4) and (8), also the
conditions U(Φ) = 1, Φ(x,ρ) = O(exp(±iρx)), x → ∞, ρ ∈ Π± (while Δ(ρ) �= 0). In
particular, limx→∞ Φ(x,ρ) = 0. Denote

M(ρ) := Φ(0, ρ). (18)

We will call M(ρ) the Weyl-type function for L, since it is a generalization of the concept
of the Weyl function for the classical Sturm–Liouville operator (see [36]). It follows from
(17) and (18) that

M(ρ) = e(0, ρ)

Δ(ρ)
. (19)

Using the conditions at the point x = 0 we get

Φ(x,ρ) = S(x,ρ) + M(ρ)ϕ(x,ρ). (20)

It follows from (3), (17) and (20) that〈
ϕ(x,ρ),Φ(x,ρ)

〉 ≡ 1, (21)〈
ϕ(x,ρ), e(x,ρ)

〉 ≡ Δ(ρ). (22)

Theorem 1. The Weyl-type function M(ρ) is holomorphic in Π± \ Λ′± and continuously
differentiable in Π± \ Λ±. The set of singularities of M(ρ) (as an analytic function) coin-
cides with the set R ∪ Λ. For |ρ| → ∞, ρ ∈ Π1±,

M(ρ) = 1

ρ(β1 ∓ ω)
[1]. (23)

Theorem 1 follows from (19) and from properties of the functions Δ(ρ) and e(0, ρ).

Definition 1. The set of singularities of the Weyl-type function M(ρ) is called the spectrum
of L (and is denoted by σ(L)). The values of the parameter ρ, for which Eq. (1) has
nontrivial solutions satisfying (2) and the condition y(∞) = 0 (i.e., limx→∞ y(x) = 0), are
called eigenvalues of L, and the corresponding solutions are called eigenfunctions of L.

Thus, σ(L) = R ∪ Λ. The set Λ is the discrete spectrum, and R is the continuous spec-
trum. Note that C \ σ(L) is the resolvent set of L.

Theorem 2. L has no eigenvalues for real ρ �= 0.

Proof. For real ρ �= 0, the functions e+(x,ρ) and e−(x,ρ) are solutions of Eq. (1), and in
view of (4),

e±(x,ρ) ∼ exp
(±(

iρx − Q(x)
))

, as x → ∞. (24)
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Using (24) and Liouville’s formula for the Wronskian we calculate〈
e+(x,ρ), e−(x,ρ)

〉 = −2iρ. (25)

Suppose that a real number ρ0 �= 0 is an eigenvalue, and let y0(x) be a corresponding
eigenfunction. By virtue of (25), the functions {e+(x,ρ0), e−(x,ρ0)} form a fundamental
system of solutions for Eq. (1), and consequently y0(x) = C1e+(x,ρ0) + C2e−(x,ρ0). As
x → ∞, y0(x) ∼ 0, e±(x,ρ0) ∼ exp(±(iρ0x − Q(x)). But this is possible only if C1 =
C2 = 0, i.e., y0 ≡ 0. Theorem 2 is proved. �
Theorem 3. The countable set Λ′ coincides with the set {ρk} of all non-zero eigenvalues
of L. For ρk ∈ Λ′, the functions e(x,ρk) and ϕ(x,ρk) are eigenfunctions, and

e(x,ρk) = γkϕ(x,ρk), γk �= 0. (26)

For the eigenvalues {ρk} the asymptotical formula (15) holds.

Proof. Let ρk ∈ Λ′. Then U(e(x,ρk)) = Δ(ρk) = 0 and, by virtue of (4),
limx→∞ e(x,ρk) = 0. Thus, e(x,ρk) is an eigenfunction, and ρk is an eigenvalue. More-
over, it follows from (22) that 〈ϕ(x,ρk), e(x,ρk)〉 = 0, and consequently (26) is valid.

Conversely, let ρk ∈ Π+ ∪ Π− be an eigenvalue, and let yk(x) be a correspond-
ing eigenfunction. Clearly, yk(0) �= 0, U(yk(x)) = 0. Then yk(x) = β0

k ϕ(x,ρk). Since
limx→∞ yk(x) = 0, one gets yk(x) = β1

k e(x,ρk). This yields (26). Consequently, Δ(ρk) =
U(e(x,ρk)) = 0, and ϕ(x,ρk) and e(x,ρk) are eigenfunctions. �
Remark 1. We note that (Λ′′+ \ {0}) ∩ (Λ′′− \ {0}) = ∅, i.e., for real ρ �= 0 the functions
Δ+(ρ) and Δ−(ρ) are not equal to zero simultaneously. Indeed, it follows from (8) and
(25) that for real ρ �= 0, one has

0 �= 〈
e+(x,ρ), e−(x,ρ)

〉 = e+(0, ρ)e′−(0, ρ) − e′+(0, ρ)e−(0, ρ)

= e+(0, ρ)Δ−(ρ) − e−(0, ρ)Δ+(ρ).

For brevity, we confine ourselves to the case of a simple spectrum in the following sense.

Definition 2. We shall say that L has simple spectrum if all zeros of Δ(ρ) are simple, have
no finite limit points, and ρM(ρ) = m± + o(1) as ρ → 0, ρ ∈ Π±, m± ∈ C.

Let L have simple spectrum. Then Λ′′ is a finite set, and Λ = Λ′ ∪ Λ′′ is a countable
set:

Λ = {ρk}k∈ω.

Here ω = ω0 ∪ ω0, where ω0 is a finite set, ω0 = {k ∈ Z: |k| > k0} for some k0, and the
numbers ρk have the form (15) for k ∈ ω0. Each element of Λ′ is an eigenvalue of L.
According to Theorem 2, the points of Λ′′ \ {0} are not eigenvalues of L, they are called
spectral singularities of L. Thus, the discrete spectrum Λ consists of two parts: the set of
eigenvalues, and the set of spectral singularities.
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Denote

Mk = e(0, ρk)

Δ̇(ρk)
, ρk ∈ Λ \ {0}. (27)

Obviously, Mk �= 0, and

lim
ρ→ρk,ρ∈Π±

(ρ − ρk)M(ρ) = Mk, ρk ∈ Λ± \ {0}. (28)

Let

αk :=
{

Mk for ρk ∈ Λ′,
1
2Mk for ρk ∈ Λ′′ \ {0}, (29)

V (ρ) := 1

2πi

(
M−(ρ) − M+(ρ)

)
, ρ ∈ Π := R \ Λ′′, (30)

where

M±(ρ) := lim
z→0, z∈Π±

M(ρ ± iz) = e±(0, ρ)

Δ±(ρ)
.

Put α0 = (m+ + m−)/(πi) for ρ0 = 0. Using (13)–(15), (27) and (29) we calculate

αk = ∓ ω

kπa(β2
1 − ω2)

+ O

(
1

k2

)
, k → ±∞. (31)

By virtue of (19) and (30),

V (ρ) = 1

2πi

(
e−(0, ρ)

Δ−(ρ)
− e+(0, ρ)

Δ+(ρ)

)
, ρ ∈ Π.

