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Abstract-For autonomous difference equations with an invariant manifold, conditions are known 
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1. INTRODUCTION 

The concept of asymptotic phase originally occurred in connection with the approach of a solution 
of an autonomous ordinary differential equation to an orbitally asymptotically stable periodic 
solution. The well-known Andronov-Witt theorem says that if all but one of the characteristic 
multiples of a periodic solution p(t) h ave modulus smaller than 1 then any nearby solution behaves 
asymptotically like a member of the family of periodic solutions ~(t + ‘p) where the phase shift ‘p 
is the parameter. For ordinary differential equations this result has been extended to manifolds 
of stationary or periodic solutions and to more general invariant manifolds in [l-4], and for 
difference equations in [3,5]. In the present paper, we generalize the main result of [3] to the case 
of a nonautonomous equation whose right-hand side is allowed to be noninvertible and whose 
invariant manifold does not necessarily consist of stationary solutions. This result may also be 
considered as a discrete analog of the main result in [2]. 

The organization of this paper is as follows. In Section 2, we introduce the notation underlying 
this paper and in Section 3, we prove an auxiliary theorem on the reducibility of linear systems 
with a certain kind of exponential trichotomy. Section 4 contains another auxiliary result which 
describes a coordinate change by means of which the main result of this paper can be proved in 
Section 5. 

2. PRELIMINARIES 
We first fix the notation and introduce the basic concepts underlying this paper. N denotes 

the positive integers. A discrete interval I is defined to be the intersection of a real interval with 
the integers Z = (0, fl, . . . }. For any K E Z we use the abbreviations Zz := [IC, oo) n Z and 
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Z, := (-03, K.]IXZ. The space of real N x N-matrices is denoted by RN’ N with the zero matrix ON, 
and GLN(W) is the multiplicative group of invertible matrices in RNX N with the identity IN. 
N(B) := B-l({O}) denotes the nullspace of a matrix B E RNxN and R(B) := B(RN) its range. 
For any x E RN, the ball in RN with center Z-C and radius E > 0 is denoted by BE(z). Double 
bars ]] . ]] stand for an arbitrary norm on RN and our matrix-norms are always induced by vector- 
norms. In particular, the norm ]]B]]s := ma+llz,r ]]B z z is induced by the Euclidean norm ]I 
]]Ic]]~ := (Cr=‘=, ~$)l/~. We write 

2’ = f(k, x), (1) 

for the difference equation x(k+l) = f(k, x(k)) with the right-hand side f : IxRN + RN where I 
is a discrete interval. The expression X(k; IC, [) denotes the general solution of equation (1); i.e., 
X(. ; a, [) solves equation (1) and satisfies the initial condition X( IC; IE, [) = [ for IC E 1 and t E RN. 
The general solution may be represented recursively as 

X(k; K, 6) := 
E, for k = K, 

f(k - 1, X(k - 1; K, E)), for k > K. 

Given a matrix sequence A : I -+ RN x N we define the transition matrix G(k, K) E WNxN of the 
linear equation x’ = A(k)x as the mapping given by 

for k = K, 

. A(n), for k > K, 

and if A(k) is invertible (in RNxN) for k E Z; then we set 

9(k, K) := A(k)-1 . . . . . A(/c - 1)-l, for k < K. 

Finally, a point [ E RN is called an w-limit point of a mapping p : Zi + RN if there exists a 
sequence (kn)nEN in Z,$ with limn+oo k, = co and lim,,, ,u(k,) = I. 

3. EXPONENTIAL TRICHOTOMIES AND REDUCIBILITY 
We consider a linear difference equation 

x’ = A(k)x, (2) 

where the mapping A : Z& --+ RN x N, ICO E Z, is not assumed to have invertible values. Further- 
more, we consider two sequences of projections P- , P+ : Z$ + RN’ N, K E Z& , with 

P-fk + l)A(k) E A(k)P-(k), P+(k + l)A(k) E A(k)P+(k), on Z,+, (3) 

and we assume that the relation P- (k) P+ (k) = P+ (k) P- (k) holds on Zz . Hence, IN - P- (k) - 
P+(k) is a projection on Zz as well. Equation (2) is said to satisfy the regularity condition if the 
two mappings 

4OqP+(q) : R (P+(k)) + R (p+@ + 1,) , 
4av(P+(k)+P-(k)) : N (P+(k) + P-(k)) + N (P+(k + 1) + P-(k + 1))) 

are invertible for all k E Z$; they are well defined because of the identities (3). If this is the case, 
we can define the extended transition matrix 

