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Abstract An inquiry into the effect of temperature on caroten-
oid triggered quenching of phycobilisome (PBS) fluorescence in a
photosystem II-deficient mutant of Synechocystis sp. results in
identification of two temperature-dependent processes: one is
responsible for the quenching rate, and one determines the yield
of PBS fluorescence. Non-Arrhenius behavior of the light-on
quenching rate suggests that carotenoid-absorbed light triggers
a process that bears a strong resemblance to soluble protein fold-
ing, showing temperature-dependent enthalpy of activated com-
plex formation. The response of PBS fluorescence yield to
hydration changing additives and to passing of the membrane li-
pid phase transition point indicates that the pool size of PBSs
subject to quenching depends on the state of some membrane
component.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Phycobilisomes (PBSs) are the main light-harvesting anten-

nae in cyanobacteria, positioned on the cytoplasmic surface

of the thylakoid membrane. Chemically, they are water-soluble

phycobiliprotein complexes consisting of an allophycocyanin

(APC) core and lateral cylinders made up of a combination

of phycocyanin (PC) and phycoerythrin. Pigments of the lat-

eral cylinders transfer the absorbed energy to the APC core,

which incorporates two terminal chromophoric energy emit-

ters. These components transfer the energy further onto anten-

na chlorophylls (Chls) of photosystems I and II (PSI, PSII)

located within the thylakoid membrane [1]. It has been shown

that PBSs are capable of relatively rapid lateral diffusion on

the surface of the thylakoid membrane, and that the bond be-
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tween PBSs and PSII (and probably PSI) is unstable [2,3],

whereas assembled PBSs retain their membrane association

even in the absence of PSII or PSI reaction centers [4]. It has

been proposed that PBSs have no integral membrane compo-

nent and connect to the membrane via multiple weak interac-

tions with lipid head groups [5]. Although individual protein-

lipid interactions are weak, multiple interactions lead to a

strong association with the membrane surface.

Photosynthetic organisms are able to control the balance be-

tween absorbed and utilized excitation energy. The mechanism

of dissipation of excess absorbed energy depends on the struc-

ture of the photosynthetic apparatus. Higher plants dissipate

excess energy via non-photochemical quenching (NPQ),

observed as a fluorescence decrease of the light-harvesting

complex, LHCII [6,7]. Cyanobacteria are deficient in Chl-bind-

ing LHC complexes, and therefore energy discharge takes

place via PSI and PSII antenna Chls [8]. PBSs themselves lack

the capacity to dissipate excess absorbed excitation energy

without assistance, which leads to very high fluorescence levels

in isolated PBSs [9]. A new pathway of dissipation of excess

energy was recently found in cyanobacteria. Illumination of

Synechocystis cells with strong blue or white light induced fluo-

rescence quenching that was independent from the membrane

lipids phase transition temperature as well as from electron

transport inhibitors and from DpH [10]. It was discovered that

the energy absorbed by PBSs may be quenched via carote-

noids, which appears as blue light induced quenching of

APC fluorescence. The phenomenon of cyanobacterial NPQ

was first observed for the PSII-deficient mutant of the Syn-

echocystis sp. PCC 6803 [11], and then for the wild strain

and for other mutants of the same cyanobacterium [12,13].

Since cyanobacteria are devoid of the violaxanthin cycle, they

must possess a different mechanism to dissipate excess energy.

Recent discussions revolve around participation of cyanobac-

terial 35 kDa water-soluble orange carotenoid-binding protein

(OCP) in NPQ of PBS fluorescence [12,14]. The structural

model of OCP, at 2.1 Å resolution, consists of two domains

[15]. An embedded carotenoid, 3 0-hydroxyechinenone (hECN)

spans both protein domains. Binding to the protein shortens

the singlet S1 state lifetime of hECN by changing the confor-

mation of the carotenoid, making dissipation of absorbed

energy more efficient [16]. The protein has a strong effect on

the spectroscopic characteristics of the carotenoid: the absorp-

tion spectrum of hECN in OCP [16] accurately matches the

action spectrum of NPQ in PSII-deficient Synechocystis sp.