Taking (8) and (25) into account we infer

V (ρ) = ρ

π
· 1

Δ−(ρ)Δ+(ρ)
, ρ ∈ Π. (32)

Definition 3. The data S := ({V (ρ)}ρ∈Π, {ρk,αk}k∈ω) are called the spectral data of L.

The spectral data describe the behavior of the spectrum; {V (ρ)} is connected with the
continuous spectrum, and {ρk,αk}k∈ω describe the discrete spectrum. Using the results
obtained above we arrive at the following statement.

Theorem 4. The spectral data S := ({V (ρ)}ρ∈Π, {ρk,αk}k∈ω) have the following proper-
ties:

(i1) ρk �= ρs for k �= s; moreover, (Λ′′+ \ {0}) ∩ (Λ′′− \ {0}) = ∅;
(i2) as k → ±∞, the asymptotical formulas (15) and (31) are valid;
(i3) the function V (ρ) is continuously differentiable for ρ ∈ Π , and for ρk ∈ Λ′′ there

exist finite limits Vk := limρ→ρk
(ρ − ρk)V (ρ); moreover,

Vk = ∓αk

πi
for ρk ∈ Λ′′± \ {0}; (33)
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(i4) as ρ → ±∞,

V (ρ) = 4[1]
πρ(β1 ∓ ω)2(1 + 1/ω)2

exp∓(2ωρa − 2iQ/ω). (34)

The asymptotics (34) follows from (32) and (9). Notice that relation (33) gives us a
connection between V (ρ), which describes the continuous spectrum, and {ρk,αk}, which
describe the discrete spectrum.

3. Formulation of the inverse problem. The uniqueness theorem

Let us go on to studying the inverse problem for the boundary value problem L. The
inverse problem is formulated as follows.

Inverse Problem 1. Given the spectral data S, construct the coefficients of the pencil
(1)–(2).

In this section we prove the uniqueness theorem for the solution of this inverse problem.
For this purpose together with L we will consider a boundary value problem L̃ of the same
form but with different coefficients r̃(x), p̃(x), q̃(x), β̃1, β̃0. We agree that if a certain
symbol α denotes an object related to L, then α̃ will denote the analogous object related
to L̃, and α̂ = α − α̃.

Theorem 5. If S = S̃, then r(x) = r̃(x), p(x) = p̃(x), q(x) = q̃(x) for x > 0, β1 = β̃1 and
β0 = β̃0. Thus, the specification of the spectral data uniquely determines the coefficients of
the pencil (1)–(2).

Proof. Fix δ > 0. Let κ0
δ (ρk) := {ρ: ρ ∈ [ρk − δ,ρk + δ]}, ρk ∈ Λ′′. Denote by ξδ :=

R \ (
⋃

ρk∈Λ′′ κ0
δ (ρk)) the real axis without δ-neighbourhoods of the points of Λ′′.

Let us show that the specification of the spectral data S uniquely determines the Weyl-
type function M(ρ) via the formula

M(ρ) =
∑
ρk∈Λ

αk

ρ − ρk

+
∞∫

−∞

V (μ)

ρ − μ
dμ, ρ /∈ σ(L), (35)

where the integral is understood in the principal value sense:
∫ ∞
−∞ := limδ→0

∫
ξδ

.
Indeed, fix δ > 0 and denote Gδ := {ρ ∈ C: |ρ − ρk| � δ,ρk ∈ Λ}. It follows from (9),

(13) and (19) that∣∣Δ(ρ)
∣∣ � C|ρ| exp

(|σ |ωa
)

exp
(−|τ |a)

,
∣∣M(ρ)

∣∣ � C|ρ|−1, ρ ∈ Gδ, (36)

where σ := Reρ, τ := Imρ, i.e., ρ = σ + iτ . According to (34), the integral in (35) con-
verges absolutely at infinity. Moreover, in view of (15) and (31), the series in (35) converges
absolutely too.
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Fig. 1.

Take positive numbers RN = Nπ
ωa

+χ such that the circles θN := {ρ: |ρ| = RN } lie in Gδ

for sufficiently small δ > 0. Fix ρ /∈ σ(L), and take δ > 0 and N such that ρ ∈ Gδ ∩ int θN .
Consider the contour integral

IN(ρ) := 1

2πi

∫
θN

M(μ)

ρ − μ
dμ (37)

with counterclockwise circuit. It follows from (36) that

lim
N→∞ IN(ρ) = 0. (38)

For each ρk ∈ Λ′′± we take a semicircle κδ(ρk) := {ρ: |ρ − ρk| = δ,ρ ∈ Π±}. Let Πδ

be the two-sided cut Π0 without the δ-neighbourhoods of the points of Λ′′, and let Γδ :=
Πδ ∪ (

⋃
ρk∈Λ′′ κδ(ρk)) be the contour with counterclockwise circuit (see Fig. 1). Denote

Γδ,N := Γδ ∩ θN,0, where θN,0 = {ρ: |ρ| � RN }. Contracting the contour in (37) to the real
axis through the poles of Λ′ and using (19), (27), (29) and the residue theorem, we get

M(ρ) =
∑

ρk∈Λ′
|ρk |<RN

αk

ρ − ρk

+ 1

2πi

∫
Γδ,N

M(μ)

ρ − μ
dμ − IN(ρ).

By virtue of (38) this yields as N → ∞:

M(ρ) =
∑

ρk∈Λ′

αk

ρ − ρk

+ 1

2πi

∫
Γδ

M(μ)

ρ − μ
dμ. (39)

Taking (28)–(30) into account we calculate

lim
δ→0

∑
ρk∈Λ′′

1

2πi

∫
κδ(ρk)

M(μ)

ρ − μ
dμ =

∑
ρk∈Λ′′

αk

ρ − ρk

,

1

2πi

∫
Πδ

M(μ)

ρ − μ
dμ =

∫
ξδ

V (μ)

ρ − μ
dμ.

Therefore, from (39) as δ → 0 we arrive at (35).
Furthermore, it follows from (6) and (12) that for ρ ∈ Π±, m = 0,1,∣∣e(m)(x,ρ)

∣∣ � C|ρ|m exp
(|σ |ω(a − x)

)
exp

(−|τ |a)
for x � a,∣∣e(m)(x,ρ)

∣∣ � C|ρ|m exp
(−|τ |x)

for x � a.

}
(40)

Using (17), (36) and (40) we conclude that for ρ ∈ Gδ , m = 0,1,∣∣Φ(m)(x,ρ)
∣∣ � C|ρ|m−1 exp

(−|σ |ωx
)

for x � a,∣∣Φ(m)(x,ρ)
∣∣ � C|ρ|m−1 exp

(−|σ |ωa
)

exp
(−|τ |(x − a)

)
for x � a.

