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a b s t r a c t

We describe optimal decompositions of an n�m matrix I into a triangular product
I ¼ A / B of an n� k matrix A and a k�m matrix B. We assume that the matrix entries
are elements of a residuated lattice, which leaves binary matrices or matrices which con-
tain numbers from the unit interval [0,1] as special cases. The entries of I, A, and B repre-
sent grades to which objects have attributes, factors apply to objects, and attributes are
particular manifestations of factors, respectively. This way, the decomposition provides a
model for factor analysis of graded data. We prove that fixpoints of particular operators
associated with I, which are studied in formal concept analysis, are optimal factors for
decomposition of I in that they provide us with decompositions I ¼ A / B with the smallest
number k of factors possible. Moreover, we describe transformations between the m-
dimensional space of original attributes and the k-dimensional space of factors. We provide
illustrative examples and remarks on the problem of computing the optimal decomposi-
tions. Even though we present the results for matrices, i.e. for relations between finite sets
in terms of relations, the arguments behind are valid for relations between infinite sets as
well.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Problem setting

The problem discussed in this paper can be described as follows. Let I be an n�m object–attribute matrix whose entries Iij

are elements from a residuated lattice L ¼ hL;�;!;^;_; 0;1i (see Section 1.4 for preliminaries), i.e. Iij 2 L. We look for a
decomposition
I ¼ A / B ð1Þ
of I into a product A / B of an n� k object–factor matrix A and a k�m factor–attribute matrix B, with Ail;Blj 2 L, such that the
number k of factors is the smallest possible. The composition operator / is defined by
ðA / BÞij ¼
k̂

l¼1

Ail ! Blj ð2Þ
with
V

denoting the infimum in L. The operator / is known in fuzzy set theory. Namely, A / B is called a triangular product,
or the inf-? product, or Bandler–Kohout product [20].
. All rights reserved.
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Note that I, A, and B can be looked at as representing fuzzy relations RI , RA, and RB, i.e. RIði; jÞ ¼ Iij, RAði; lÞ ¼ Ail, and
RBðl; jÞ ¼ Blj, in which context / usually appears in fuzzy set theory [14,19]. Two concrete well-known examples are:
L ¼ ½0;1� and ! is a residuum of a t-norm �; L ¼ f0;1g and ! is a (truth function of) classic implication (i.e. 1! 0 ¼ 0,
1! 1 ¼ 0! 0 ¼ 0! 1 ¼ 1). Note that in terms of relations, we present our results for relations between finite sets (namely,
for matrices which represent such relations). However, the arguments are valid even for relations between infinite sets (i.e.
for ‘‘infinite matrices”).

1.2. Motivation and factor analysis interpretation

Residuated lattices can be thought of as partially ordered scales of degrees, such as L ¼ f0;1g representing a yes-or-no
scale; L ¼ f0; 1

4 ;
1
2 ;

3
4 ;1g representing a scale consisting of ‘‘very bad”, ‘‘bad”, ‘‘neutral”, ‘‘good”, ‘‘very good”; or L ¼ ½0;1�. An

entry Iij 2 L of I can be interpreted as a degree to which attribute j applies to object i.
Looking for a decomposition of I can be interpreted as looking for hidden factors in the data represented by I. For the pur-

pose of illustration, consider L ¼ f0;1g (binary matrices). Let the n�m matrix I describe a relationship between objects and
attributes. A decomposition I ¼ A / B corresponds to a discovery of k factors. Namely, due to (2), the original object–attri-
bute relationship represented by I is described via an object–factor relationship represented by A and a factor–attribute rela-
tionship represented by B the following way:

Object i has attribute j (i.e., Iij ¼ 1) if and only if for every factor l ¼ 1; . . . ; k: if l applies to i (i.e., Ail ¼ 1) then j is a particular
manifestation of l (i.e., Blj ¼ 1).

For a general scale L, such an interpretation of I ¼ A / B remains valid but degrees need to be taken into account. In partic-
ular, I ¼ A / B then means that the degree Iij to which object i has attribute j is the degree to which the following proposition
is true: for every factor l, if l applies to i then j is a particular manifestation of l. Concrete example for the binary case: Let
objects and attributes be jobs and persons, let Iij ¼ 1 mean that person j performs (or is able to perform) job i. Factors in
decomposition I ¼ A / B can then be interpreted as skills (conditions characterizing the jobs). Namely, with Ail ¼ 1 being
interpreted as ‘‘skill l is required for job i” and Blj ¼ 1 being interpreted as ‘‘person j has skill l”, I ¼ A / B says that person
j is able to perform job i if and only if person j has all skills required for job i.