. [A(1 - l)l,(,+(,-,))I -l ? for k < L 
for k = 1, 

. . . A(h!(P+(,))~ for k > 1, 
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for (k,l) E (ZZ)2. The complementary expression @pIN-p+-p- (k, 1) is defined analogously. 
Finally, equation (2) is said to possess an exponential ttichotomy if there exist real numbers 
0 < CL < ,8 and K1, K2, KS 2 1 such that the following estimates hold true: 

Il@(k,l)P-(l)I1 < K1cxk-‘, for k 2 2 2 K, 

\I@~+(~,z)P+(z)(~ 2 K&-“, for 12 k > IC, - (4 

I(%,a,-P--P+(W) [IN - P-V) - P+(O] 1) I K3r for k, 1 E Zi. 

REMARK 3.1. 

(1) If the coefficient matrices appearing in equation (2) are invertible, then the above notion 
of exponential trichotomy reduces to the corresponding notion used in [5, Definition 1.11. 
For the differential equations case, see [2]. 

(2) If the coefficient matrices in equation (2) are independent of k, A(k) = A, then this equa- 
tion has an exponential trichotomy if all eigenvalues of A with modulus 1 are semisimple. 

Equation (2) is called reducible to an equation x’ = B(k)z with B : Zi -t RNxN, if there 
exists a function A : Z$ -+ BCN(R) with the following properties: 

(i) A and A(.)-l are bounded as functions from Z$ to lRNxN; 
(ii) the identity A(k + l)B(k) = A( holds on Zi. 

Later on we need the following reducibility result. 

THEOREM 3.2. We suppose system (2) satisfies the following conditions: 
(i) it has an exponential trichotomy with constants CY, p, K1, K2, K3, and projections P-, Pf 

on IQ, K E Z&; 
(ii) the ranges of the projections are constant on Z$, N- :S rkP-(k), N+ := rkP+(k). 

Then system (2) is reducible to a decoupled system 

u’ = B-(k)u, 

w’ = B+(k)q (5) 
w’ = B*(k)w, 

with B- : Zz -+ RN- xN-, B+ : Z$ + BCN+(W), and B* : Zz + GCN-N--N+ (R). Moreover, 
the transition matrices V, V, and Q* of the subsystems u’ = B-(k)u, w’ = B+(k)v, and 
w’ = B*(k)w, respectively, satisfy the estimates 

IlV(k, Z)112 5 (2 + K1)6(2 + K2)2Klak-z, for k 1 1 2 IC, 

Il@(k,l)112 i (2 + K#(2 + Kz)~Kz@~-‘, for I L k L IS., (6) 

Il’J’*W)II, i. (2 + W6(2 + Kz)~&, for k,l E Zi. (7) 

(a) Because of the exponential trichotomy of system (2), we have 

IIp-(k)l12 I KI, IIp+(k)II, I Kz, for k E zz. (f-9 
Using the methods in [6, Lemma 2.21 (for details see [7]) there exists a sequence A : iZ$ --) 
GLN(l[$) such that on zz we have 

( 

IN- 

A(k)-‘P-(k)A(k) f ON+ 

) 
=: D-, 

ON-N- -N+ 

A(k)-‘P+(k)A(k) = 
( 

ON- 

IN+ 

) 

-. -. D+, 
ON-N- -N+ 

ON- 

A(k)-’ [IN - P-(k) -P+(k)] A(k) 3 ON+ 
-. -. D*, 

IN-N- -N+ 
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and furthermore, we get 

for k E Z;. (9) 

Using A as a transformation, system (2) turns into the decoupled system (5), which 
moreover satisfies the regularity condition with respect to the constant projections D+ 
and D*. This implies the invertibility of the matrices B+(k) and B*(k) for all k E Z$. 

(b) For the transition matrix a’- we obtain 

Il’VJ)II, = IlW,W-II, = (IA(k)-‘~(k,l)A(l)D-Il, 
= IIAW1@(k V-(W)II, 

2 (2 + K&2 + IQ2 Il@(kJ)P-(l)lI, 

(2 Kl(2 + K#(2 + K2)W-~, for k 2 1 2 tc, 

and using arguments as before, one can see that KJ? and 3* satisfy estimates (6) and (7). 
This completes the proof of Theorem 3.2. I 

4. TRANSFORMATION TO QUASILINEAR FORM 

For the remainder of this paper, we consider a difference equation 

whose right-hand side f : Z&, x JR”’ --+ RN, KO E Z, has the property that f(k, .) is of class C3 
for any k E Zz, K E Z& . We suppose that this system has an M-dimensional bounded invariant 
C3-manifold M c RN. This particularly means that for any initial point (IC,~) in Z& x M, the 
corresponding solution A( k; IC, E) remains in M for all k E izi. We, furthermore, suppose that any 
solution ~0 : Z$ + RN of (10) with initial value PO(K) E M satisfies the following hypotheses. 

