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SUMMARY

The recombining sequence (RS) of mouse and its hu-
man equivalent, the immunoglobulin (Ig) kappa delet-
ing element (IGKDE), are sequences found at the 30

end of the Ig kappa locus (Igk) that rearrange to inac-
tivate Igk in developing B cells. RS recombination
correlates with Ig lambda (Igl) light (L) chain expres-
sion and likely plays a role in receptor editing by elim-
inating Igk genes encoding autoantibodies. A mouse
strain was generated in which the recombination sig-
nal of RS was removed, blocking RS-mediated Igk
inactivation. In RS mutant mice, receptor editing
and self-tolerance were impaired, in some cases
leading to autoantibody formation. Surprisingly, mu-
tant mice also made fewer B cells expressing lambda
chain, whereas l versus k isotype exclusion was only
modestly affected. These results provide insight into
the mechanism of L chain isotype exclusion and indi-
cate that RS has a physiological role in promoting the
formation of l L chain-expressing B cells.

INTRODUCTION

The random nature of the B cell antigen receptor (BCR) gene as-

sembly from variable (V), diversity (D), and joining (J) elements by

the V(D)J recombinase often creates self-reactive specificities

that are regulated by negative selection processes such as apo-

ptosis or receptor editing [for review, see Nemazee (2006)]. In the

process of receptor editing, B lymphocytes alter their antigen re-

ceptors through secondary immunoglobulin (Ig) gene rearrange-

ments, usually involving the Ig kappa and lambda light (L) chain

gene loci Igk and Igl. Editing often occurs in developing B cells

that encounter autoantigens, resulting in the rescue of cells

with reduced autoreactivity. The unique structure of the Igk lo-

cus, which allows secondary recombinations that can replace

or destroy active Igk genes, facilitates receptor editing. Multiple

recombinations can occur on a single Igk allele, owing to the

presence of four functional Jk elements, which can recombine

to upstream Vk elements (Feddersen and Van Ness, 1985;

Shapiro and Weigert, 1987).
One DNA element predicted to have an exclusive role in recep-

tor editing is the recombining sequence (RS) (Durdik et al., 1984),

the mouse homolog of the human Ig kappa deleting element

(IGKDE) (Siminovitch et al., 1987). RS lies 25 kb downstream of

Ck, carries a canonical Ig gene recombination signal, and rear-

ranges by V(D)J recombination to Vk elements and to sites in

the Jk-Ck intron (reviewed by Selsing and Daitch, 1995). RS

recombination results in deletion of the Ck exon and silencing

of the Igk locus. Almost all mouse and human l B cells (75%–

95%) and 10%–15% of k B cells carry RS recombinations

(Moore et al., 1985; Siminovitch et al., 1985; Nadel et al., 1990;

Zou et al., 1993; Dunda and Corcos, 1997; Brauninger et al.,

2001). Compared to mice, humans have a higher fraction of B

cells that express l-chain (40% versus 6%) or rearrange IGKDE

(50% versus 20%) (Selsing and Daitch, 1995; Dunda and

Corcos, 1997; Brauninger et al., 2001). In actively rearranging

B cell lines, RS, IGKDE, and Igl recombinations are temporally

correlated, but with rearrangements of RS and IGKDE preceding

those of Igl (Persiani et al., 1987; Muller and Reth, 1988; Klein

et al., 2005).

Because of the strong link between RS rearrangements and

a cell’s Igl expression, Selsing and colleagues proposed that

RS recombination might be required to trigger Igl locus recombi-

nation. RS rearrangement might ‘‘activate’’ RS or a locus down-

stream that would in turn promote Igl recombination (Persiani

et al., 1987). Alternatively, RS rearrangement might eliminate

a putative cis-acting suppressor of Igl recombination lying be-

tween RS and its recombination partner sites. Indeed, the RS el-

ement deletes both intronic and 30 k enhancers when rearranged

(Muller et al., 1990). However, little evidence has been obtained

to support these models. The RS element does not appear to en-

code any protein (Daitch et al., 1992), and the major homology

between mouse and human RS elements is in their recombina-

tion recognition sites (Siminovitch et al., 1987). Immediately

downstream of RS lies a housekeeping gene that is unlikely to

play any B cell-specific role (Apel et al., 1995). Furthermore,

mouse strains carrying different targeted deletions in the Igk lo-

cus have robust Igl recombination and B cell generation despite

an impaired ability to recombine RS (Chen et al., 1993; Takeda

et al., 1993; Zou et al., 1993). But it is not excluded that RS

recombination, through excision of elements around Ck, might

promote Igl recombination by eliminating DNA elements com-

peting for V(D)J recombinase (Daitch et al., 1992; Inlay et al.,

2002).
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We proposed an alternative hypothesis for RS function,