cells [11].
blished by Elsevier B.V. All rights reserved.
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Our study focused on factors that may affect the protein

solution phase at the thylakoid membrane interface. Behavior

of the protein solution phase depends on many factors, includ-

ing the solvent, the temperature, and the pressure. Literary

sources describe opposite effects of glycerol and of ionic

strength on protein’s solubility and on intermolecular forces;

attractions increase with ionic strength, whereas repulsions in-

crease with glycerol concentration [17]. To reveal the mecha-

nisms of carotenoid-triggered fluorescence quenching of

PBSs, the effects of these variables on quenching have been

investigated for the PSII-deficient mutant of the cyanobacte-

rium Synechocystis sp. PCC 6803. Non-Arrhenius temperature

dependence of the light-on process rate constant and a strong

response of quenching to glycerol and sucrose are discussed

here in terms of protein–protein interaction at the membrane

interface.
Fig. 1. Effect of glycerol on fluorescence emission spectra of psbDI/C/
DII� cells before (solid) and after (dash) blue light illumination (A),
and differential emission spectra (F+BL � F�BL) obtained at various
concentration of glycerol (B). Concentration of glycerol (v/v %) shown
in numeric labels.
2. Materials and methods

2.1. Strains and growth conditions
Growth conditions of the PSII-deficient (psbDI/C/DII�) strain of the

cyanobacterium Synechocystis sp. PCC 6803 are described in [11]. The
special character of this mutant enabled us to avoid the variable fluo-
rescence of PSII and to register fluorescence changes of PBSs. All
experiments were performed with 5-day cultures in the log phase of
growth.

2.2. Fluorescence measurements
Time courses of fluorescence quenching in psbDI/C/DII� cells were

measured with a PAM-101 fluorometer (Walz, Germany) [13]. Cell sus-
pensions (10 lg ml�1 Chl) were placed in a 1 mm-cuvette in a Shima-
dzu TCC-240A thermo-electrically temperature controlled cell holder
connected to PAM-101 with optic fibers. Fluorescence level F�BL

was detected in dark adapted cells; then the cells were additionally
exposed to quenching light (500 nm, 1000 lE m�2/s) for a period of
time sufficient to achieve a completely quenched fluorescence level
(F+BL). The time course of fluorescence in each temperature point
was taken as the mean of 3–5 individual measurements. We calculated
the rate constant (k) for the light-on process through exponential
approximation of experimental kinetics (R2 > 0, 98). Our estimates
of the light-off process rate constant are quite rough, as the time course
of the light-off process has an S shape, or some lag, and can not be
accurately described by first-order kinetics, however, we calculated k
for the dark reversibility from half reaction time, k = ln2/t1/2.

Fluorescence emission spectra from 580 nm excitation light were
recorded at 15 �C with a Shimadzu RF-5301PC instrument [13]. The
spectrum of every sample was measured twice: before (F�BL) and
immediately after (F+BL) a 4-min exposure to quenching light (500 nm;
photon flux density ca. 1100 lE m�2/s).
3. Results

3.1. Glycerol influence

To analyse the role of PBS-membrane associations in blue

light induced quenching, we looked at the effect of different

amounts of glycerol. It was previously shown that 30% glyc-

erol has significant effect on both the PC rods and the terminal

emitter, which are located on the PBS surface, as glycerol

increases hydration at the particle surface [18]. Fig. 1 shows

fluorescence spectra before and after blue-light illumination

of psbDI/C/DII� cells treated with glycerol at various concen-

trations. Addition of 20% glycerol caused a small increase of

carotenoid-induced quenching of PBS fluorescence, while addi-

tion of 30% glycerol caused a small increase both of F�BL and
F+BL, and some decrease of quenching (F�BL � F+BL). An

increase in dissociation of the PC rods from the PBSs was

observed through the increased intensity of PC (650 nm) emis-

sion and a blue shift of PBS fluorescence band (Fig. 1, top).

However, under glycerol concentration of up to 50%, caroten-

oid-absorbed light still induced a reversible fluorescence

decrease with the constant APC maximum at 662 nm of the

quenching spectra (Fig. 1, bottom). Thus, our data supports

the assumption that it is the APC core fluorescence that is

quenched in the blue light induced process [13,14]. High con-

centration of glycerol (>50%) completely inhibits light-induced

quenching and doubles the level of initial fluorescence (Fig. 1).