(Hl) The variational equation 

Y' = 2 6, clo(k))y 

admits an exponential trichotomy with constants 0 < o < 1 < ,B, K1, Kz, K3, and 
projections P-, P+ whose ranks N- :G rk P-(k) and N+ :E rk P+(k) are constant 
on Z,$ and satisfy N- + N+ = N - M. 

(H2) The limit 

~(k,y+~o(k))-~(k,~o(k)) 1 =ON 

exists uniformly with respect to k E Zz. 
(H3) There exists a neighborhood V C_ M of PO(K) such that the derivatives 

are bounded. 

The following theorem describes a change of coordinates which allows us to transform sys- 
tem (10) into a particular “quasilinear” form which is suitable for further investigations in the 
next section. 
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THEOREM 4.1. For any solution p. : Zz + RN of (10) with PO(K) E M and satisfying Hypothe- 
ses (Hl)-(H3) there exists a local transformation IP, : A,, C Zi x RN -+ RN which transforms 
system (10) into a system of the form 

ii’ = B-(k)?? + & (k , c, 6, ti) iI + B, (k, ii, 6, ti?)C, 
5’ = B+(k)??+@ (k,ii,G,ti)G, 
8’ = 8 + B; (k,G, 6, ti) fi + B,*(k, ii, 6, tiTJ)i& 

(11) 

whereGERN-,fiERN+, and 2ir E WM. Furthermore, the following is true. 

(a) The domain A,, of the transformation TPO is a neighborhood of the “solution curve” 
{(k, PO(~)) : k E Zi} with the property that there exists some p1 > 0 with 

In addition, for any k E i?$, the mapping 7P, (k, e) is of class C1 and satisfies the identity 
Tp,(k,po(k)) E 0 on 25:. 

(b) The mappings B- and B+ are of type B- : 7&z -+ RN- xN- and B+ : 7,; ---f BLN+ (W), 
respectively. 

(c) The transition matrices Q-, P+ of C’ = B-(k) Q and 6’ = B+(k);, respectively, satisfy 
the estimates 

with real constants l?l, l?z 2 1. 
(d) The matrix-valued mappings B,, B,, &, &, & are continuous as functions of (fi, 2, &) 

and they converge to the respective zero matrix uniformly with respect to k E Zz as 
(T&i?,&) --+ (O,O,O). 

(e) There exist real constants c, C > 0 with the following property: if CL, ,ii : ;Zi + RN are 
any two solutions of equation (10) which satisfy (k, p(k)), (k, p(k)) E A,, for all k in some 
subset J C Zi, then the estimates 

c II/G) - iG)II 5 ILk cL(k)) - I,o(k, P(k))ll 5 C IIP@) - iG>ll 

are valid for all k E J. 

PROOF. We subdivide the proof into four steps. 

STEP I. In order to decouple the linear part of system (lo), we first use the transformation 
y = z - po( k) to get from (10) the system 

Y' = g (k, po(k))y + r(k, y), (12) 

where the remainder term r : Z: x RN + RN turns out to have two continuous partial derivatives 
with respect to y E RN. Furthermore, we have 

r(k,O) E 0, on Z,+, (13) 

as well as (cf. (H2)) 

lim 2 (k, y) = 0, 
Y+o ay (14) 
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uniformly with respect to k E Zi. Because of Assumption (Hl), we may apply the reducibil- 
ity Theorem 3.2 to the linear part of system (12). This provides a transformation matrix 
A : zi --) 8/c&R), which allows us to decouple this system by means of the transformation 
Tl:Z~xIWN4UN with Tl(k, y) := A(k)-ly. In fact, the transformed system has the form 

u’ = B-(k)u+r-(k,u,v,w), 

w’= B+(k)v+r+(k,u,v,w), (15) 
w’ = B*(k)w + r*(k, u, 21, w), 

where B- : Z$ --+ RNmxN-, BS : Zz ---) BLN+ (R), and B* : ;Zz + GLM(R). The phase 
space RN is split into three parts according to y = (u, V, w) E RN- x RN+ x lR”. Furthermore, 
the transition matrices W, Qk+, and @* of the linear systems u’ = B-(k)u, v’ = B+(k)w, and 
w’ = B*(k)w, respectively, obey the estimates 

where the constants xi, J?z, Es > 1 only depend on K1, K2, KS and the used norms (see 
Theorem 3.2(b)). The nonlinearities T-, T+, and T* are twice continuously differentiable with 
respect to u, V, and w. In addition, because of (13) we get 

r-(k,O,O,O)rO, r+(k,O,O,O)rO, r*(k,O,O,O)~O, on Z,+, 

as well as (cf. (14)) 

lim 
by?--, ?-+, T*) 

(~,~,~E4vA0) qu, 21, w) 
6, u, v, w) = 0, (17) 

uniformly with respect to k E ;Zi. It is worth noting here that both A : Z$ -+ BCN(W) and A(.)-l 
are bounded. 