}
(41)
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Now we need to study the asymptotic behavior of the solution ϕ(x,ρ) as |ρ| → ∞. Using
the Birkhoff-type fundamental system of solutions {yk(x,ρ)}k=1,2 of Eq. (1) on the interval
[0, a], one has

ϕ(x,ρ) = a1(ρ)y1(x,ρ) + a2(ρ)y2(x,ρ), x ∈ [0, a]. (42)

Let {Yk(x,ρ)}k=1,2, x � a, ρ ∈ Π±, be the Birkhoff-type fundamental system of solutions
of Eq. (1) on the interval [a,∞), with the asymptotics for |ρ| → ∞, m = 0,1,

Y
(m)
k (x,ρ) = (

(−1)k−1iρ
)m exp

(
(−1)k−1(iρx − Q(x)

))[1] (43)

(see [1,34,35]). Then

ϕ(x,ρ) = A1(ρ)Y1(x,ρ) + A2(ρ)Y2(x,ρ), x � a. (44)

Taking (10) and the initial conditions ϕ(0, ρ) = 1, ϕ′(0, ρ) = β1ρ + β0 into account, we
calculate

a1(ρ)[1] + a2(ρ)[1] = 1, (β1 − ω)a1(ρ)[1] + (β1 + ω)a2(ρ)[1] = 0,

and consequently,

a1(ρ) = ω + β1

2ω
[1], a2(ρ) = ω − β1

2ω
[1], |ρ| → ∞. (45)

Substituting (10) and (45) into (42) we obtain the asymptotical formula for ϕ(m)(x,ρ),
m = 0,1 as |ρ| → ∞, uniformly in x ∈ [0, a]:

ϕ(m)(x,ρ) = 1

2ω

(
(−ωρ)m(ω + β1) exp

(−ωρx + iQ(x)/ω
)[1]

+ (ωρ)m(ω − β1) exp
(
ωρx − iQ(x)/ω

)[1]). (46)

In order to calculate the coefficients Ak(ρ), k = 1,2, we use (43), (44), (46) and the smooth
conditions ϕ(m)(a − 0, ρ) = ϕ(m)(a + 0, ρ), m = 0,1. This yields for |ρ| → ∞:

A1(ρ) exp(iρa − Q)[1] + (−1)mA2(ρ) exp(−iρa + Q)[1] = (iρ)−mϕ(m)(a,ρ),

m = 0,1,

where the asymptotics for ϕ(m)(a,ρ) is taken from (46). Calculating Ak(ρ) from this al-
gebraic system and substituting the result and (43) into (44) we get for x � a, |ρ| → ∞:

ϕ(m)(x,ρ) = 1

4
exp

(
iρ(x − a) − Qa(x)

)(
(ω + β1)(1/ω + i) exp(−ωρa + iQ/ω)[1]

+ (ω − β1)(1/ω − i) exp(ωρa − iQ/ω)[1])
+ 1

4
exp

(−iρ(x − a) + Qa(x)
)

× (
(ω + β1)(1/ω − i) exp(−ωρa + iQ/ω)[1]

+ (ω − β1)(1/ω + i) exp(ωρa − iQ/ω)[1]),
Qa(x) :=

x∫
q1(t) dt. (47)
a
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It follows from (46) and (47) that∣∣ϕ(m)(x,ρ)
∣∣ � C|ρ|m exp

(|σ |ωx
)

for x � a,∣∣ϕ(m)(x,ρ)
∣∣ � C|ρ|m exp

(|σ |ωa
)

exp
(|τ |(x − a)

)
for x � a.

}
(48)

By the assumption of Theorem 5, S = S̃. Hence, in view of (35),

M(ρ) ≡ M̃(ρ). (49)

Using (15), (23), (31) and (49) we infer

β1 = β̃1, ω = ω̃, a = ã, Q = Q̃. (50)

Let us now define the matrix P(x,ρ) = [Pjk(x, ρ)]j,k=1,2 by the formula

P(x,ρ)

[
ϕ̃(x, ρ) Φ̃(x,ρ)

ϕ̃′(x,ρ) Φ̃ ′(x,ρ)

]
=

[
ϕ(x,ρ) Φ(x,ρ)

ϕ′(x,ρ) Φ ′(x,ρ)

]
. (51)

By virtue of (21) this yields

Pj1(x,ρ) = ϕ(j−1)(x, ρ)Φ̃ ′(x,ρ) − Φ(j−1)(x, ρ)ϕ̃′(x,ρ),

Pj2(x,ρ) = Φ(j−1)(x, ρ)ϕ̃(x,ρ) − ϕ(j−1)(x, ρ)Φ̃(x,ρ),

}
(52)

ϕ(x,ρ) = P11(x,ρ)ϕ̃(x,ρ) +P12(x,ρ)ϕ̃′(x,ρ),

Φ(x,ρ) = P21(x,ρ)Φ̃(x,ρ) +P22(x,ρ)Φ̃ ′(x,ρ).

}
(53)

It follows from (41), (48) and (52) that for x � 0, ρ ∈ Gδ ,∣∣P11(x,ρ)
∣∣ � C,

∣∣P12(x,ρ)
∣∣ � C|ρ|−1. (54)

Using (20) and (52) we calculate

Pj1(x,ρ) = ϕ(j−1)(x, ρ)S̃′(x,ρ) − S(j−1)(x, ρ)ϕ̃′(x,ρ)

+ (
M̃(ρ) − M(ρ)

)
ϕ(j−1)(x, ρ)ϕ̃′(x,ρ),

Pj2(x,ρ) = S(j−1)(x, ρ)ϕ̃(x,ρ) − ϕ(j−1)(x, ρ)S̃(x, ρ)

+ (
M(ρ) − M̃(ρ)

)
ϕ(j−1)(x, ρ)ϕ̃(x,ρ).

Taking (49) into account we conclude that the functions Pjk(x, ρ) are entire in ρ for each
fixed x � 0. Together with (54) this yields P12(x,ρ) ≡ 0, P11(x,ρ) ≡ P1(x), i.e., the
function P11 does not depend on ρ. By virtue of (53) we have for all x and ρ:

P1(x)ϕ̃(x, ρ) ≡ ϕ(x,ρ), P1(x)Φ̃(x,ρ) ≡ Φ(x,ρ). (55)

Let x ∈ [0, a]. Using (9), (12), (17), (46) and (50) we get as |ρ| → ∞, argρ ∈ (0,π/2):

ϕ(x,ρ)

ϕ̃(x,ρ)
= exp

(−i
(
Q(x) − Q̃(x)

)
/ω

)[1],
Φ(x,ρ)

Φ̃(x,ρ)
= exp

(
i
(
Q(x) − Q̃(x)

)
/ω

)[1]. (56)

Since P1(x) does not depend on ρ, it follows from (55) and (56) that

P1(x) ≡ exp
(−i

(
Q(x) − Q̃(x)

)
/ω

)
, P1(x) ≡ exp

(
i
(
Q(x) + Q̃(x)