If k is smaller than m, a decomposition I ¼ A / B provides us with a description of objects in terms of a small number of
factors which reduce the dimensionality of the original dataset represented by I. If k is the smallest one, the factors can be
regarded as a minimal set of descriptive conditions for the n objects with respect to the observed m attributes.

1.3. Related work

Related decompositions, namely I ¼ A � B with � being the sup-� product defined by ðA � BÞij ¼
Wk

l¼1Ail � Blj, are studied in
[5]. Note that for L ¼ f0;1g, decompositions I ¼ A � B are of primary concern in Boolean factor analysis, see e.g. [10,23], and
are also studied in data mining, see e.g. [25]. A theoretical analysis of �-decomposition of binary matrices, its computational
complexity, approximation algorithms, and their experimental evaluation are presented in [7]. Note that while technically
different, the approach presented in this paper is conceptually similar to that one presented in [5], where instead of isotone
Galois connections, used in this paper, we used antitone Galois connections. In the binary case, isotone and antitone Galois
connections are mutually definable (one can be obtained from the other by a well-known duality). In the general setting of
residuated lattices, they are not [12].

A related problem of decomposition of a binary (or [0,1]-valued) matrix I into A / B is known as the problem of inf-?
(fuzzy) relational equations. This problem has been studied and utilized in various areas for a long time, see e.g. [9,19].
Namely, the problem is, given A and I, find B such that I ¼ A / B (or, given B and I, find A such that I ¼ A / B). This problem
is very different from the one discussed in our paper, because in addition to I, one of the other matrices, A or B, is known.

Note also that fuzzy Galois connections, which play an important role in our paper, were studied in several papers includ-
ing [1,4,12,18,22].

1.4. Preliminaries from residuated lattices

A residuated lattice [14,17,26] is an algebra L ¼ hL;^;_;�;!;0;1i such that hL;^;_;0;1i is a lattice with 0 and 1 being the
least and greatest element of L, respectively; hL;�;1i is a commutative monoid (i.e. � is commutative, associative, and
a� 1 ¼ 1� a ¼ a for each a 2 L); � and ? satisfy the adjointness property
a� b 6 c iff a 6 b! c ð3Þ
for every a; b; c 2 L. A residuated lattice is called complete if hL;^;_;0;1i is a complete lattice.
Residuated lattices appear in various areas of mathematics and play a fundamental role in fuzzy logic and fuzzy set theory

[3,13,15,16]. In fuzzy logic, elements a of L are called truth degrees (or grades). � and ? are (truth functions of) many-valued
conjunction and implication. Examples of residuated lattices include those with the support set L ¼ ½0;1� (real unit interval),
^ and _ being minimum and maximum, � being a left-continuous t-norm with the corresponding residuum ? [3,14]. An-
other commonly used example is a finite linearly ordered L, a special case of which is the two-element Boolean algebra
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hf0;1g;^;_;�;!;0;1i, denoted by 2, which is the structure of truth degrees of classical logic. That is, the operations
^;_;�;! of 2 are the truth functions of the corresponding logical connectives of classical logic.

Given a residuated lattice L, an L-set (fuzzy set, graded set) A in a universe U is a mapping A : U ! L, AðuÞ being interpreted
as ‘‘the degree to which u belongs to A”. In the following we use well-known properties of residuated lattices and fuzzy sets
over residuated lattices which can be found, e.g., in [3,14,16,17].
2. Optimal decompositions

2.1. Matrix composition as a
V

-superposition of I-beam matrices

Let us first observe that I ¼ A / B for n� k and k�m matrices A and B means that I is a
V

-superposition of particular
matrices.

Definition 1. An n�m matrix J is called an I-beam matrix (simply I-beam) iff there exist L-sets C in f1; . . . ;ng and D in
f1; . . . ;mg such that
Jij ¼ CðiÞ ! DðjÞ ð4Þ
for 1 6 i 6 n, 1 6 j 6 m. We denote this fact briefly by J ¼ C / D.