STEP II. We now determine a local coordinate change which makes the nonlinear terms of 
system (15) disappear on a set of the form Z$ x (0) x (0) x B where B c RM is an open 
neighborhood of 0. To this end let X : B -+ M be a local C3-coordinate system of the manifold M 
with X(0) = PO(K) and X(B) C V. Then, for any v E B the function X(.; ~,x(r])) is a solution 
of (10) which because of the invariance of M remains in M for all k E Z$. Furthermore, 
X(.; n, X(v)) - ,ue is a solution of system (12), and therefore, the function 

w- (k 71) 
4k; rl) = 

( ) 
v+(k; rl) := W$-‘(W; K, X(v)) - PO(k)) (18) 
v*(k; v) 

is a solution of (15) for any r] E B which, moreover, vanishes identically for r] = 0, 

v(k;O) = 0, on Z,+. (19) 

In addition, the function w(.; 77) is bounded for any fixed r] E B since its values are in M. 
Differentiating the corresponding solution identity with respect to vi E R, we get 

$(k+l;v)= 
B-(k) 

B+(k) + 
B*(k) 
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oniZ~xBfori=l,..., M. According to (17) and (19) we get for q = 0 

$k+l;O)= 
B- (k) 

B+ (k) on z;. (20) 
z 

Thus,theMfunEtions~(~;O),...,~(.;O):Z,t+IRN are solutions of the linear system 

u’ = B-(k)u, 

w’.= B+(k)v, 

w’ = B*(k)w. 
(21) 

Since X : B -+ X(B) is a diffeomorphism, the vectors $$ (0), . . . , $$ (0) E RN are linearly 
independent, and because of the invertibility of the matrix A(K) E RNxN also the vectors 

e (K; 0) (2 A(/c)-lg (O), for i = 1,. . . , M, 
t 2 

are linearly independent. Now we can choose the local coordinate system X of M such that the 
vectors Z(n;O),..., E (IC; 0) E WM are linearly independent and, since B*(k) E RMxM is reg- 
ular, we get the linear independence of the solutions $$(.; 0), . . . , $& (.; 0) of the M-dimensional 
linear system w’ = B*(k) w. Altogether, we thus have 

T (k;O) E W,w(~)r for k E Zz. (22) 

Furthermore, we get the relation 

Finally, the function $$ (s; 0) is bounded by Assumption (H3) because we have 

$(k; 0) (it’ A(k)-1 $ (k; n, po(tc)) g(O), for kEiZ,$. (24 

Next, we want to transform system (15) in such a way that the solutions corresponding to 
v(.;q), 77 E B, get the form (O,O,q). To this end, we consider the mapping S(k,u,v,w) := 
(U,ZI, 0) + v(k;w) and notice that by Taylor’s theorem this mapping may be represented in the 

21 
S(k, u, w, w) (g9, 0 w 

0 
+ $ (k; O)w + Rl(kw), 

where the remainder term RI = (Rr , Rt , R;) : 25: x B ---f lWN ’ 1s twice continuously differentiable 
with respect tow E RM and satisfies limW+s Rl(k, w)/11w11 = 0. The mapping w* : Z$ x B -t BM 
satisfies, because of (19), (22), (23), and 

$ (k; 7) (if’ A(k)-’ [ $ 6% K, X(dPX(d + $ (k; Kc, WdP2X(d] , 

together with (H3), the assumptions of Lemma A.1 (see the Appendix). This provides a neigh- 
borhood U* c B of 0, independent of k, where each vz := w*(k; .) is injective. Lemma A.l, 
furthermore, implies that (vi)-’ is defined for all k E Zz on a k-independent neighborhood 
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V* 5 IRM of 0 with V* C u*(k; V”). For th e inverse of the coordinate change S(k, .), we get the 
representation 

S(k, .)-yu, w, w) = - (:::;!;;;;::I;] 7 

for all (k, U, 21, w) E iZ,+ X RN- X RN+ x V*. Again, from Taylor’s theorem and relation (19) we 
get 