)
/ω

)
,
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and consequently, Q(x) ≡ Q̃(x), P1(x) ≡ 1 for x ∈ [0, a].
Let x � a. Using (6), (9), (17), (47) and (50) we have as |ρ| → ∞, argρ ∈ (0,π/2):

ϕ(x,ρ)

ϕ̃(x,ρ)
= exp

(
Q̂a(x) − iQ̂

)[1], Φ(x,ρ)

Φ̃(x,ρ)
= exp

(−(
Q̂a(x) − iQ̂

))[1]. (57)

Since P1(x) does not depend on ρ, and Q = Q̃, it follows from (55) and (57) that

P1(x) ≡ exp
(
Q̂a(x)

)
, P1(x) ≡ exp

(−Q̂a(x)
)
,

and consequently, Qa(x) ≡ Q̃a(x),P1(x) ≡ 1 for x � a. Thus, P1(x) ≡ 1 and q1(x) ≡
q̃1(x) for all x � 0. According to (55) this yields ϕ̃(x, ρ) ≡ ϕ(x,ρ), Φ̃(x,ρ) ≡ Φ(x,ρ).
Hence, q0(x) = q̃0(x) a.e. on (0,∞), and β0 = β̃0. Theorem 5 is proved. �
Corrollary 1. If M(ρ) ≡ M̃(ρ), then L = L̃.

It follows from the proof of Theorem 5 that the last assertion is also valid for pencil
(1)–(2) with arbitrary behavior of the spectrum.

4. Solution of the inverse problem

In this section we give a constructive procedure for the solution of the inverse prob-
lem. The central role here is played by the so-called main equation of the inverse problem
which connects spectral characteristics with the corresponding solutions of the differential
equation. We give a derivation of the main equation which is a linear equation in a suit-
able Banach space. Moreover, we prove the unique solvability of the main equation. Using
the solution of the main equation we provide an algorithm for the solution of the inverse
problem considered.

Let the spectral data S of the boundary value problem L be given. Our goal is to calcu-
late the coefficients a, ω, β1, β0, q1(x) and q0(x).

First, using (23) and (35) one can find ω and β1 by the formula

β1 ∓ ω = limρM(ρ), |ρ| → ∞, ρ ∈ Π1±. (58)

Then, taking (15) into account we calculate a via

a = 1

ω
lim

k→±∞
kπi

ρk

, (59)

and construct κ and κ1 by (16). Using (15) again we find Q := Q(a):

Q = −iω lim
k→∞(ωaρk − kπi − κ − κ1). (60)

Take a boundary value problem L̃ such that

ã = a, ω̃ = ω, β̃1 = β1, Q̃ = Q, (61)

and L̃ is arbitrary in the rest. Let S̃ := ({Ṽ (ρ)}, {ρ̃k, α̃k}) be the spectral data of L̃. Denote
ρk0 = ρk , ρk1 = ρ̃k , αk0 = αk , αk1 = α̃k , ϕkj (x) = ϕ(x,ρkj ), ϕρ(x) = ϕ(x,ρ),

D(x,ρ,μ) = 〈ϕρ(x),ϕμ(x)〉
. (62)
ρ − μ
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Since

d

dx

〈
ϕρ(x),ϕμ(x)

〉 = (ρ − μ)
(
ρ + μ + iq1(x)

)
ϕρ(x)ϕμ(x),〈

ϕρ(x),ϕμ(x)
〉∣∣

x=0 = β1(ρ − μ),

it follows that

D(x,ρ,μ) = β1 +
x∫

0

(
ρ + μ + iq1(s)

)
ϕρ(s)ϕμ(s) ds. (63)

Let for definiteness x � a. Taking (15), (48), (62) and (63) into account we obtain∣∣ϕ(m)(x,ρ)
∣∣ � C|ρ|m exp

(|σ |ωx
)
,

∣∣ϕ(m)
kj (x)

∣∣ � C|k|m, m = 0,1,∣∣D(x,ρ,μ)
∣∣ � C

|ρ| + |μ| + 1

|ρ − μ| + 1
exp

(|σ |ωx
)

exp
(|θ |ωx

)
,

⎫⎬
⎭ (64)

where σ := Reρ, θ := Reμ. Similarly one can get∣∣∣∣ ∂

∂ρ
ϕ(x,ρ)

∣∣∣∣ � C exp
(|σ |ωx

)
, (65)∣∣∣∣ ∂s+p

∂ρs∂μp
D(x,ρ,μ)

∣∣∣∣ � C
|ρ| + |μ| + 1

|ρ − μ| + 1
exp

(|σ |ωx
)

exp
(|θ |ωx

)
, s,p = 0,1.

(66)

Denote

Pρ,μ(x) = D(x,ρ,μ)V̂ (μ), Pρ,kj (x) = D(x,ρ,ρkj )αkj ,

Pni,μ(x) = D(x,ρni,μ)V̂ (μ), Pni,kj (x) = D(x,ρni, ρkj )αkj .

We define ϕ̃kj , D̃, P̃ρ,μ, P̃ρ,kj , P̃ni,μ, P̃ni,kj by the same formulas but with ϕ̃, D̃ instead of
ϕ,D. If ω0 �= ω̃0, then we define the corresponding functions identically zero (for example,
if n ∈ ω0 \ ω̃0, then ϕn1 = Pn1,μ = Pn1,kj = Pρ,n1 = Pkj,n1 = 0, and the same for functions
with tilde). Let ω′ := ω∪ ω̃, and let ω1 be a set of indices v = (k, j), where k ∈ ω′, j = 0,1.
Denote by

ξ ′
δ := R

∖(( ⋃
ρk∈Λ′′

κ0
δ (ρk)

)
∪

( ⋃
ρ̃k∈Λ̃′′

κ0
δ (ρ̃k)

))

the real axis without δ-neighbourhoods of the points of Λ′′ ∪ Λ̃′′.

Lemma 2. The following relations hold for x ∈ [0, a]:

Ω(x)ϕ̃ρ(x) = ϕρ(x) +
∞∫

−∞
P̃ρ,μ(x)ϕμ(x) dμ

+
∑

′

(
P̃ρ,k0(x)ϕk0(x) − P̃ρ,k1(x)ϕk1(x)

)
, (67)
k∈ω
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D(x,ρ,μ) − D̃(x,ρ,μ) +
∞∫

−∞
P̃ρ,ξ (x)D(x, ξ,μ)dξ

+
∑
s∈ω′

(
P̃ρ,s0(x)D(x,ρs0,μ) − P̃ρ,s1(x)D(x,ρs1μ)

) = Λ(x)ϕ̃ρ(x)ϕμ(x), (68)

where

Ω(x) = 1

2

(
exp

(
iQ̂(x)/ω

) + exp
(−iQ̂(x)/ω

))
,

Λ(x) = −ω

2

(
exp

(
iQ̂(x)/ω

) − exp
(−iQ̂(x)/ω

))
,

⎫⎪⎬
⎪⎭ (69)

and the integrals are understood in the principal value sense:
∫ ∞
−∞ := limδ→0

∫
ξ ′
δ
.