namely that it plays a role in receptor editing (Tiegs et al.,

1993; Retter and Nemazee, 1998) [a possibility also discussed

by Selsing and Daitch (1995)]. RS recombination is elevated in

artificial models in which B cells are arranged to be initially autor-

eactive (Chen et al., 1997; Pelanda et al., 1997; Aı̈t-Azzouzene

et al., 2005). RS and IGKDE recombinations often inactivate pre-

viously in-frame, functional Igk loci in normal individuals (Retter

and Nemazee, 1998; Brauninger et al., 2001). In our study,

47% of such Vk-Jk remnant loci were in frame, suggesting that

RS recombination was actively promoted by BCR signaling

attributable to autoreactivity (Retter and Nemazee, 1998). We

also found that RS recombinations usually occur when other op-

tions on the Igk locus run out, because 80% of the Igk loci in sIgl+

cells were inactivated by RS after rearranging to Jk5, the last J

element (Retter and Nemazee, 1998). We proposed that RS

recombination likely reduces the frequency of cells with two dif-

ferent L chains, allowing receptor editing to be compatible with

lymphocyte monospecificity (allelic and isotype exclusion). In-

creased RS recombination or l B cell production associated

with receptor editing were also described in autoantibody trans-

genic (Tg) models (Tiegs et al., 1993; Pelanda et al., 1997; Li

et al., 2004). We recently studied Tg mice expressing on cell sur-

faces a synthetic superantigen reactive with Igk. Bone marrow B

cells in these so-called k-macroself Tg mice undergo massive k-

to-l editing characterized by increased RS recombination and l

B cell production (Aı̈t-Azzouzene et al., 2005).

To investigate the role of RS in l B cell production and receptor

editing, we generated a mutant lacking the recombination signal

sequence of RS. These mice manifest defects both in the ability

to undergo receptor editing in response to autoantigen and in the

generation of l B cells. Importantly, these studies also reveal

a role for receptor editing in the prevention of autoantibody

formation.

RESULTS

Generating and Characterizing the RSD/D Mouse
RS mutant mice were generated with the scheme outlined in

Figure S1 available online, in which the recombination signal of

the RS element was removed and replaced with a neomycin re-

sistance gene flanked by loxP sites. After cre-mediated deletion,

the modified locus was verified to have the predicted sequence

in which 139 bp encompassing the recombination signal of RS

was substituted with a 199 bp stretch carrying a single loxP

site and flanking vector sequences.

To evaluate functional effects of the RS mutation, we bred ho-

mozygous mutant (RSD/D) mice and measured RS recombination

to known recombination-signal sites in Vk and the Jk-Ck intron

by using polymerase chain reaction (PCR) assays of spleen

and bone marrow (BM) cells. As shown in Figure 1, the RS muta-

tion had the intended effect of blocking RS type recombination to

Vk (Vk-RS) or to the major k intronic site (RS to k intron)

(Figure 1A, top panels). By contrast, Vk to Jk recombination ap-

peared to be normal (Figure 1A). We conclude that the germline

RS mutation prevented normal RS rearrangements and had little

effect on other recombinations at the Igk locus.

Because we discovered that l B cell frequencies were re-

duced in RSD/D mice (see below), we also measured the extent
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of l1 excision product DNA formation in spleen and BM as an

indicator of l B cell production. PCR quantitation of l1 recombi-

nation excision circles in the BM B220+IgD� cells revealed

a 60%–70% reduction in RSD/D mice compared to the wild-

type (Figure 1A lower panel, Figure 1B). Because DNA excision

circles are not believed to replicate and are usually the result of

nonfunctional recombination, these results indicate a reduced

rate of Igl recombination in developing RSD/D B cells. Thus, the

RS mutation correlated with a substantial, but incomplete,

suppression of Vl-Jl recombination.

Reduction in the Frequency of l B Cells in RSD/D

Lymphocytes
Flow-cytometry analysis carried out on lymphoid tissues in

a comparative sample of nine mice per group revealed that the

frequency of l1-3 B cells in the spleens of RSD/D mice was

reduced by approximately 42% compared to the wild-type

(Figure 2A, right), which was mirrored in the decrease in absolute

l1-3 B cell number (Table S1). Comparable reductions of l1-3 B

Figure 1. Evaluation of RS Recombination in Spleen and BM B220+

Cells of RSD/D and Littermate RSWT/WT Mice

Four-fold serial dilutions of the indicated DNA samples were subjected to PCR

reactions for the detection of the indicated DNA rearrangements. PCR prod-

ucts were electrophoresed on agarose gels and abundance quantitated by

Southern blot with specific probes.

(A) Upper panels: PCR detection of RS recombination to JCk intronic sites (RS

to k intron) and Vk sites (RS to Vk). Below are shown recombinations between

Vk and Jk (Vk-Jk) and excision products of Vl1 to Jl1 recombination (l exci-

sion product). Similar results were obtained in at least two additional indepen-

dent experiments.

(B) Quantitation of Vl1 to Jl1 excision product in a sample of three mice/group.