-1 

u - g (k; 0) [ F(k;O) 1 w 

S(k, .)-l(u, 21, w) = 1: I 21 - g (k; 0) [T (k; O)] 

-1 

w + R2(k, w), 

[ I 

-1 

T(k;O) w 

where the remainder term R2 = (&, Rif , R$) : Z$ x V* + RN has two continuous par- 
tial derivatives with respect to w E WM and satisfies limW+c R2(k,w)/llwll = 0. Since the 
functions &(.;O),...,&(.;O) - - are solutions of (21), in terms of the coordinates (u, V, W) := 
Tz(k, u, w, w) := S(k, .)-I( U, w, w) the transformed system has the simplified form 

e’=B-(k)ti+F-(k,ii,~,2TI), i 

fi’ = B+(k)a + f+ (k, 4, v, 73) ) (25) 
w’ = @ + f* (k, ii, ~,.a). 

Here, in view of (20) the nonlinearities ?-, v+, and F* are defined as follows: 

F- (k,ii, a,@) := B-(k)R, (k,.uT) + T- (k, S (k,e,fl,w)) 

- f$ (k + l;O) [z (k;O)] 
-1 

R; 6% a) 

-F(k+l;O) [$k+l;O)] 
-1 

r*(k,S(k,qqti)) 

+R, k+l,~(k+l;O)w+B*(k)R;(k,w)+r*(k,S(k,ti,z’,w))), 
( 

r+ (k, U, i?, a) := B+(k)R; (k,a) + r+ (k, S (k,ii, v, a)) 

-$$k+l;O) [g(k;O)] 
-1 

R; (k 3 

- $$ (k + 1;O) [$$ (k + l;O)] 
-1 

r*(k,S(k,ti,&w)) 

and 

-1 

r”(k,ii,qa) := 1 $$(k;O) 1 R; (k, 4 1 -1 

T* (k, S (k, ii, u, a)) 

+R; k+l,~(k+l;O)u+B*(k)R;(k,w)+r*(k,S(k,fi,~,~))). 
( 
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These functions have three crucial properties. They have two continuous partial derivatives with 
respect to (c, B, c), together with the sequence (v(k; 2~)) kezf also the sequence (S(k, C, V, 3)),eZt 
is bounded (for fixed (c,G,~TI) E RN- x RN+ x V”), and from Lemma A.1 and relations (23) and 
(24) we get the boundedness of (Ts(k, u, V, ~))~e~f (for fixed (u, V, W) E RN- x RN+ x V”). Thus, 
for the nonlinear terms we get the relation 

lim 
(a,o,?i+o,o,o) 

y;;+;*’ (k,‘ZL,G,,G) = 0, 
7 , 

uniformly with respect to k E iZ$. Since v(.;v) = S(.,O,O,q) solves system (15), we get for all 
r] E u* 

F(k,O,O,q)=O, f+(k,O,o,?+o, F*(k,o,o,7j)‘o, on Z,+. (26) 
Hence, (0, 0, v), q E U*, represents a family of stationary solutions of (25). 
STEP III. In order to investigate system (25) we choose an open neighborhood 0 C U of 0 E RN 
such that (ta, TV, 2~) E U for any (~,‘~,ti) E U and all t E [0, 11. By the mean value theorem, we 
then get for any (c,v,G) E fi and 5 E Zz the relation 

s 1 

T=- (k, E, 0, IiT) = P- (k, 0, 0,271) + x (k,tf-i,M,a) dt 
0 a(%fl) 

(2) 
(J 

l aF- 
o au. (k,tfi,tqtn) dt 

> (s 

l ar- 
ai+ o x (k,t~,t.ij,~) dt ti. 

Analogous relations hold for the other nonlinear terms f+ and P. Using the abbreviations 

B,+ (k,ii,o,a) := J ’ “+ o aii (k, tii, tfi,a) dt, 

(k, tfi, tv, ?ii) dt, 

(k, tti, tv, 8) dt, 

B; (k,c,o,ci) := 
I 

’ &=+ o ac (k,tG,ti?,a) dt, B; (k, e, a, ti) := 
J 

o1 g (k,t?i,tfi,w) dt, 

we get six matrix-valued functions which have continuous partial derivatives with respect to 
(a, 6, ti) and converge, by Assumption (H2), to 0 uniformly with respect to k E Z$ as (u, 8, W) --) 
(O,O,O). System (25), thus, has the form 

ii’ = B-(k)~ + B, (k, ii, 5, m) ‘1~ + B, (k, fi, zi, a) v, 

d = B+(k)u + B,+ (k, a, 9, s) fi + B,+ (k, c, c, w) a, (27) 
~‘=8+B;(k,~,~,~)~+Bz*(k,e,a,s)v. 