The term ‘‘I-beam” comes from a geometric interpretation. For illustration, consider L ¼ f0;1g. The fact that J is an I-beam
matrix means that the entries of J which contain 1s form an area which, up to a permutation, has the form of letter I. For
instance, for
C ¼ 0 0 1 1 1 1 0 0ð ÞT; and D ¼ 0 0 1 1 1 0 0ð Þ;
the corresponding I-beam C / D is
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Theorem 1. For arbitrary n� k and k�m matrices A and B, I ¼ A / B iff I is a
V

-superposition of k I-beam matrices J1; . . . ; Jk, i.e.
iff
I ¼ J1 ^ J2 ^ � � � ^ Jk:
Proof. Directly from definitions: I ¼ A / B means Iij ¼ ðA / BÞij, i.e. Iij ¼
Vk

l¼1ðAil ! BljÞ. Obviously, this means that I is a
V

-
superposition of I-beam matrices Jl, l ¼ 1; . . . ; k, defined by ðJlÞij ¼ Ail ! Blj. h

Example 1. For simplicity, consider the following decomposition I ¼ A / B of an 4� 5 matrix:
0 0 1 1 1
0 0 1 1 0
0 0 0 0 1
0 1 1 1 0

0
BBB@

1
CCCA ¼

1 0 0 1
1 0 1 0
1 1 0 0
0 0 1 0

0
BBB@

1
CCCA /

0 0 1 1 1
1 1 0 0 1
0 1 1 1 0
1 0 1 1 1

0
BBB@

1
CCCA:
According to Theorem 1, this decomposition can be rewritten as a
V

-superposition
0 0 1 1 1
0 0 1 1 0
0 0 0 0 1
0 1 1 1 0

0
BBB@

1
CCCA ¼

0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
1 1 1 1 1

0
BBB@

1
CCCA ^

1 1 1 1 1
1 1 1 1 1
1 1 0 0 1
1 1 1 1 1

0
BBB@

1
CCCA ^

1 1 1 1 1
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0

0
BBB@

1
CCCA ^

1 0 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

0
BBB@

1
CCCA
of I-beams J1; J2; J3; J4, where Jl results as a /-product of the lth column of A and the lth row of B. Note that the I-beam shape of
Jls becomes apparent after rearrangement (permutation) of rows and columns. Due to small dimensions, the I-shape is
degenerate in case of J1 and J4.
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2.2. Fixpoints of isotone Galois connection associated with I as optimal factors for decomposition of I

We describe decompositions of I which are optimal among all possible decompositions of I in the sense that the number k
of factors is the smallest possible. The decompositions use fixpoints of certain operators associated with I as factors. The
operators form an isotone L-Galois connection and were studied in formal concept analysis [12], see also [3,4,21,24] for more
information on formal concept analysis of data with graded attributes. In formal concept analysis [11], fixpoints of Galois
connections associated with I are called formal concepts. They represent certain biclusters in the data represented by I. In
particular, let X ¼ f1; . . . ;ng denote the set of objects corresponding to the rows of I, Y ¼ f1; . . . ;mg denote the set of attri-
butes corresponding to the columns of I. Formal concepts of I are certain biclusters hC;Di with C (called the extent of hC;Di)
and D (called the intent hC;Di) being L-sets of objects and attributes, respectively. For an object i 2 X, CðiÞ represents a degree
to which formal concept hC;Di applies to i; for an attribute j 2 Y , DðjÞ represents a degree to which hC;Di applies to j. The
fixpoints, i.e. formal concepts which we use as factors in this paper, represent an alternative to the ordinary formal concepts
[3,4,24] and were studied in [12].

Isotone L-Galois connections associated with I. Let X ¼ f1; . . . ;ng and Y ¼ f1; . . . ;mg be sets (of objects and attributes,
respectively), I be an n�m matrix with entries from a residuated lattice L ¼ hL;�;!;^;_;0;1i. Define operators
\ : LX ! LY and [ : LY ! LX , by letting for C 2 LX and D 2 LY ,
C\ðjÞ ¼
_n
i¼1

ðCðiÞ � IijÞ; ð5Þ

D[ðiÞ ¼
m̂

j¼1

ðIij ! DðjÞÞ ð6Þ
for j 2 f1; . . . ;mg and i 2 f1; . . . ;ng. Furthermore, denote by BðX\;Y[; IÞ the set of fixpoints of h\; [i. That is,
BðX\; Y[; IÞ ¼ fhC;Di 2 LX � LY jC\ ¼ D;D[ ¼ Cg:

For a fixpoint hC;Di 2 BðX\;Y[; IÞ, we call C and D the extent and the intent of hC;Di. Note that every hC;Di 2 BðX\;Y[; IÞ is
uniquely determined by its extent C as well as by its intent D.