Shown are means with error bars indicating standard deviation (SD).
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Figure 2. Evaluation of Reduced l B Cell Frequencies in RS Mutant Mice

B cells from the BM and spleens of RSD/D and RSWT/WT mice were stained with antibodies to CD45R (B220), Igk, and Igl1-3 and analyzed by multicolor flow

cytometry.

(A) Frequencies of cells carrying Igl1-3 in the spleen and in newly formed (B220intermediate) and mature (B220high) BM B cells. A lymphocyte gate was used for the

exclusion of bone-marrow myeloid cells.

(B) The upper plot shows costaining for k and l in B220+ BM cells of the indicated mice. The lower panels show gating used in (A) to distinguish newly formed from

recirculating sIg+ B cells in BM.

Shown are mean values ± SD.
cells were seen in the BM, including among newly formed and

recirculating cells (Figures 2A and 2B) and in all other tissues

examined, including lymph nodes, peritoneal cavity, and blood

(Figure S2). Igk B cell numbers were normal or slightly reduced

in analyses involving a total of 18 mice/group (Table S1). We

conclude that RS mutation does not completely block l B cell

generation but lowers significantly l B cell output from the BM

(p < 0.001) and their steady-state numbers in the spleen (p < 10�5).

Hybridoma Analysis
To further probe the effect of RS mutation, we generated a panel

of B cell hybridomas and analyzed it for antibody L chain type

and RS gene status (Table 1). Among 244 hybridomas generated
from two wild-type mice, 22 (9%) secreted Igl, whereas among

hybridomas generated in five fusions of RS mutant mice, only

2.8% were l+ (17 of 603 hybridomas). Intracellular staining and

flow-cytometry analysis of l cells failed to detect cells coex-

pressing both k and l (data not shown). We conclude that, as

sampled by hybridoma analysis, the frequency of l expressing

B cells is reduced in RS mutant mice and that cells expressing

both k and l simultaneously are remarkably rare, regardless of

RS mutation.

Because RS is usually recombined in l-producing B cells, we

tested l-expressing hybridomas from mutant and wild-type

mice for RS rearrangements by PCR as in Figure 1A and

by Southern blotting with different restriction enzymes in
Table 1. Analysis of B Cell Hybridomas from RSD/D and RSWT/WT Mice for l1-3 Secretion, k l1-3 Protein Coproduction, and RS

Recombination

MouseGenotype and

FusionNumbera
l1-3

(%)

Number l+ Hybridomas

Found/Number

Screened l+k+ l+k�
Total

l+Frequency

RS Status of l+

Hybrids, Number

Rearranged/Number

Tested

Fraction of l+

Hybridomas with

RS Recombinationb

RSWT/WT 9% (22/244) 100% (8/8)

1 7.4 2/27 0 2 1/1

2 9 20/217 0 20 7/7

RSD/D 2.8% (17/603) 0% (0/9)

3 2.2 4/180 0 4 0/4

4 5 4/80 0 4 0/3

5 5 3/61 0 3 0/2

6 1 1/92 0 1

7 2.6 5/190 0 5
a Each line represents a single fusion experiment with spleen cells from a different individual mouse. Hybridoma clones were screened for k and l1-3

immunoglobulin production as indicated in the Experimental Procedures.
b RS rearrangement status was assessed by PCR assay and genomic Southern blotting. Hybridomas were scored positive if at least one RS rearrange-

ment was detected.

Immunity 28, 161–170, February 2008 ª2008 Elsevier Inc. 163



Immunity

Poor Tolerance and l Cell Generation in RSD/D Mice
conjunction with an RS probe. Nine of nine tested RSD/D hybrid-

omas lacked detectable RS rearrangements, whereas RS rear-

rangements were readily detected in wild-type l-producing B

cells (Table1). These results supported the PCR assaysof primary

B cells (Figure 1A) in indicating that the mutant RS element does

not detectably rearrange, even in B cells that eventually express l

chain. We conclude that although RS recombination does facili-

tate l B cell development, substantial l B cell development is

possible in the apparent absence of RS element rearrangement.

Analysis of VkJk5 Joins in l B Cells
To test whether the reduction in l cells in RSD/D mice was the re-

sult of counterselection of B cells with functional k loci, we next

cloned and sequenced VkJk5 joins from sorted l+ B cells. [In

wild-type mice, RS recombination often silences functional k

loci, usually leaving behind remnant Vk joins involving the last

Jk element, Jk5 (Retter and Nemazee, 1998).] We indeed found

evidence of counterselection because only 10% (6/60) of VkJk5

joins from RSD/D B cells were potentially productive compared to

34% (18/53) of wild-type joins. Such putative counterselection

could occur before or after any actual l recombination (see Dis-

cussion). In any case, this finding is consistent with the notion

that l B cells are often derived from k cells carrying forbidden

receptors that are silenced by RS-mediated editing.