Proof. It follows from (9), (12), (41), (46), (48), (52) and (61) that∣∣Pkj (x, ρ)
∣∣ � C|ρ|k−j , ρ ∈ Gδ ∩ G̃δ, k, j = 1,2, (70)

Pkk(x,ρ) = Ω(x) + O

(
1

ρ

)
,

P21(x,ρ) = −ρΛ(x) + O(1), |ρ| → ∞, argρ = θ �= ±π

2
. (71)

Take positive numbers RN = Nπ
ωa

+ χ such that the circles θN := {ρ: |ρ| = RN } lie in

Gδ ∩ G̃δ for sufficiently small δ > 0. Fix ρ /∈ σ(L)∪σ(L̃), and take δ > 0 and N such that
ρ ∈ Gδ ∩ G̃δ ∩ int θN . Consider the contour integral (with counterclockwise circuit)

JN,k(x,ρ) = 1

2πi

∫
θN

P1k(x,μ) − Ω(x)δ1k

ρ − μ
dμ, k = 1,2, (72)

where δjk is the Kronecker delta. In view of (70) and (71), limN→∞ JN,k(x,ρ) = 0. Mov-
ing the contour in (72) through the pole μ = ρ, we get

P1k(x,ρ) − Ω(x)δ1k = 1

2πi

∫
γN

P1k(x,μ)

ρ − μ
dμ + JN,k(x,ρ), (73)

where the contour γN (with counterclockwise circuit) is such that (σ (L)∪σ(L̃))∩ int θN ⊂
intγN , and ρ /∈ int θN . It follows from (53) and (73) that

ϕ(x,ρ) = Ω(x)ϕ̃(x,ρ) + 1

2πi

∫
γN

(
ϕ̃(x, ρ)P11(x,μ) + ϕ̃′(x,ρ)P12(x,μ)

) dμ

ρ − μ

+ JN(x,ρ), (74)

where JN(x,ρ) = JN,1(x,ρ)ϕ̃(x,ρ) + JN,2(x,ρ)ϕ̃′(x,ρ), and consequently,

lim
N→∞JN(x,ρ) = 0.

Substituting (52) into (74) we calculate
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ϕ(x,ρ) = Ω(x)ϕ̃(x,ρ) + 1

2πi

∫
γN

(
ϕ̃(x, ρ)

(
ϕ(x,μ)Φ̃ ′(x,μ) − Φ(x,μ)ϕ̃′(x,μ)

)

+ ϕ̃′(x,ρ)
(
Φ(x,μ)ϕ̃(x,μ) − ϕ(x,μ)Φ̃(x,μ)

)) dμ

ρ − μ
+ JN(x,λ).

In view of (20) this yields

Ω(x)ϕ̃ρ(x) = ϕρ(x) + 1

2πi

∫
γN

D̃(x,ρ,μ)M̂(μ)ϕμ(x)dμ − JN(x,λ), (75)

since the terms with S(x,μ) vanish by Cauchy’s theorem.
Furthermore, we consider the contour integral

JN,jk(x,ρ,μ) := 1

2πi

∫
θN

Pjk(x, ξ) + ξΛ(x)δj2δk1

(ρ − ξ)(ξ − μ)
dξ, ρ,μ ∈ int θN . (76)

In view of (70) and (71), limN→∞ JN,jk(x,ρ,μ) = 0. Since

1

(ρ − ξ)(ξ − μ)
= 1

ρ − μ

(
1

ρ − ξ
− 1

μ − ξ

)
,

by similar arguments we infer from (76)

Pjk(x, ρ) −Pjk(x,μ)

ρ − μ
= −Λ(x)δj2δk1 + 1

2πi

∫
γN

Pjk(x, ξ) dξ

(ρ − ξ)(ξ − μ)

+ JN,jk(x,ρ,μ), (77)

for ρ,μ /∈ intγN . Let y(x) be an arbitrary smooth function. Then, by virtue of (77),

P(x,ρ) −P(x,μ)

ρ − μ

[
y(x)

y′(x)

]

=
[

0
−Λ(x)y(x)

]
+ 1

2πi

∫
γN

P(x, ξ)

[
y(x)

y′(x)

]
dξ

(ρ − ξ)(ξ − μ)
+ εN(x,ρ,μ),

(78)

where limN→∞ εN(x,ρ,μ) = 0. According to (52),

P(x,ρ)

[
y(x)

y′(x)

]
= 〈

y(x), Φ̃(x,ρ)
〉 [ ϕ(x,ρ)

ϕ′(x,ρ)

]
− 〈

y(x), ϕ̃(x, ρ)
〉 [ Φ(x,ρ)

Φ ′(x,ρ)

]
,

and equality (78) takes the following form:

P(x,ρ) −P(x,μ)

ρ − μ

[
y(x)

y′(x)

]

=
[

0
−Λ(x)y(x)

]
+ 1

2πi

∫
γN

(〈
y(x), Φ̃(x, ξ)

〉 [ ϕ(x, ξ)

ϕ′(x, ξ)

]

−〈
y(x), ϕ̃(x, ξ)

〉 [ Φ(x, ξ)

Φ ′(x, ξ)

])
dξ + εN(x,ρ,μ).
(ρ − ξ)(ξ − μ)
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Hence, for y(x) = ϕ̃(x, ρ) we have

det

(P(x,ρ) −P(x,μ)

ρ − μ

[
ϕ̃(x, ρ)

ϕ̃′(x,ρ)

]
,

[
ϕ(x,μ)

ϕ′(x,μ)

])

= −Λ(x)ϕ̃(x,ρ)ϕ(x,μ) + 1

2πi

∫
γN

( 〈ϕ̃(x, ρ), Φ̃(x, ξ)〉
ρ − ξ

· 〈ϕ(x, ξ), ϕ(x,μ)〉
ξ − μ

− 〈ϕ̃(x, ρ), ϕ̃(x, ξ)〉
ρ − ξ

· 〈Φ(x, ξ),ϕ(x,μ)〉
ξ − μ

)
dξ + ε1

N(x,ρ,μ), (79)

where limN→∞ ε1
N(x,ρ,μ) = 0. By virtue of (51),

P(x,ρ)

[
ϕ̃(x, ρ)

ϕ̃′(x,ρ)

]
=

[
ϕ(x,ρ)

ϕ′(x,ρ)

]
,

and consequently,

det

(
P(x,ρ)

[
ϕ̃(x, ρ)

ϕ̃′(x,ρ)

]
,

[
ϕ(x,μ)

ϕ′(x,μ)

])
= 〈

ϕ(x,ρ),ϕ(x,μ)
〉
. (80)