Remark 1. Note that BðX\;Y[; IÞ equipped with a partial order 6 defined by hC1;D1i 6 hC2;D2i iff C1 # C2 (which is
equivalent to D1 # D2), forms a complete lattice; the compound mapping \[ : LX ! LX is an L-closure operator in X; the
compound mapping [\ : LY ! LY is an L-interior operator in X [2,12]. BðX\;Y[; IÞ is uniquely determined by the set
fixð\[Þ ¼ fC 2 LX jC ¼ C\[g of fixpoints of \[, because BðX\;Y[; IÞ ¼ fhC;C\ijC 2 fixð\[Þg. As a consequence, BðX\;Y[; IÞ can be
computed by the algorithms for computing sets of fixpoints of L-closure operators [6].

Fixpoints of h\; [i are minimal I-beams covering I. The fixpoints from BðX\;Y[; IÞ correspond to I-beams which cover I and
are minimal w.r.t. a particular partial order 6I (the subscript I stands for I-beam ordering). We say that an I-beam matrix J
corresponds to hC;Di iff J ¼ C / D, i.e. Jij ¼ CðiÞ ! DðjÞ for all i; j. For L-sets C1;C2 2 LX and D1;D2 2 LY , put
hC1;D1i 6I hC2;D2i iff C1 � C2 and D1 # D2;
i.e. iff C1ðiÞP C2ðiÞ for all i 2 f1; . . . ;ng and D1ðjÞ 6 D2ðjÞ for all j 2 f1; . . . ;mg. In terms of I-beams, hC1;D1i 6I hC2;D2i means
that the I-beam C1 / D1 corresponding to hC1;D1i is contained in the I-beam C2 / D2 corresponding to hC2;D2i, i.e. that
ðC1 / D1Þij 6 ðC2 / D2Þij for every i and j. The following is a crucial property of fixpoints from BðX\;Y[; IÞ.

Theorem 2 [12]. hC;Di is a fixpoint of h\; [i iff the corresponding I-beam is a minimal one which covers I, i.e. iff hC;Di is minimal
with respect to 6I such that Iij 6 ðC / DÞij for all i and j.

Universality and optimality of fixpoints of h\; [i as factors. Let
F ¼ fhC1;D1i; . . . ; hCk;Dkig

be a set of pairs of L-sets Cl and Dl in f1; . . . ;ng and f1; . . . ;mg, respectively. In what follows, we always assume that there is a
fixed order on the set F and indicate this order by indexes. Thus, we may speak of the 1st pair in F which is hC1;D1i, up to
the kth pair which is hCk;Dki. Given F with such a fixed order, define n� k and k�m matrices AF and BF by
ðAFÞil ¼ ClðiÞ and ðBFÞlj ¼ DlðjÞ:
That is, the lth column of AF is the transpose of the vector corresponding to L-set Cl and the lth row of BF is the vector cor-
responding to Dl. Note that the vectors corresponding to Cl and Dl are ðClð1Þ; . . . ;ClðnÞÞ and ðDlð1Þ; . . . ;DlðmÞÞ.

Example 2. Let X ¼ f1; . . . ;4g, Y ¼ f1; . . . ;6g. Let F ¼ fhC1;D1i; hC2;D2ig with the vectors corresponding to C1 and D1 being
ð1:0 1:0 0:8 0:2Þ and ð1:0 1:0 0:0 0:0 0:0 0:0Þ , and the vectors corresponding to C2 and D2 being
ð1:0 0:7 0:9 0:0Þ and ð0:8 1:0 0:0 0:0 0:0 0:0Þ . That is, C1ð1Þ ¼ 1:0, C1ð2Þ ¼ 1:0, C1ð3Þ ¼ 0:8, etc. Then
AF ¼

1:0 1:0
1:0 0:7
0:8 0:9
0:2 0:0

0
BBB@

1
CCCA and BF ¼

1:0 1:0 0:0 0:0 0:0 0:0
0:8 1:0 0:0 0:0 0:0 0:0

� �
:
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The next two theorems contain the main results regarding the triangular decompositions I ¼ A / B studied in this paper.
The first theorem says that we can always use fixpoints from BðX\;Y[; IÞ as factors for decomposition of I.