Taking into account the fact that blue light induced changes in

the fluorescence yield were also absent in the apcE� mutant of

Synechocystis [12,13], the loss of quenching we observed can be

linked with PBSs uncoupling from thylakoid components.

Similar reasoning was earlier employed to explain the similar-

ity of the effect of high concentration glycerol treatment (60%)

with that of deletion of apcE on energy transfer from the PBS

to the pigments in the thylakoid membrane [19].

3.2. High osmotic pressure effect

It was previously shown that the NPQ seen in cells of the

cyanobacterium Synechocystis sp. is strongly affected by a high

osmotic strength media [20]. Sucrose – a substance causing a

hyperosmotic stress [21] - affects reversibility of blue light in-



Fig. 3. Time courses (A) and Eyring plots of the rate (B) of PBS
fluorescence quenching and its dark recovery in psbDI/C/DII� cells.
Quenching was induced by blue light (500 nm, 1000 lE m�2/s) at each
particular temperature, and the quenching rate constant (k) was
calculated as described in Methods for the light-on process (white
circles) and for the light-off process (black circles); solid lines are
second-order polynomial regressions for the experimental points,
R2 > 0.99.
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duced fluorescence quenching and the fluorescence level sub-

jected to quenching (Fig. 2). Addition of sucrose to a final con-

centration of 0.3 M causes an about 40% decrease of the

magnitude, but not of the rate (Fig. 2, inset), of blue light in-

duced quenching, and blocks completely the dark recovery

component of the time course. A higher amount of sucrose

(0.7 M) cuts significantly both the magnitude (up to 75%)

and the rate of quenching; no recovery was observed under

these conditions. The final level of light-induced quenching

(F+BL) was independent from the presence of sucrose. Fluores-

cence emission spectra of the final level induced both by high

amount of sucrose (not shown) and by blue light were identi-

cal. Similar behavior found under the effect of 1 M phosphate

was interpreted as stabilization of PBSs on the membrane sur-

face [20] via coupling of free PBSs to an intra-membrane com-

plex. We think that PSI may be this intra-membrane complex

in psbDI/C/DII� cells. Nevertheless PSI appears to be an unli-

kely agent of blue light induced carotenoid triggered quench-

ing of PBS fluorescence, because there is no NPQ effect on

energy migration from PBS to PSI in the psbDI/C/DII� cells

(Rakhimberdieva, unpublished data).
3.3. Temperature dependence of quenching rate

Illumination of psbDI/C/DII� cells with blue light (500 nm)

leads to a fast decrease of fluorescence characterized by mono-

exponential kinetics (Fig. 3A), followed by a relatively fast and

complete return of fluorescence to the initial level within about

15 min at 35 �C. Lowering the temperature slows down the

rate of quenching and particularly its dark reversibility; very

slow – but complete – reversibility was observed at 15 C and

below. The temperature dependence of the rate constants are

shown in Fig. 3B as an Eyring plot. The slope of the plot at

any given temperature is the enthalpy of activation. Tempera-

ture independent activation enthalpy of 46 kJ/mol has been

earlier reported for both induction and dark decay of the
Fig. 2. Effect of 0.3 M (grey) and 0.7 M (light grey) sucrose on time
courses of blue light induced quenching of PBS fluorescence and its
dark recovery in psbDI/C/DII� cells; control shown in black. Inset: the
same time courses normalized to the variable part of fluorescence.
light-induced quenching process in the wild type of Synecho-

cystis sp. [22]. We have calculated activation enthalpy to be

48 kJ/mol at 25 �C and 86.5 kJ/mol at 5 �C. High activation

enthalpy in the whole temperature range seems to indicate that

light-on quenching arises from large-scale protein conforma-

tional transitions, rather than from local rearrangements of

pigments within some of protein domains, which have been

shown for low temperature in plant LHCII [23]. The magni-

tude of activation enthalpy of dark recovery is still greater than

that for the light-on process (>100 kJ/mol). The plot of the

light-on (quenching) process (Fig. 3B, white circles) displays

strong curvatures and is monotonous: experimental points

can be well fitted polynomially (solid line) with R2 = 0.999.