Serum Antibody Analysis
RSD/D mice had comparable serum Ig titers to the wild-type,

except that IgM,l concentrations were reduced about 44%

(10 mg/ml versus 17.9 mg/ml, p = 0.0016, n = 9). To see whether

RSD/D mice had elevated amounts of spontaneous autoantibody,

we measured by enzyme-linked immunosorbent assay (ELISA)

IgM and IgG anti-dsDNA (dsDNA: double-stranded DNA) titers

in sera of 7-month-old mice. Although not statistically significant,

there was a trend to higher titers in the RSD/D group (Figure 3A).

C57BL/6 mice normally do not develop DNA antibodies before

12 months of age (Morel et al., 1997). These tests for autoanti-

body were repeated with serum from a cohort of RSD/D mice car-

rying a B lineage-restricted Bcl2 transgene (Strasser et al., 1990)

and compared to results from RSWT/WT;Bcl2 Tg mice. In the

context of enforced Bcl2 expression in B cells, the RS mutation

significantly augmented anti-dsDNA levels over those present in

RSWT/WT;Bcl2 Tg mice (Figure 3B; p = 0.019 IgG, p = 0.004 IgM).

Effects of RS Mutation on Receptor Editing
To measure the effect of RS mutation on central tolerance, we

bred RSD/D mice to transgenic mice expressing ubiquitously

a membrane-tethered Igk superantigen (k-macroself Tg mice)

(Aı̈t-Azzouzene et al., 2005) and assessed B cell numbers and

phenotype by flow cytometry. In this context, all Igk B cells are

self-reactive. We previously showed that developing B cells in

k-macroself Tg mice undergo increased RS recombination and

massive k-to-l editing. These mice essentially lack peripheral

k cells but have a modest increase in the steady-state frequency

of BM k cells. Most importantly, k-macroself Tg mice have a

3-fold to 4-fold increase in the BM production of l cells and

a 7-fold increase in l cells in the spleen (Aı̈t-Azzouzene et al.,

2005). RS mutant mice bred to the k-macroself Tg background

were found to have fewer l cells in the spleen compared to

RS-sufficient k-macroself Tg controls (approximately 25% ver-
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sus 35%, Figures 4A and 4D). The frequency of newly formed

BM l cells compared to RS-sufficient controls was similarly

reduced in RSD/D;k-macroself Tg mice (Figures 4B and 4D). It ap-

pears that l B cell development in the context of a Igk-reactive

superantigen is partly impaired in RSD/D mice.

As expected, the k-macroself antigen induced a loss of k cells in

the spleen in both RSWT/WT and RSD/D mice. But in RS mutants,

there was a slight increase in the numbers of k cells escaping to

the periphery (Figures 4A and 4C). Moreover, in the BM of RSD/D;

k-macroself Tg mice, the frequency of immature B220intermediatek

cells was significantly increased (Figures 4B and 4C). These addi-

tional, functionally autoreactive k cells presumably represent

those cells that were unable to silence Igk loci by RS recombina-

tion. We expected to also see a substantial population of cells

coexpressing both k and l chains in BM of RSD/D;k-macroself Tg

mice; however, the kl double-expressing population was rela-

tively small. We conclude that in the context of central negative se-

lection of k cells, the RS mutation leads to a significant (p < 0.05)

reduction in l cells and a slight increase in k cells appearing in

the peripheral immune system.

Figure 3. Analysis of dsDNA Antibody in Sera of the RS Mutant and

Wild-Type Mice

Titers are relative to a reference high-titer serum pool from MRL/lpr mice that is

given an arbitrary value of 100.

(A) Anti-dsDNA titers in 7-month-old RSWT/WT and RSD/D mice.

(B) Anti-dsDNA titers in 5-month-old RSWT/WT;Bcl2 Tg and RSD/D;Bcl2 Tg

mice. Each dot represents the value obtained from a different individual

mouse.
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Figure 4. Analysis of IgL-Chain Expression of RS Mutant B Cells Developing in the Presence of a k Superantigen

Spleen or BM cells of the indicated mice were simultaneously analyzed by multicolor flow cytometry for surface expression of Igl and cytoplasmic expression of

k (cIgk). Analyzed cells were gated on lymphocytes unless otherwise indicated. In (C) and (D), data shown are mean values ± SD.
Complementary Tolerance Mechanisms Revealed
in RSD/D B Cells with Enforced Expression of Bcl2
In order to test the possibility that the reduction in l B cell produc-