Theorem 3 (Universality). For every I there exists F#BðX\; Y[; IÞ such that I ¼ AF / BF. Namely, one can put
F ¼ BðX\;Y[; IÞ.

Proof. Put F ¼ BðX\; Y[; IÞ and let us denote BðX\;Y[; IÞ simply by B. To show that I ¼ AF / BF, we need to check
Iij ¼

V
hC;Di2BCðiÞ ! DðjÞ. On the one hand, Iij 6

V
hC;Di2BCðiÞ ! DðjÞ iff for each hC;Di 2 B we have Iij 6 CðiÞ ! DðjÞ which is

equivalent to Iij � CðiÞ 6 DðjÞ which true because Iij � CðiÞ 6 C\ðjÞ ¼ DðjÞ. On the other hand, consider the fixpoint
hC�;D�i ¼ hf1=ig\[; f1=ig\i 2 B. We have
1 ¼ f1=igðiÞ 6 f1=ig\[ðiÞ ¼ C�ðiÞ;
hence C�ðiÞ ¼ 1; and
D�ðjÞ ¼ f1=ig\ðjÞ ¼
_
i02X

f1=igði0Þ � Ii0 j ¼ Iij:
Hence,
 ^
hC;Di2B

CðiÞ ! DðjÞ 6 C�ðiÞ ! D�ðjÞ ¼ 1! Iij ¼ Iij;
finishing the proof. h

The second theorem says that taking the fixpoints as factors provides us with decompositions with the smallest number k
of factors possible.

Theorem 4 (Optimality). Let I ¼ A / B for n� k and k�m matrices A and B. Then there exists a set F#BðX\;Y[; IÞ of fixpoints
with
jFj 6 k
such that for the n� jFj and jFj �m matrices AF and BF we have
I ¼ AF / BF:
Proof. Let I ¼ A / B. Due to Theorem 1, I is an intersection of I-beams J1; . . . ; Jk which correspond to the columns and rows of
A and B, respectively, and cover I. Every Jl contains some I-beam J0l P I, which is minimal w.r.t. 6I, i.e. Jl P J0l P I. Denote by Cl

and Dl the L-sets in X and Y for which J0l ¼ Cl / Dl. By Theorem 2, hCl;Dlis are fixpoints, i.e. hCl;Dli 2 BðX\;Y[; IÞ. Put
F ¼ fhCl;Dlij1 6 l 6 kg. Clearly, jFj 6 k. Using the assumption, Theorem 1, and the fact that I is the intersection of the col-
lection of all I-beams corresponding to fixpoints (cf. proof of Theorem 3), we get
I ¼
k̂

l¼1

Jl P
k̂

l¼1

CT
l / Dl ¼ AF / BF P

^
hC;Di2BðX\ ;Y[ ;IÞ

CT / D ¼ I:
Therefore, AF / BF ¼ I. h

Example 3. For the purpose of illustration again, let L ¼ f0;1g (binary case). Consider again the decomposition
0 0 1 1 1
0 0 1 1 0
0 0 0 0 1
0 1 1 1 0

0
BBB@

1
CCCA ¼

1 0 0 1
1 0 1 0
1 1 0 0
0 0 1 0

0
BBB@

1
CCCA /

0 0 1 1 1
1 1 0 0 1
0 1 1 1 0
1 0 1 1 1

0
BBB@

1
CCCA;
and the corresponding I-beams J1; . . . ; J4, which are
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
1 1 1 1 1