Using (21) and (52) we obtain

P11(x,ρ)ϕ′(x,ρ) −P21(x,ρ)ϕ(x,ρ) = ϕ̃′(x,ρ),

P22(x,ρ)ϕ(x,ρ) −P12(x,ρ)ϕ′(x,ρ) = ϕ̃(x, ρ),

}

and hence,

det

(
P(x,μ)

[
ϕ̃(x, ρ)

ϕ̃′(x,ρ)

]
,

[
ϕ(x,μ)

ϕ′(x,μ)

])
= ϕ̃(x, ρ)

(
P11(x,μ)ϕ′(x,μ) −P21(x,μ)ϕ(x,μ)

)
− ϕ̃′(x,ρ)

(
P22(x,μ)ϕ(x,μ) −P12(x,μ)ϕ′(x,μ)

)
= 〈

ϕ̃(x, ρ), ϕ̃(x,μ)
〉
. (81)

Substituting (20), (80) and (81) into (79) and taking (62) into account we obtain

D(x,ρ,μ) − D̃(x,ρ,μ) + 1

2πi

∫
γN

D̃(x,ρ, ξ)M̂(ξ)D(x, ξ,μ)dξ

= Λ(x)ϕ̃(x,ρ)ϕ(x,μ) + ε1
N(x,ρ,μ), (82)

since the terms containing S(x, ξ) and S̃(x, ξ) vanish by Cauchy’s theorem.
Let Π ′

δ be the two-sided cut Π0 without the δ-neighbourhoods of the points of Λ′′ ∪ Λ̃′′,
and let Γ ′

δ := Π ′
δ ∪ (

⋃
ρk∈Λ′′ κδ(ρk)) ∪ (

⋃
ρ̃k∈Λ̃′′ κδ(ρ̃k)) be the contour with counterclock-

wise circuit (see Fig. 1). Denote Γ ′
δ,N := Γ ′

δ ∩ θN,0, where θN,0 := {ρ: |ρ| � RN }. Con-

tracting the contour γN in (75) to the real axis through the poles of Λ′ ∪ Λ̃′ and using the
residue theorem, we get
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Ω(x)ϕ̃ρ(x) = ϕρ(x) + 1

2πi

∫
Γ ′

δ,N

D̃(x,ρ,μ)M̂(μ)ϕμ(x)dμ

+
∑

ρk0∈Λ′
|ρk0|<RN

D̃(x,ρ,ρk0)αk0ϕk0(x) −
∑

ρk1∈Λ̃′
|ρk1|<RN

D̃(x,ρ,ρk1)αk1ϕk1(x)

− JN(x,ρ).

As N → ∞ this yields

Ω(x)ϕ̃ρ(x) = ϕρ(x) + 1

2πi

∫
Γ ′

δ

D̃(x, ρ,μ)M̂(μ)ϕμ(x)dμ

+
∑

ρk0∈Λ′
D̃(x,ρ,ρk0)αk0ϕk0(x) −

∑
ρk1∈Λ̃′

D̃(x,ρ,ρk1)αk1ϕk1(x).

(83)

Since

lim
δ→0

1

2πi

∫
κδ(ρkj )

D̃(x, ρ,μ)M̂(μ)ϕμ(x)dμ = (−1)j P̃ρ,kj (x)αkjϕkj (x),

ρkj ∈ Λ′′ ∪ Λ̃′′,
1

2πi

∫
Π ′

δ

D̃(x, ρ,μ)M̂(μ)ϕμ(x)dμ =
∫
ξ ′
δ

P̃ρ,μ(x)ϕμ(x) dμ,

from (83) as δ → 0 we arrive at (67). Analogously, leaning on (82) we deduce (68).
Lemma 2 is proved. �

Similarly one can prove that

Ω(x)Φ̃ρ(x) = Φρ(x) +
∞∫

−∞
p̃ρ,μ(x)ϕμ(x) dμ

+
∑
k∈ω′

(
p̃ρ,k0(x)ϕk0(x) − p̃ρ,k1(x)ϕk1(x)

)
, (84)

where

p̃ρ,μ(x) = d̃(x, ρ,μ)V̂ (μ), p̃ρ,kj (x) = d̃(x, ρ,ρkj )αkj ,

d̃(x, ρ,μ) := 〈Φ̃(x,ρ), ϕ̃(x,μ)〉
ρ − μ

.

Remark 2. For each fixed x, relation (67) can be considered as a linear equation with
respect to ϕρ(x) for ρ ∈ σ(L)∪σ(L̃). But the series in (67) converges only “with brackets,”
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and the integral is understood in the principal value sense. Therefore, it is not convenient to
use (67) as a main equation of the inverse problem. Below we will transfer (67) to a linear
equation in a suitable Banach space (see (94)).

Denote ξk := |ρk − ρ̃k| + |αk − α̃k|〈k〉, where 〈k〉 := |k| for k ∈ ω0, and 〈k〉 := 1, other-
wise. It follows from (15), (16), (31), (34) and (61) that

ξk = O

(
1

k

)
, |k| → ∞; V̂ (ρ) = O

(|ρ|−2 exp
(−2ω|ρ|a))

, |ρ| → ∞.

For (n, i), (k, j) ∈ ω1 and ρ,μ ∈ R, we introduce the functions

ψρ(x) = ϕρ(x) exp
(−|ρ|ωx

)
,

ψk0(x) = (
ϕk0(x) − ϕk1(x)

)
χk, ψk1(x) = ϕk1(x),

Hρ,μ(x) = Pρ,μ(x) exp
(−|ρ|ωx

)
exp

(|μ|ωx
)
,

Hρ,k0(x) = Pρ,k0(x)ξk exp
(−|ρ|ωx

)
,

Hρ,k1(x) = (
Pρ,k0(x) − Pρ,k1(x)

)
exp

(−|ρ|ωx
)
,

Hn0,μ(x) = (
Pn0,μ(x) − Pn1,μ(x)

)
χn exp

(|μ|ωx
)
,

Hn1,μ(x) = Pn1,μ(x) exp
(|μ|ωx

)
,

Hn0,k0(x) = (
Pn0,k0(x) − Pn1,k0(x)

)
χnξk,

Hn1,k1(x) = Pn1,k0(x) − Pn1,k1(x),

Hn0,k1(x) = (
Pn0,k0(x) − Pn1,k0(x) − Pn0,k1(x) + Pn1,k1(x)

)
χn,

Hn1,k0(x) = Pn1,k0(x)ξk,

where χk = ξ−1
k for ξk �= 0, and χk = 0 for ξk = 0. Analogously we define ψ̃ρ(x), ψ̃kj (x),

H̃ρ,μ(x), H̃ρ,kj (x), H̃ni,μ(x) and H̃ni,kj (x). It follows from (34), (64)–(66) and Schwarz’s
lemma that for (n, i), (k, j) ∈ ω1, ν = 0,1, x ∈ [0, a], ρ,μ ∈ R, |μ| � μ∗, the following
estimates hold:∣∣∣∣ ∂ν