Similar Non-Arrhenius temperature dependencies of rate con-

stants are typical for soluble protein-folding processes [24,25],

where the heat capacity increment correlates well with the

hydrophobic surface exposure during the conformational tran-

sition [26].
3.4. Temperature dependence of fluorescence intensity

Not only the quenching rate, but both the initial (F�BL) and

the final (F+BL) fluorescence levels are temperature dependent

(Fig. 4A and B). As opposed to the smooth temperature

dependence of the rate constants (Fig. 3B), the temperature

dependence of the PBS fluorescence intensity (Fig. 4A) shows

a break at 10 �C. This temperature point was shown to be the

transition range of the membrane lipids of Synechocystis sp.

[10]. Drastic changes of physiological activities in the cyano-

bacterial membranes are observed at phase transition temper-

atures [27]. The values of F�BL and F+BL of mutant cells show

a similar temperature dependence and are characterized by an

inflection point in the temperature range. The magnitude of

variable fluorescence (1 � F+BL/F�BL) is roughly constant

and shows no temperature dependence (Fig. 4C). This behav-

ior of F�BL and F+BL suggests that PBS interaction with mem-

brane components is responsible for the APC fluorescence

yield, in spite of fact that the process of light-induced quench-

ing of APC fluorescence is unrelated to membranes.



Fig. 4. Temperature dependence of PBS fluorescence yields before (F�BL, black circles) and after (F+BL, white circles) blue light illumination of
psbDI/C/DII� cells (A), dependence of the relative magnitude of fluorescence quenching (1 � F+BL/F�BL) on temperature (C) and exponential
approximations of experimental PBS fluorescence quenching time courses over the temperature range from 40 �C to 1 �C used to calculate k values in
Fig. 3, as well as F�BLand F+BL (B).
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4. Discussion

Although PBS fluorescence quenching does not depend on

either the inhibitors of electron transport or on DpH [10,12],

additives that change hydration have a strong effect on this

quenching. This is a noticeable similarity between carotene-in-

duced APC quenching and the processes in protein solutions.

Temperature dependence of the rate of the blue light induced

process amplifies the resemblance. The pattern is very charac-

teristic of the temperature dependencies of soluble protein

folding/unfolding rates. Simple (gas-phase) chemical reactions

usually show linear Arrhenius behavior, whereas complex pro-

tein-folding reactions typically show curved plots. This is usu-

ally explained by invoking a change in heat capacity (DCp) in

the transition under study [26], which arises from the exposure

of hydrophobic surface area to water, in the denatured state.

The hydrophobic side chains are surrounded by ‘icebergs’ of

water that melt with increasing temperature, thus making a

large contribution to the heat capacity of the denatured state

and a smaller one to the compact transition state for folding

[28]. This type of temperature dependence was, for example,

the basis for application of protein folding thermodynamics

to modeling of the photocycle of the water-soluble photoactive

yellow protein (PYP), which functions as the bacterial photo-

receptor [25].

Osmotic regulation of exciton exchanges between donor

holochromes (ApcD, ApcF, ApcE) of PBS cores and Chl a

holochromes of PSI of thylakoid membranes was proposed

[29]: PBSs in hyper-osmotic suspension deliver more excitation

to PSI. We suggest that the PBS–PSI super-complex dissocia-

tion decreases in the hyper-osmotic cell suspension, which

causes the highly fluorescent pool of uncoupled PBSs at the li-

pid surface to shrink. Only these mobile PBSs show blue light

induced fluorescence quenching, since the PBS–PSI super-com-

plex can only have a very low fluorescence yield because of the

high rate of energy dissipation via P700 [30].

There is a noticeable pool of PBSs at the membrane surface

in the psbDI/C/DII�cells, which connects with the lipid surface
only by PBS-lipid interactions. High fluorescence of this PBS

pool is quenched via interaction of their APC core and the blue

light activated OCP; the process follows the soluble protein

folding/assembly pathway. However, the loss of carotenoid-

triggered quenching of APC fluorescence under high concen-

trations of glycerol and the absence of this type of quenching

in the apcE� mutant [12] appear to call for PBS fixation on

the membrane interface to enable reaction with the OCP. Most

likely, the role of PBS-lipid interactions is to localize and to

concentrate the unbound PBSs at the lipid surface in order

to facilitate protein–protein associations involved in the for-

mation of the PBS–OCP complex. The pool size is probably

driven by the state change of some membrane components

via variation of the PBS–PSI super-complex dissociation.
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