tion in RSD/D mice was the result of the rapid death of k cells

carrying autoreactive receptors, we bred RSD/D mice to a B line-

age-restricted Bcl2 transgenic mouse (Strasser et al., 1990) and

used their BM cells to reconstitute lethally irradiated mice carry-

ing the k-macroself Tg. The choice of a BM-transfer approach to

challenge B cells with the superantigen (as opposed to introduc-

ing it by breeding) was one of convenience and also ensured that

the superantigen was not expressed on B cells themselves. We

reasoned that the k-macroself antigen (Ag) would induce k-to-l

editing and that enforced Bcl2 expression would potentially res-

cue survival of kl double-positive cells that might be generated in

the absence of RS. The following differences were apparent in the

recipients of RSD/D;Bcl2 Tg compared to Bcl2 Tg cells lacking the

RS mutation (RSWT/WT;Bcl2 Tg). First, the striking loss of BM k+

cells in the presence of k-macroself Ag failed to occur in the recip-

ients of RSD/D;Bcl2 Tg cells, indicating that much of the k B cell

loss in RSWT/WT;Bcl2 Tg mice was the result of RS-mediated

editing rather than mere BCR downregulation (Figure 5A plots

a and b, lower-right quadrants). Second, in RSD/D mice, fewer

l-positive cells were generated in the BM (Figure 5B, Figure 5A,

compareplotsaandb,upper-leftquadrants)andspleen (Figure5B,

Figure 5A plots c and d). Third, the expected increase in kl
double-positive cells failed to occur. Finally, k cells, which were

not seen in the spleens of k-macroself Tg recipients of RSWT/WT;

Bcl2 Tg BM, were present in large numbers in spleens of mice

that received RSD/D;Bcl2 Tg BM (Figure 5A plots c and d). Many

of these k splenocytes expressed markers of maturation, including

CD21 and CD23, but they also expressed CD93 (Figure S3). These

findings indicate that RS mutants have a defect in self-tolerance

but a modest impairment in L chain isotype exclusion.

To determine whether the autoreactive B cells rescued in RSD/D;

Bcl2 Tg/ k-macroself Tg mice were functional, we assessed in

these mice serum Igk levels. As shown in Figure 5D, high serum ti-

ters of Igk were found in IgM and IgG isotype fractions of animals

receiving RSD/D but not RSWT/WT cells. We conclude that the Bcl2

transgenecan indeedpromotesurvivalandmaturationofautoreac-

tive B cells and that a defect in RS editing (the RS mutation) com-

bined with a pure defect in B cell survival (Bcl2 Tg) can lead to the

escape of autoreactive B cells to the periphery. Moreover, because

in recipients of RSD/D;Bcl2 Tg bone marrow k+ cells were rare in the

spleen, these results indicate that RS-mediated editing efficiently

‘‘eliminated’’ autoreactive B cells despite their apoptotic defect.

DISCUSSION

RS and IGKDE have been thought to play roles in three key

physiological processes: the regulation of Igl expression, L chain

Immunity 28, 161–170, February 2008 ª2008 Elsevier Inc. 165
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Figure 5. Analysis of the Effect of RS Mutation on B Cell Tolerance in Apoptosis-Resistant Cells

BM chimeras were generated with donor BM from RS-sufficient or RS mutant mice that also carried a Bcl2 transgene enforcing B lineage-restricted expression.

Irradiated recipient mice carried a ubiquitously expressed k-macroself transgene (Aı̈t-Azzouzene et al., 2005) to promote negative selection of k+ cells. Radiation

chimeras were analyzed at 10 weeks after reconstitution.

(A) Analysis of l and k cell frequencies in BM and spleens of the indicated mice. (Note that k staining in this figure involves surface staining rather than the

cytoplasmic staining of permeabilized cells as shown in Figure 4A.)

(B and C) Summary analysis of the k and l frequencies of total splenic cells and newly formed (B220intermediate) and recirculating bone marrow B cells (B220high)

from the indicated chimeras. Shown are mean values ± SD. Note increased k frequency and reduced l frequency among BM and spleen cells of k-macroself

recipients of RSD/D;Bcl2 Tg bone marrow.

(D) Igk and Igl serum immunoglobulin titers measured in the indicated chimeric mice.
isotypeexclusion,and receptorediting. Theseeffectsarepresumed

to involve RS recombination itself, but until now, few studies have

assessed RS function. An RNA transcript is associated with RS,

but no protein-coding function is likely (Daitch et al., 1992). Our

RSD mutation blocked RS recombination, allowing evaluation of

its putative functions. RSD/D mice had poor l B cell production but
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surprisingly normal kl isotype exclusion. Most importantly, RSD/D

mice had a targeted defect in receptor editing that abrogated toler-

ance and promoted autoantibody formation, particularly in conjunc-

tion with an apoptotic defect contributed by Bcl2 Tg expression.

In previous studies, mice with defective editing were engi-

neered by rendering autoantibody Tg mice Rag1 or Rag2
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deficient; however, these mice manifest increased B cell dele-

tion, rather than autoantibody formation (Spanopoulou et al.,

1994; Xu et al., 1998; Halverson et al., 2004). Similarly, in conven-

tional autoantibody Tg mice that coexpress the Bcl2 Tg, central

tolerance and editing are intact, and overt autoantibody forma-

tion is minimal (Hartley et al., 1993; Lang et al., 1997). Although

Bcl2 Tg overexpression by itself can suppress peripheral B cell

tolerance, it does not hinder receptor editing (Lang et al., 1997;

Aı̈t-Azzouzene et al., 2005). We showed here that Bcl2 overex-

pression combined with the RS mutation led to frank autoimmu-

nity, supporting the idea that central tolerance by receptor edit-

ing is complemented by apoptosis in cells that fail to edit

expeditiously (Spanopoulou et al., 1994; Lang et al., 1997; Xu

et al., 1998; Halverson et al., 2004).