∂ρν
ψρ(x)

∣∣∣∣ � C,
∣∣ψkj (x)| � C,∣∣∣∣ ∂ν

∂ρν
Hρ,μ(x)

∣∣∣∣ � C

|μ|2 · |ρ| + |μ| + 1

|ρ − μ| + 1
exp

(−2|μ|ω(a − x)
)
,∣∣∣∣ ∂ν

∂ρν
Hρ,kj (x)

∣∣∣∣ � Cξk

〈k〉 ,

∣∣Hni,μ(x)
∣∣ � C

|μ|2 exp
(−2|μ|ω(a − x)

)
,

∣∣Hni,kj (x)
∣∣ � Cξk

〈k〉
|n| + |k| + 1

|n − k| + 1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(85)

The same estimates are also valid for ψ̃ρ(x), ψ̃kj (x), H̃ρ,μ(x), H̃ρ,kj (x), H̃ni,μ(x) and
H̃ni,kj (x).
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Consider the Banach space m of bounded sequences β = [βv]v∈ω1 with the norm
‖β‖m = supv∈ω1

|βv|. Define the vectors

ψ(x) = [
ψv(x)

]
v∈ω1

=
[

ψk0(x)

ψk1(x)

]
k∈ω′

, ψ̃(x) = [
ψ̃v(x)

]
v∈ω1

=
[

ψ̃k0(x)

ψ̃k1(x)

]
k∈ω′

.

It follows from (85) that for each fixed x, ψ(x), ψ̃(x) ∈ m. Let B := C1(−∞,0] ⊕
C1[0,∞) be the Banach space of continuously differentiable on (−∞,0] and [0,∞)

functions ρ → f (ρ) such that f (ρ) and ∂
∂ρ

f (ρ) are bounded, with the norm ‖f ‖B =
maxν=0,1 supρ∈R | ∂ν

∂ρν f (ρ)|. It follows from (85) that for each fixed x, ψρ(x), ψ̃ρ(x) ∈ B .
Consider the Banach space B of vectors

F =
[

f

β

]
,

where f ∈ B , β = [βv]v∈ω1 ∈ m, with the norm ‖F‖B = max(‖f ‖B,‖β‖m). Denote

Ψ (x) =
[

ψρ(x)

ψ(x)

]
, Ψ̃ (x) =

[
ψ̃ρ(x)

ψ̃(x)

]
.

Clearly, Ψ (x), Ψ̃ (x) ∈ B for each fixed x ∈ [0, a]. For a fixed x ∈ [0, a], we define the
operator H̃ = H̃ (x) :B → B by the formulas

F̃ = H̃F, F =
[

f

β

]
∈ B, F̃ =

[
f̃

β̃

]
∈ B,

f̃ (ρ) =
∞∫

−∞
H̃ρ,μ(x)f (μ)dμ +

∑
v∈ω1

H̃ρ,v(x)βv,

β̃u =
∞∫

−∞
H̃u,μ(x)f (μ)dμ +

∑
v∈ω1

H̃u,v(x)βv,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(86)

ρ,μ ∈ R; u = (n, i), v = (k, j); n, k ∈ ω′; i, j = 0,1. Analogously we define the operator
H = H(x).

Lemma 3. For each fixed x, the operators H(x) and H̃ (x) are linear bounded operators
acting from B to B.

Proof. For definiteness, we consider here only one of the blocks in (86), the remaining
blocks are studied similarly. Let f (ρ) ∈ B , and let

f ∗(ρ) :=
∞∫

−∞
H̃ρ,μ(x)f (μ)dμ.

We will show that

f ∗(ρ) ∈ B, ‖f ∗‖B � C‖f ‖B. (87)
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Since Λ′′ ∪ Λ̃′′ := {ρ∗
k }k=1,p is a finite set, there exist numbers {dj }j=−1,p+1 such that

−∞ = d−1 < d0 < ρ∗
1 < d1 < · · · < ρ∗

p < dp < dp+1 = ∞. Then

f ∗(ρ) =
p+1∑
k=0

fk(ρ), where fk(ρ) :=
dk∫

dk−1

H̃ρ,μ(x)f (μ)dμ.

By virtue of (85),

∣∣∣∣ ∂ν

∂ρν
fp+1(ρ)

∣∣∣∣ � C

∞∫
dp

exp
(−2|μ|ω(a − x)

) |ρ| + |μ| + 1

|ρ − μ| + 1
· dμ

|μ|2 � C,

and consequently, fp+1(ρ) ∈ B and ‖fp+1‖B � C‖f ‖B . Similarly, f0(ρ) ∈ B and
‖f0‖B � C‖f ‖B . For k = 1,p we denote

wk(μ) := V̂ (μ)
(
μ − ρ∗

k

)
, D̃1(x,ρ,μ) = D̃(x,ρ,μ) exp

(−|ρ|ωx
)

exp
(|μ|ωx

)
.

Clearly, wk(μ) ∈ C[dk−1, dk]. Then

fk(ρ) =
dk∫

dk−1

D̃1(x,ρ,μ)V̂ (μ)f (μ)dμ

=
dk∫

dk−1

D̃1(x,ρ,μ)wk(μ)
f (μ) − f (ρ∗

k )

μ − ρ∗
k

dμ

+ f
(
ρ∗

k

) dk∫
dk−1

D̃1(x,ρ,μ) − D̃1(x,ρ,ρ∗
k )

μ − ρ∗
k

wk(μ)dμ

+ f
(
ρ∗

k

)
D̃1(x,ρ,ρ∗

k )

dk∫
dk−1

V̂ (μ)dμ, (88)

where the last integral is understood in the principal value sense. Using (88) and (66)
it is easy to verify that fk(ρ) ∈ B and ‖fk‖B � C‖f ‖B for k = 1,p. Thus, (87) holds.
Lemma 3 is proved. �
Theorem 6. For each fixed x ∈ [0, a], the following relations hold:

Ω(x)Ψ̃ (x) = (
E + H̃ (x)

)
Ψ (x), (89)

Ω(x)Ψ (x) = (
E − H(x)

)
Ψ̃ (x), (90)(

E + H̃ (x)
)(

E − H(x)
)
Y = Y − K(x)Ψ̃ (x), (91)(

E − H(x)
)(

E + H̃ (x)
)
Y = Y − K̃(x)Ψ (x), (92)
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where E is the identity operator,

Y =
[

yρ

y

]
∈ B

(
i.e., yρ ∈ B,y = [yni](n,i)∈ω1 ∈ m

)
,

and

K(x) = Λ(x)

( ∞∫
−∞

ψμ(x) exp
(
2|μ|ωx

)
V̂ (μ)yμ dμ

+
∑
k∈ω′

(
ϕk0(x)αk0ξkyk0 + (

ϕk0(x)αk0 − ϕk1(x)αk1
)
yk1

))
,

K̃(x) = Λ(x)

( ∞∫
−∞

ψ̃μ(x) exp
(
2|μ|ωx

)
V̂ (μ)yμ dμ

+
∑
k∈ω′

(
ϕ̃k0(x)αk0ξkyk0 + (

ϕ̃k0(x)αk0 − ϕ̃k1(x)αk1
)
yk1

))
.