0
BBB@

1
CCCA;

1 1 1 1 1
1 1 1 1 1
1 1 0 0 1
1 1 1 1 1

0
BBB@

1
CCCA;

1 1 1 1 1
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0

0
BBB@

1
CCCA;

1 0 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

0
BBB@

1
CCCA:
Furthermore, consider the fixpoints hC1;D1i ¼ hf1;2;3g; f3;4;5gi, hC2;D2i ¼ hf3g; f5gi, hC3;D3i ¼ hf2;4g; f2;3;4gi, from
BðX\;Y[; IÞ. Note that for the sake of brevity, we write C1 ¼ f1;2;3g instead of C1 ¼ f1=1;1=2;1=3g, etc. One can check that
each of the I-beams Jl (l ¼ 1; . . . ;4) contains some of the minimal I-beams corresponding to hC1;D1i, hC2;D2i, or hC3;D3i. Putt-
ing now F ¼ fhC1;D1i; hC2;D2i; hC3;D3ig, we have I ¼ AF / BF. Denoting by ðAFÞ l and ðBFÞl the lth column of AF and the lth
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row of BF, I ¼ AF / BF can further be rewritten as I ¼ ðAFÞ 1 / ðBFÞ1 ^ ðAFÞ 2 / ðBFÞ2 ^ ðAFÞ 3 / ðBFÞ3 , which shows aV
-decomposition of I into minimal I-beams covering I. In particular, we have
0 0 1 1 1
0 0 1 1 0
0 0 0 0 1
0 1 1 1 0

0
BBB@

1
CCCA ¼

0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
1 1 1 1 1

0
BBB@

1
CCCA ^

1 1 1 1 1
1 1 1 1 1
0 0 0 0 1
1 1 1 1 1

0
BBB@

1
CCCA ^

1 1 1 1 1
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0

0
BBB@

1
CCCA:
Theorems 3 and 4 say that when looking for factors for decompositions of I, we can confine ourselves to fixpoints from
BðX\;Y[; IÞ, i.e. to fixpoints of the isotone Galois connection associated with I.
3. Transformations between spaces of attributes and factors

We now describe mappings between the m-dimensional space of attributes and the k-dimensional space of factors which
are induced by decomposition (1), particularly by matrix B describing a relationship between factors and attributes. We
identify the set LY of all L-sets in Y with the set Lm of all m-dimensional vectors of grades, i.e. we identify an L-set
P : f1; . . . ;mg ! L with a vector ðPð1Þ; . . . ; PðmÞÞ. Likewise, we identify an L-set Q : f1; . . . ; kg ! L with ðQð1Þ; . . . ;QðkÞÞ. Note
that we are dealing with spaces Lm and Lk which are, however, not linear spaces (vector spaces). Namely, the vector compo-
nents are elements of a residuated lattice rather than a field and we use operations of residuated lattices rather than fields.

Let I ¼ A / B (we do not assume that A ¼ AF and B ¼ BF for some F#BðX\;Y[; IÞ). Consider the transformations
g : Lm ! Lk and h : Lk ! Lm defined for P 2 Lm and Q 2 Lk by
ðgðPÞÞl ¼
m̂

j¼1

ðPj ! BljÞ; ð7Þ

ðhðQÞÞj ¼
k̂

l¼1

ðQ l ! BljÞ ð8Þ
for 1 6 l 6 k and 1 6 j 6 m.
I ¼ A / B provides us with a representation of object i by the ith row Ii of I in the space Lm of attributes, and a represen-

tation of i by the ith row Ai of A in the space Lk of factors. Obviously, I ¼ A / B and (8) immediately yield
hðAi Þ ¼ Ii ð9Þ
for i ¼ 1; . . . ;n. The next lemma describes properties of g. Particularly, it shows that if the columns of A are extents of the
fixpoints of h\; [i which correspond to the rows of B (the rows of B need not be intents) then we also have
gðIi Þ ¼ Ai : ð10Þ
Lemma 1. If I ¼ A / B then ðgðIi ÞÞl P Ail for every i and l. If, moreover, every column of A is the extent induced by the
corresponding row of B, i.e. A l ¼ B[l , then gðIi Þ ¼ Ai .