The RSD/D mutation suppressed both l B cell production and

k-to-l receptor editing but affected kl isotype exclusion only to

a modest degree. B cells coexpressing both k and l are rare, but

detectable (Zou et al., 1993; Pauza et al., 1993; Gollahon et al.,

1988; Giachino et al., 1995; Diaw et al., 2000). The frequency

of B cells with k-chain allelic inclusion is estimated to be from

1.5% (Casellas et al., 2001) to 10% (Casellas et al., 2007). The

latter study concludes that most cells scoring as included ex-

press only one k-chain on the cell surface. We found that 10%

(6/60) of l splenic B cells in RSD/D mice carried a productive

VkJk5 rearrangement. The significance of the six apparently pro-

ductive VkJk joins is unclear. They might be defective in some

way. In our hybridoma analysis, we failed to identify any kl dou-

ble-expressing hybrids from RSD/D or wild-type mice. In any

case, the lack of a striking increase in kl inclusion in RSD/D

mice appears to demand the counterintuitive conclusion that

the RS plays a minor role in enforcing kl isotype exclusion, de-

spite its critical role in k-to-l editing.

Our results contrast with studies involving targeted mutations

within Igk that block both functional k expression and RS recom-

bination because those mutants have greatly increased, rather

than decreased, Igl locus recombination and expression (Takeda

et al., 1993; Chen et al., 1993; Zou et al., 1993; Xu et al., 1996;

Inlay et al., 2002). Our RSD/D mutant permitted functional k ex-

pression in the absence of RS recombination, revealing a specific

but partial defect in Igl recombination and l B cell production.

How does the RSD/D mutation suppress Igl expression? The

receptor-editing view of RS function is that its purpose is to de-

stroy Igk loci encoding autoreactive receptors, allowing progres-

sion to l (Tiegs et al., 1993; Chen et al., 1997; Pelanda et al.,

1997; Retter and Nemazee, 1998). One might suppose that with-

out RS, autoreactive cells would be eliminated by clonal deletion

or, failing deletion, would become allelically included. However,

the dearth of l+ cells in RS mutants could not be attributed sim-

ply to the death of autoreactive k B cells that failed to edit with

RS. Even under artificial conditions in which apoptotic deletion

of demonstrably autoreactive k B cells was hindered by Bcl2

overexpression, l B cell numbers were reduced and kl dou-

ble-positive cells were rare. Our results rule out premature apo-

ptosis as an explanation for how l B cell output is reduced in

RSD/D mice. Rather, they support the previously abandoned

idea that RS recombination promotes Igl rearrangement (Durdik

et al., 1984). If RS recombination was needed to activate l re-

combination directly, other mutants impaired in the ability to re-

combine RS should lack l cells, which, as mentioned above, is
not the case. Moreover, analysis of germline l transcription in

BM B cells of RSD/D;Bcl2 Tg/ k-macroself Tg chimeras sug-

gested that Igl locus accessibility was not reduced (Figure S4).

An alternative hypothesis to explain the linkage between re-

combination of RS and Igl is that when RS deletes Ck and adja-

cent DNA, it removes cis-acting elements that compete for re-

combinational targeting with the Igl loci. This seems unlikely,

however, because excision circles formed by RS recombination

are retained in these nondividing cells and so should be free to

provide competition for recombinase. Further, RSWT/WT;k-mac-

roself Tg mice generate l B cells as efficiently as do JCkD/D

mice (Aı̈t-Azzouzene et al., 2005), though JCkD/D mice lack in-

tronic enhancer elements as well as any Igk locus or RS recom-

bination (Chen et al., 1993). Third, in Ck exon-targeted mice, in

which Vk-to-Jk recombination but no RS recombination occurs,

l B cell production is comparable to that of JCkD/D mice unable

to recombine any k loci (Zou et al., 1993; Chen et al., 1993).

These considerations argue against a simple model of Igk versus

Igl competition for recombinase.

The defect in Igl recombination in RSD/D mice appeared to oc-

cur selectively in cells expressing functional k-chain. B cells ex-

pressing l largely lacked any detectable k expression and vice

versa. Moreover, the 42% reduction of l B cell production in

RSD/D mice was similar to the proportion of cells predicted to

normally extinguish in-frame k genes by RS recombination (Re-

tter and Nemazee, 1998) and was reflected in the amount of Igl-

recombination excision circles. Consistent with this, VkJk5 junc-

tions in l+ B cells of RSD/D mice were rarely functional. That L

chain isotype exclusion was robust in RSD/D mice appeared be

the result of specific inhibition of Igl recombination in sIgk+ cells

rather than counterselection of kl cells after their formation.