In order to further decouple the system under consideration, we now apply a theorem on the 

existence of local center-stable fiber bundles to systems (25) and (27). This result is a consequence 
of a local version of [8, Theorem 4.111. It provides a constant p > 0 and a function s : Zz x BP(O) C 
25; x RN- x BM + BP(O) c RN+ which defines a local invariant fiber bundle S. The function s 
has the following properties: 

(a) For all k E ZL we have .s(k,O,O) = 0 and & (k,O,O) = 0. 
(b) For all points (k,G,ti) E Z$ x BP(O) which have the property that (B-(k)ti + F(k,fi, 

s(k,ii,ti),Q),ti + F*(k,fi, s(k,ii,GJ),G)) belongs to BP(O), we have 

s (k + 1, B-(k)fi + B, (k, u, s (k, 4, w) , s) u 

+B,(k,a,s(k,c,ti),S)s(k,G,a), 

~+B;(k,C,s(k,~,8),w)~ 

+ B; (k,“,~ (k,ii,a) ,w) s (k,qw)) 

= B+(k)s(k,ii,s)+B,+(k,ii,s(k,a,a),s)e 

+B,+(k,iz,s(k,ti,w),?lr)s(k,i,ti). 

(28) 
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(c) For any k E Z $, the function s(k, .) is continuously differentiable. 

Without loss of generality, we may suppose that B,,(O) c 0 in the following considerations. Since 
(O>O, d E Bp(O) is a bounded (since stationary) solution of (25), we get 

s(h 0777) = 0, on Z,+, (2% 

for any v E BP(O) w rc is sufficiently small. we now apply the local coordinate change h’ h 

?2 

0 

6 :=T3(k,ii,@,tiJ):= o-&&q 
2ir ( - ) 

(30) 
8 

to system (27). This yields the system 

ii’= B-(k)ti+?- (k,ii,fi,~2~), 

6’ = B+(k)5 + B,+ (k, G,~,~)~+~+(IE,&,Qq, 

2ir’ = ti + i* (k, i&c, 6)) 

where we have used the abbreviations 

i-(Ic,G,~,~):=B1(k,~,~+s(k,C,~),~)~ 

+Bz(Ic,~,~+s(Ic,~,zit),~)(~+s(k,5,~)), 

+*(k,ii,G,ti) := B;(k,~,~+s(k,Q,2it),2ir)~ 

+B;(k,ii,fi+s(k,G,ti),~)(~+s(k,O,~)), 

P+ (k, G, 6,2i)) := B+(k)s (k ,0,~)+B1+(k,G,~+s(iE,~,2ir),~)~ 

+Bz+(k,C,~+s(k,G,8),8)s(Ic,G,8) 

-s k+l,&-(k)~+B;(k$$+s(k,O,&),zL)Gt 
( 

+B~(k,ii,~+s(k,O,~),ti)(~+~(k,C,2ir)), 

2ir+B;(Ic,G,~+s(Ic,~,~),2ir)Q 

+ B; (k, ii, 5 + s (k, ii, 61) ,8) (fi + s (k, W))) * 

Because of the identity (29) we get P-(k,O,O,q) 2 0, f*(k, O,O, r]) 2 0 on Zz for normwise 
sufficiently small r] E B,,(O). As above, we may write 

P- (k, c, 8, ti) = B, (k ,~,~,~)~++Bz(k,C,~,3)~, 

P* (k, 6, G,ti) = I?; (k,ii,G, 6) ii + B; (k, ii, 6, ti) 5, 

B, (k, ii, 5, ‘Lir) := s l OP- 
D x (k,tC,tG,d) dt, s, (k, ii, i3, 6) := 

s 

l a+- 
o x (k, tii, t6, S) dt, 

B; (k, G, G,7i) := 
s 

l a+* 
o x (k,tfi,tii,ti) dt, &(lc,ti,G,&) := 

s 

l a+* 
o x (k,tG,tG,G) dt. 