Proof. Since I ¼ A / B, we have
ðgðIi ÞÞl ¼
m̂

j¼1

ðIij ! BljÞ ¼
m̂

j¼1

k̂

l0¼1

Ail0 ! Bl0j

 !
! Blj

 !
:

Thus, in order to check ðgðIi ÞÞl P Ail, we need to verify
Ail 6

m̂

j¼1

k̂

l0¼1

Ail0 ! Bl0 j

 !
! Blj

 !
; ð11Þ
which holds true iff for every j,
Ail �
k̂

l0¼1

Ail0 ! Bl0 j

 !
6 Blj:
The last inequality is true because
Ail �
k̂

l0¼1

Ail0 ! Bl0 j

 !
6 Ail � ðAil ! BljÞ 6 Blj:
If every column of A is the extent induced by B, then gðIi Þ ¼ Ai by definition of g. h
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The next lemma describes the situation in which the rows of B are the intents corresponding to the columns of A (columns
of A need not be extents).

Lemma 2. Let I ¼ A / B. If every row of B is the intent induced by the corresponding column of A, i.e. Bl ¼ A\l then B is the
smallest matrix for which I ¼ A / B. That is, if I ¼ A / B0 then Blj 6 B0lj for every l and j.

Proof. If every row of B is the intent induced by the corresponding column of A then, by definition, Blj ¼
Wm

i¼1ðAil � IijÞ. If
I ¼ A / B0, then using adjointness one can easily verify that

Wm
i¼1ðAil � IijÞ 6 B0lj, i.e. Blj 6 B0lj, verifying the claim. h

As a consequence, we get the following theorem:

Theorem 5. Let I ¼ AF / BF for a set F#BðX\;Y[; IÞ of fixpoints. Then
gðIi Þ ¼ Ai and hðAi Þ ¼ Ii
for every i. Moreover, BF is the smallest of the matrices D for which I ¼ AF / D. Likewise, AF is the largest of the matrices C for
which I ¼ C / BF.

Proof. The first part follows directly from Lemmas 1 and 2. The fact that AF is the largest one can be proved the same way
we proved that B is the smallest one in Lemma 2. h

Theorem 5 shows another reason to look for decompositions of I in the form I ¼ AF / BF, i.e. reason to take fixpoints of
h\; [i for factors. Namely, such an approach guarantees that g and h transform rows of I to rows of A and vice versa.

We now turn our attention to further properties of mappings g and h which are induced by B via (7) and (8). Note first that
the pair hg;hi forms the (antitone) L-Galois connection induced by B, which was studied in [1] to which we refer for the prop-
erties of g and h mentioned below. First, g and h satisfy the following properties:
SðP; P0Þ 6 SðgðP0Þ; gðPÞÞ; ð12Þ
SðQ ;Q 0Þ 6 SðhðQ 0Þ;hðQÞÞ; ð13Þ
P 6 hðgðPÞÞ; ð14Þ
Q 6 gðhðQÞÞ ð15Þ
for any P; P0 2 Lm and Q ;Q 0 2 Lk. Here, Sð�; �Þ denotes the subsethood degree defined for G;H 2 Lp by
SðG;HÞ ¼

Vp
i¼1ðGðiÞ ! HðiÞÞ. A consequence of (12) and (13) is that P 6 P0 implies gðPÞ 6 gðP0Þ and Q 6 Q 0 implies

hðQÞ 6 hðQ 0Þ. From (12), (13) it further follows that
gða! PÞ ¼ a! gðPÞ; ð16Þ
hða! QÞ ¼ a! hðQÞ; ð17Þ
gðPÞ ¼ ghgðPÞ; ð18Þ
hðQÞ ¼ hghðQÞ; ð19Þ

g
_
s2S

Ps

 !
¼
^
s2S

gðPsÞ; ð20Þ

h
_
t2T

Q t

 !
¼
^
t2T

hðQ tÞ; ð21Þ
see [1]. Properties (16) and (17) can be seen as properties which are analogous to homogeneity of linear mappings. Note that
for a 2 L and P 2 Lm, Q 2 Lk, the vectors a! P and a! Q are defined by ða! PÞj ¼ a! Pj and ða! QÞl ¼ a! Ql. Properties
(20) and (21) say that g and h are dual

W
-morphisms; they can be seen as properties which are analogous to additivity of

linear mappings. As a consequence, we get:
g
_
s2S

ðas ! PsÞ
 !

¼
^
s2S

ðas ! gðPsÞÞ
and
h
_
t2T

ðat ! Q tÞ
 !