An appealing alternative hypothesis to explain the dearth of l

B cell production in RSD/D mice is that induction of Igl recombi-

nation in cells undergoing receptor editing occurs most effi-

ciently when k protein expression has been silenced. According

to this view, the reduced l B cell production in RSD/D mice arises

from their inability to silence k protein expression in editing cells.

This hypothesis was supported by the findings that relatively few

lk double-expressing cells were generated in the BMs of k-mac-

roself-antigen-expressing mice in which all k cells were autor-

eactive and induced to carry out receptor editing, even when

their survival was artificially enhanced by introduction of the

Bcl2 transgene. It appears that Igl gene activation occurs selec-

tively in cells lacking sIg, and this happens after RS-mediated

editing extinguishes k expression. The relative inability of cells

to undergo l recombination when unable to silence expression

of an autoreactive k gene could occur if (1) immature autoreac-

tive cells express less recombinase than do surface immuno-

globulin (sIg)-negative (preB) cells, (2) recombinase amounts

are limiting for editing, and (3) l gene recombination requires

more recombinase than does k recombination. There is evidence

to support all of these possibilities: In autoantibody Tg mice,

bone marrow Rag messenger RNA (mRNA) expression, though

high in the presence of autoantigen, was lower than in non-Tg

controls dominated by small, sIg� preB cells (Tiegs et al.,

1993; Lang et al., 1996), and RAG expression in BM cells of

RSD/D;Bcl2 Tg/ k-macroself Tg chimeras was reduced com-

pared to that of RSWT/WT controls (Figure S4). Second, heterozy-

gous deficiency of Rag1 suppresses markedly receptor editing
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Table 2. Analysis of Recombination Signal Sequences of Mouse Antibody L Chain Loci Relative to Usage

9-mer 7-mer Nonconsensus Substitutions Approximate Usage

Consensus GGTTTTTGT CACTGTG

Jk1 --------- ------- 0 33%

Jk2 a-------- ------- 1 25%

Jk4 --------- ------- 0 13%

Jk5 --------- ------- 0 28%

Vk --------- ------- 0–2 (Average 0.8) 99%

RS a----c--c ------- 3 20%

Vlambda1 t---c---- --t---- 3 3%

Vlambda2 t---c---- --t---- 3 2%

VlambdaX a----c--- t------ 3 1%

Jlambda1 -t------c ---a--- 3 3%

Jlambda2 ------g-g --t---- 3 3%

Jlambda3 -----ag-g ------- 3 <1%

Adapted from Ramsden and Wu (1991). Shown are the nonamer-heptamer elements of the signals and their deviations from the consensus at the top of

the figure. The number of positions deviating from consensus were summed in the central column. The approximate usage of gene segments in total B

cells of wild-type mice is shown at right. Data were derived from the following references: Ramsden and Wu (1991), Wood and Tonegawa (1983), Durdik

et al. (1984), Eisen and Reilly (1985), Nadel et al. (1990), Shimizu et al. (1991), Luning Prak et al. (1994), and Dunda and Corcos (1997).
in vivo, indicating that Rag1 is limiting for editing (Verkoczy et al.,

2005; Aı̈t-Azzouzene et al., 2005). Finally, Igl genes are known to

be less efficiently recombined than are Igk genes because their

recombination signals have more nonconsensus substitutions

(Ramsden and Wu, 1991). Although the recombination signal of

RS diverges from consensus to a similar extent as Igl elements,

RS mainly joins with Vk elements carrying consensus recombi-

nation signals (Table 2). RS recombination usually correlates

with Igl recombination and proceeds after initiation of k joining,

but exceptions in which Igl rearrangement precedes Igk

recombination have been identified both in normal and geneti-

cally modified individuals (Berg et al., 1990; Nadel et al., 1990;

Chen et al., 1993; Zou et al., 1993; Dunda and Corcos, 1997).

These exceptions might arise because Igl genes assemble

best in developing B cells that lack k protein, regardless of their

RS recombination status. We therefore propose that in autoreac-

tive B cells undergoing receptor editing, RAG protein expression

is limiting and sufficient to drive Vk, Jk, and RS recombination

but generally too low to drive l recombination, which therefore

occurs preferentially after destructive editing first renders the

cell sIg negative.

EXPERIMENTAL PROCEDURES

Generation of RS Targeting Construct and Production of RSD/D Mice

Arms of homology flanking the RS recombination signal were cloned into the

targeting vector pKO Scrambler NTV-1901flox (Stratagene). 129 strain bacte-

rial artificial chromosome (BAC) clone DNA (230F18, Canadian Institutes of

Health Research, Canada) was used as a template for high-fidelity PCR with

Accuprime Pfx DNA polymerase (Invitrogen). Oligonucleotide primers were

based on GenBank accessions numbers M12374 and AC090291. The follow-

ing primers were used: long arm of homology, S1 50-ACTAGTGTGTACCCCTC

ACAGGTTGGTCCC-30 SpeI and S3 50-GCGGCCGGACTCATAAATCACAAC

AAAGCAC-30 NotI; and short arm of homology, S4 50-CTCGAGGACCAGAGG

GTTCAGTTCTTTGTC-30 XhoI and S5 50-ATCGATTCTCAGATTTGAGCCCTAA

TGTAGC-30 ClaI. After an initial 2 min incubation at 95�C, amplification condi-

tions were 94�C for 1 min, 60�C for 2 min, and 72�C for 3 min, for 35 cycles.