Moreover, we get 

i+ (k, ii, O,C) = B+(k)s (k, 0,8)+B1+(k,ii,s(k$,ti),2ir)G 

+Bz+(k,iI,s(k,C,ti),zir)s(k,Q,&) 

-s(k+l,B-(k)O+B&k,G,s(k,C,~),ti)ii 

+B,(k,4,s(k,O,~),~)s(IE,~,2ir), 

2i)+B;(Ic,C,s(Ic,~,~),~)~ 

+ B,* (k, 6, s (k, iiL,2ir) ,3) s (k, ii, G)) 

(?J) 0 9 for Ic E Z,+, 
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and using the abbreviation 

B$ (k, 6, G, 2ir) := I?$ (k, ii, s, &) + 
J 
o1 g- (k,ii,ti&ti) dt 

we obtain the claimed form of the difference equation (11). Together with the function s(k, .), 
also the coordinate change Ta(k, =) is continuously differentiable for any k E Z$. 

STEP IV. Defining the transformation TP,, : A,, -+ RN by the relation 

‘L,(k,~) := TdkT2(k,Tl(k,a: - pa(k)))), 

we get from the previous considerations the assertions of the theorem. Concerning statement (e) 
we note that the transformations Tl, S, T3, and the inverses have bounded derivatives on their 
domain. I 

5. THE MAIN RESULT 

The following theorem, the main result of this paper, may be considered as a discrete time 
version of the corresponding result on differential equations in [2]. It turns out that, compared 
to the continuous time result, for the difference equations case we have to make two additional 
assumptions in order to take care of two well-known deficiencies of discrete time solutions, the 
lack of backward existence, and the disconnectedness. 

THEOREM 5.1. We reconsider the difference equation 

cc’ = f( k, x) (31) 

dealt with in the previous section. In addition to Assumptions (H1)-(H3), we suppose that 

(H4) M is compact, and 
(H5) f(k ‘)lM : M + M is surjective for any k E iZ&. 

Thenifp:Zz-+R N is any solution of (31) with the properties 

(i) limk-,oo[?;Po (k + 1, p(k + 1)) - TP,,(k, p(k))] = 0 for any solution ~0 : Z$ + RN of (3 
with PO(K) E M, and 

(ii) limk,, dist (p(k), M) = 0, 

then there exists a point [ E M such that 

‘1) 

&mJ(k; K, E) - dk)I = 0; 

i.e., M possesses an asymptotic phase. 

PROOF. We proceed in three steps. 

STEP I. Since Assumption (H3) applies’to all solutions of (31) starting on the manifold M and 
because M is compact, we have 

Thus, there exists for any E > 0 a S = 6(~) > 0 such that for all t, f E M the following implication 
is true: 

IjX(ko; IS,<) - X (ko; n,f)\I < 6, for some ko E Zz, 

~IIX(~;I~,E)-X(~;IC,F)II<E, forkEZ&. (3‘4 
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STEP II. The compactness of M implies that, because of Property (ii), the function p-has an 
w-limit point 7 E M. Thus, there exists a sequence (k,),e~ in Zt with 

Assumption (H5) then guarantees that the solutions of (31) on M have (not necessarily unique) 
backward continuations. Therefore, there exists a sequence (~~17n)~e~ in M with 

rl = qlc,; 4 %), for n E N. (34) 

Since M (and thus, (v~)~~N) is bounded, there exists a converging subsequence (T~_)~~N whose 
limit 6 := lim,,, nn, belongs to the closed set M. We, therefore, get the estimate 

and using (32) and (33) we get 

linJp(k,) - X(k,; 4 01 = 0. (35) 

Consequently, the solution X(.; K, E) lies in M and the function p - X(.; 6, [) has 0 as w-limit 
point. In order to simplify our notation, from now on we write (/c~)~~N instead of (&JrnE~. 

STEP III. In order to show that the difference p(k) - X(k; K,[) converges to 0 as k -+ 00, 
we notice that for the function v(k) = (v-,v+,v*)(k) := IJc.;n,~)(k,p(k)) we have, because of 
Theorem 4.1 (a), 

Ix(.;,,&, X(k; &E,E)) = 0, on Z,+. (36) 

Because of (35) and the construction of ?JJ(.;n,E), the point 0 E RN is an w-limit point of the 
function u and it remains to be shown that v(k) converges to 0 as k -+ 00. Assuming the 
contrary, there exists a real number p E (0, pi) (pi > 0 is defined in Theorem 4.1(a)) and because 
of Assumption (i) there exists a sequence of nonempty Z-intervals J, := [k,, k$]z, n E M, with 
k,, kz E Z$, k, < kz < k,+l, such that 

lim v(kn) = 0, 
R-+00 

v(k) E BP(O), 

v (kn+) E h(O) \ 4/2(O), 

forkE U Jo, 
?lEPi 

for 72 E IV. 