¼
^
t2T

ðat ! hðQtÞÞ:
The next theorem shows that g and h partition the space of attributes and the space of factors into particular convex sub-
sets. A subset S # Lp is called convex if V 2 S whenever U 6 V 6W for some U;W 2 S. Let for P 2 Lm and Q 2 Lk denote by
g	1ðQÞ the set of all vectors mapped to Q by g and by h	1ðPÞ the set of all vectors mapped to P by h, i.e.
g	1ðQÞ ¼ fP 2 LmjgðPÞ ¼ Qg, and h	1ðPÞ ¼ fQ 2 LkjhðQÞ ¼ Pg. We get:
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Theorem 6

(i) g	1ðQÞ is a convex partially ordered subspace of the attribute space and hðQÞ is the largest element of g	1ðQÞ.
(ii) h	1ðPÞ is a convex partially ordered subspace of the attribute space and gðPÞ is the largest element of h	1ðPÞ.

Proof. (i) Let P 2 g	1ðQÞ. Then, Q ¼ gðPÞ, thus particularly, Q 6 gðPÞ. Using (14) and (13), P 6 hðgðPÞÞ 6 hðQÞ. Moreover,
using (18) we get Q ¼ gðPÞ ¼ ghgðPÞ ¼ ghðQÞ, hence hðQÞ 2 g	1ðQÞ. hðQÞ is thus the largest vector from g	1ðQÞ. Let now
U;W 2 g	1ðQÞ and U 6 V 6W . (12) yields Q ¼ gðUÞP gðVÞP gðWÞ ¼ Q , hence gðVÞ ¼ Q , proving that g	1ðQÞ is convex.
The proof of (ii) is dual. h

Theorem 6 provides us with the following insight to the transformations g and h: The space Lm of attributes and the space
Lk of factors are partitioned into an equal number of convex subspaces (i.e. there is a bijective mapping between the subspac-
es of Lm and Lk) which have largest elements. One can pair the subspaces in such a way that g maps all vectors of the subspace
U of the attribute space to the largest element of the corresponding subspace V of the factor space and conversely, h maps all
vectors from V to the largest vector from U.

4. Future research

This paper presented theorems regarding optimal triangular decompositions of matrices with degrees from residuated
lattices. Most importantly, we proved that optimal decompositions, i.e. those with the smallest number of factors (smallest
inner dimension) can be attained by using fixpoints of the isotone Galois connection associated with the input matrix. These
fixpoints are known as formal concepts in formal concept analysis and can be computed by existing algorithms. Furthermore,
we presented results describing transformations between the space of original attributes and the space of factors.

Future research will include a further study of triangular decompositions, including approximate decomposition of matri-
ces, i.e. decompositions in which I is required to be approximately equal to A / B. Another important problem is the problem
of computing the optimal decompositions. As mentioned above, the fixpoints from BðX\;Y[; IÞ, which are crucial for the opti-
mal decompositions, can be computed using existing algorithms. Therefore, a similar approach can be followed as the one to
the computation of optimal �-decompositions which is presented in [7,8]. The third problem is to compare the resulting
method of factor analysis based on triangular decompositions to classic methods of factor analysis. Belohlavek and Vychodil
[7,8] indicate that relational decompositions, of which the �-decomposition as well as the /-decomposition are particular
examples, have the ability to reveal factors which are not revealed by classic factor analysis. This is not surprising because
the mathematics behind relational decompositions is completely different from the mathematics behind classic factor anal-
ysis. One important aspect is that factor analysis based on relational decompositions is congruent with the semantics of rela-
tional data, such as binary or ordinal data. As a result, the factors delivered by factor analysis based on relational
decompositions are easy to interpret and have a natural meaning. Contrary to that, as repeatedly observed in the literature,
see e.g. [25], classic factor analysis of relational data delivers results which are difficult to interpret. A typical example, re-
ported in the literature, is negative real-valued coefficients which typically result in classic factor analysis of binary data. A
thorough study of these methodological problems also remains for future research. An important issue for further research
regarding in particular triangular decompositions of graded matrices which are not binary is applying these decompositions
to data from various areas. In [8] we presented an analysis of 2004 Olympic Decathlon data using �-decomposition men-
tioned in Section 1.3 which demonstrates that natural factors can be revealed from graded data using such decompositions.
We assume that triangular decompositions will be useful in factor analysis of data from psychology due to their ability to
explain graded attributes in terms of satisfaction of a small number of conditions.
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