Proof. Taking into account our notations we rewrite (67) in the following form:

Ω(x)ψ̃ρ(x) = ψρ(x) +
∞∫

−∞
H̃ρ,μ(x)ψμ(x)dμ +

∑
(k,j)∈ω1

H̃ρ,kj (x)ψkj (x), ρ ∈ R,

Ω(x)ψ̃ni(x) = ψni(x) +
∞∫

−∞
H̃ni,μ(x)ψμ(x)dμ +

∑
(k,j)∈ω1

H̃ni,kj (x)ψkj (x),

(n, i) ∈ ω1,

which is equivalent to (89). It follows from (68) that(
H̃ (x) − H(x) − H̃ (x)H(x)

)
Y = K(x)Ψ̃ (x),

and consequently, (91) holds. Interchanging places for L and L̃, symmetrically to (89) and
(91), we obtain (90) and (92). Theorem 6 is proved. �

Thus, for each fixed x ∈ [0, a], the vector Ψ (x) ∈ B is the solution of Eq. (89) in the
Banach space B.

Remark 3. We note that in the particular case of a Sturm–Liouville equation (when
q1(x) ≡ 0) we have Ω(x) ≡ 1,Λ(x) ≡ 0, and consequently, the operators E + H̃ (x) and
E − H(x) are inverse of each other.

We set Ω1 := {x ∈ [0, a]: Ω(x) �= 0}, Ω0 := {x ∈ [0, a]: Ω(x) = 0}.
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Theorem 7.

(1) Let x ∈ Ω1. Then the homogeneous equation(
E + H̃ (x)

)
Y = 0, Y ∈ B, (93)

has only the trivial solution Y = 0.
(2) Let x ∈ Ω0. Then the solutions of the homogeneous equation (93) form the one-

dimensional subspace Y = CΨ (x), C = const.

Proof. (1) Let x ∈ Ω1, and let Y ∈ B be a solution of (93). Then (E − H(x))(E +
H̃ (x))Y = 0. On the other hand, in accordance with (91), (E − H(x))(E + H̃ (x))Y =
Y − K̃(x)Ψ (x), and therefore, Y = K̃(x)Ψ (x). Applying the operator E + H̃ (x) to both
parts of this equality we obtain K̃(x)(E + H̃ (x))Ψ (x) = 0. By virtue of (89) this yields
K̃(x)Ω(x)Ψ̃ (x) = 0. Consequently, K̃(x) = 0, i.e., Y = 0.

(2) Fix x ∈ Ω0. Then, in view of (89), (E + H̃ (x))Ψ (x) = 0, and consequently, the
vectors Y = CΨ (x), C = const, are solutions of Eq. (93). On the other hand, let Y 0 be
a solution of (93). Then (E − H(x))(E + H̃ (x))Y 0 = 0. Applying (92) we obtain 0 =
(E − H(x))(E + H̃ (x))Y 0 = Y 0 − K̃(x)Ψ (x), i.e., Y 0 = CΨ (x), C = const. Theorem 7
is proved. �

Let L and L̃ be such that Ω0 = ∅. For example, this always holds if q1(x) is real valued.
For each fixed x ∈ [0, a], we consider in B the linear equation

Ψ̃ (x) = (
E + H̃ (x)

)
Z(x) (94)

with respect to Z(x). Equation (94) is called the main equation of the inverse problem. The
following result is an obvious consequence of Theorems 6 and 7.

Theorem 8. For each fixed x ∈ [0, a], Eq. (94) has a unique solution, namely Z(x) =
(Ω(x))−1Ψ (x).

Using the main equation we can get an algorithm for the solution of Inverse Prob-
lem 1. For this purpose we introduce the functions z1(x,ρ) = ϕ(x,ρ)/Ω(x), z2(x,ρ) =
Φ(x,ρ)/Ω(x). Since ϕ(x,ρ) and Φ(x,ρ) satisfy Eq. (1), it follows that

z′′
k + a(x)z′

k + (
ρ2r(x) + iρq1(x) + h(x)

)
zk = 0, k = 1,2,

where

a(x) = 2
Ω ′(x)

Ω(x)
, h(x) = q0(x) + a′(x)

2
+ a2(x)

4
. (95)

Therefore

a(x)z′
k + (

iρq1(x) + h(x)
)
zk = −z′′

k + ω2ρ2zk, k = 1,2. (96)

Moreover, by (84),

z2(x,ρ) = Φ̃(x,ρ)

Ω(x)
−

∞∫
−∞

p̃ρ,μ(x)z1(x,μ)dμ

+
∑

′

(
p̃ρ,k0(x)z1(x,ρk0) − p̃ρ,k1(x)z1(x,ρk1)

)
, (97)
k∈ω
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and equality (21) takes the form〈
z1(x,ρ), z2(x,ρ)

〉 ≡ Ω2(x). (98)

Using the results obtained above we arrive at the following procedure for the solution of
Inverse Problem 1.

Algorithm 1. Let the spectral data S of the boundary value problem L be given.

(1) Construct the coefficients ω, β1, a, κ , κ1 and Q by (15), (58), (59) and (60).
(2) Take a boundary value problem L̃ such that (61) holds.
(3) Calculate Ψ̃ (x) and H̃ (x), x ∈ [0, a].
(4) Find Z(x) = [zρ(x), z(x)] ∈ B by solving the main equation (94).
(5) Construct z1(x,ρ) = zρ(x) and z2(x,ρ) by (97).
(6) Calculate Ω2(x) via (98).
(7) Find a(x), q1(x) and h(x) by solving the system of linear algebraic equations (96)

with the determinant −Ω2(x) �= 0.
(8) Construct Ω(x), q1(x), q0(x) for x ∈ [0, a] and β0 using (2), (5), (69) and (95).

Thus, we have constructed q1(x) and q0(x) for the interval x ∈ [0, a]. For the interval
x ∈ (a,∞), the arguments are similar.

Remark 4. In order to construct qj (x), j = 0,1, for x ∈ (a,∞) we can act also in another
way. Suppose that, using Algorithm 1, we have constructed ω, a, βj and qj (x) for j = 0,1,
x ∈ [0, a]. Consequently, the solutions ϕ(x,ρ) and S(x,ρ) are known for x ∈ [0, a]. By
virtue of (20), the solution Φ(x,ρ) is also known for x ∈ [o, a]. Denote

M1(ρ) := Φ(a,ρ)

Φ ′(a,ρ)
. (99)

The function M1(ρ) is the Weyl function for Eq. (1) on the interval (a,∞). Thus, we can
reduce our problem to the inverse problem for (a,∞). In this interval the weight-function
r(x) ≡ 1. This inverse problem was solved in [23].
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