(37) 

(38) 

(39) 

On any discrete interval J, the function u is a solution of the linear homogeneous system 

u’ = B-(k)u + d,(k, v(k))u + &(k, v(k))w, 

w’ = B+(k)v + &(k, v(k))v, 

w’ = w + &(k, v(k))u + &(k, v(k))v, 

(40) 

where the transition matrices \k- and 9+ of u’ = B-(k) u and 21’ = B+(k)w, respectively, satisfy 
the estimates 

Without loss of generality, we may suppose that p > 0 is so small that apart from the estimate 

(41) 
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(the positive constants c and C are those of Theorem 4.1(e)), the following estimates are true for 
all k E UnEPJ J,: 

I(B;(k,v(k))l( i min { $, $$} , IIB;(k, v(k))11 5 min { $$, $$}, 

\l&(k,v(k))/ 5 min { 2, $$} , 

Il&(k,v(k))/ <min{g,$$}, (I&(k,v(k))/ <min{$$,s}. 

Using Theorem 4.1(e) we get 

ll~(kn’) -+,+;~t)\) (2) i Illx(.;tc,~) (kh+,f))l( 

(38) p (41) 1 (42) 
< ; 5 &)7 for 12 E IV, 

and since the sequence (p(kk))nEN is bounded, because of estimate (42), there exists an w-limit 
point v. := lirnrnhm p(krr+,) E M where (k,+,)mEN is a subsequence of (kz),,,. 

As in the second step of this proof we get a point 60 E M such that 

)$[/+:,,,1) -+fmi;Go)] =O, (43) 

where (k$,,l )m is a further subsequence of ( k$JmEN. Using (42) th is implies that for sufficiently 
large lo E N we get 

\(A (k~m,P~E) - Jf (Cl ;460)(( I ((A (k;t,.pE) -&,)I( 

. +llp(k,,,l) -~(k&,~;~,~o)/ ‘?d($$, forlEZi. 

Consequently, because of (32) we get from Theorem 4.1(e) 

Il~(.;~,~)(k, WC; K,Eo))\[ (? CIlX(k; K,b) - WC; ~,C)ll I PI, for k E “imI,. 

Now we are in a position to apply [3, Lemma 8.11 to system (40) and its bounded solution 

vo(k) = (6, &G) (k) := Ix(.;n,& W; ~,b)). 

This provides a relation of the form 

Ema (G, q?, 4) (k) = (O,O,w*) , (44 + 

for some w* E RP. From (43) and Theorem 4.1(e) we conclude that the relation 

1’i~~ [(W’P’) (k&) - (~,-,d,~;) (k:,,,,)] = (O,O,O) 

holds true which, in turn, with (44) yields 

/in& (v- , v+ , y*) ( kZml) = (0, 0, w*) . (45) 

Then using [3, Lemma B.61 we see that there exist constants Cr, C’s > 0 (which depend only on 
the growth rates CY, ,0 and I?r, I?s) with the property 

IIv* (k,+_,) 11 5 llu* (k) II+ Cl IIv- (4 II + c2 IIv+ (kL> 11 . 

Because of (37) and (45), the sequence (v*(k,+,,))lEN and consequently also the sequence 

wn+,, )hEW converges to 0 as 1 ---t 00. This, however, contradicts relation (39). I 
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APPENDIX 

PARAMETER-DEPENDENT INVERSE FUNCTIONS 
For the reader’s convenience, we state here a qualitative inverse function theorem which can 

be shown using [9, Proposition 2.5.61. 

LEMMA A.l. Let R be an open neighborhood of the zero vector of some Banach space X and 
let T : P x R -+ X be a mapping such that T(p, .) is of class Cm (m 1 2) for any p in some 
nonempty set P. Furthermore, assume the following: 

(i) T(p, 0) = 0 on P; 
(ii) the partial derivatives $$ (p, 0) : X + X are invertible’ for p E P; 

(iii) M := suppEp 11 [g (p, O)]-‘11 < co; 

(iv) K := SU~~~,,~~~~BR(O) 11 g (p, x)/I < 00 for some R > 0 with BE(O) G 0. 

Then, using the abbreviation P := min{R, 1/2KM}, there exists a uniquely determined mapping 

s : 7’ X BP/IM (0) + X with the following properties: 

(a) S is bounded; more explicitly, 

IMP, Y)II I p, for (P, Y) E p .x BPIZM@). 

(b) S(p, 9) is the inverse function of T(p, .); more explicitly, 

T(P, 0, Y)) = Y> for (P, Y) E p x BP/zM($ 

cc) ‘%‘T ‘)bp,&J) is of class C” for each p E P. 
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