Restriction enzyme sites were included in the primer sequence for linearization

of construct (NotI) and for genotyping of targeted locus (SpeI).
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The targeting construct was linearized by digestion with NotI, isolated by

agarose gel electrophoresis, and further purified with QIAEX II Gel Extraction

Kit (QIAGEN). The knockout mice were produced by standard techniques at

the Scripps Research Institute (TSRI) Mouse Genetics Core Facility. 129Sv/

Ev embryonic stem (ES) cells were transfected by electroporation and selected

in medium supplemented with G418. Clones carrying the appropriate targeted

alleles were then identified by Southern blotting with appropriate restriction

enzyme digestion along with independent probes derived from regions outside

of the arms of homology.

Probe A was used both for the identification of homologous recombination

and as a DNA PCR control for RS and excision product PCR assays (forward

50-GGAAGTGCTCTAAGCAGTTGG-30, reverse 50-GGTAGGTGAGTGGTTCAG

GAAGG-30; 94�C 1 min, 58� C 1 min, 72� C 1 min, for 35 cycles). Probe B was

used for confirmation of homologous recombination at the 50 end (forward

50-GAGGTTACTCAGCAAACCGTGG-30, reverse 50-TTCACACACGTGGCATA

AACATACA-30; 94� C 1 min, 58� C 1 min, 72� C 1 min, for 35 cycles).

Two targeted ES clones were selected for embryo aggregation, reimplanta-

tion, and selection for chimeric mice. An appropriately germline-targeted

mouse containing the neomycin gene flanked by the two loxP sites was then

backcrossed to the ZP3-Cre transgenic mouse (de Vries et al., 2000) for the

removal of the neo cassette in vivo. RS-targeted mice were subsequently gen-

otyped with the following primers: S1 Sequencing 50-GGGACCAACCTGT

GAGGGGTACAC-30 and S5 Sequencing 50-GCTACATTAGGGCTCAAATCT

GAG-30. PCR conditions were as follows: 94� C for 1 min, 60� C for 1 min,

and 72� C for 1 min, for 29 cycles.

Mice

All mice were bred and maintained in the TSRI Animal Resources facility

according to The Scripps Research Institute Institutional Animal Care and

Use guidelines. C57BL/6J (B6) and B6.CD45.1 mice were from Jackson Labo-

ratories. EmuBcl-2-22 transgenic (Bcl2 Tg) mice (Strasser et al., 1991) were

provided by A. Strasser and A. Harris (Walter and Eliza Hall Institute, Melbourne,

Australia). k-macroself Tg (line 2) was described (Aı̈t-Azzouzene et al., 2005).

RSD/D mice analyzed had been backcrossed ten times to B6 mice and were

compared to B6 controls. In some experiments involving mice carrying k-mac-

roself and Bcl2, transgenes had been backcrossed six times to B6 or

B6.CD45.1 mice. Bcl2 Tg mice were initially on a mixed B10D2/B6 background.

Flow-Cytometry Analysis, Serum-Antibody Analysis,

and Bone-Marrow Chimeras

Flow cytometry, serum-antibody analyses, and radiation bone-marrow chi-

mera generation were essentially as described (Aı̈t-Azzouzene et al., 2005).

www.ncbi.nlm.nih.gov
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Assay for dsDNA autoantibodies was carried out as follows: 10 mg/ml dsDNA

from salmon sperm was coated to Nunc Maxisorp 96-well plates in 0.53 Re-

acti-Bind DNA coating solution (Pierce). After overnight coating, wells were

blocked for 1 hr in Tris-buffered saline containing 5% nonfat dry milk powder.

Mouse sera diluted in blocking solution supplemented with 1% bovine serum

albumin (BSA) were applied and incubated for 90 min at 37�C. After extensive

washing, bound antibodies were detected with 1:2000 diluted horseradish-

peroxidase-conjugated goat anti-mouse IgM or goat anti-mouse IgG (Jackson

Immunoresearch) and developed with 1-Step-Ultra TMB colorimetric sub-

strate (Pierce). OD450nm was measured with a Versamax plate reader (Molec-

ular Devices). dsDNA-antibody concentration was normalized to a high-titer

control serum kindly provided by D. Kono. Flow-cytometry data collection

was done with an LSRII flow cytometer (Becton Dickenson) and analyzed

with FlowJo software. For intracellular staining, surface-stained cells were

fixed and permeabilized with a kit (Cytofix Cytoperm; BD Biosciences) and

stained according to the manufacturer’s instructions.

For BM transplantation, recipient mice carried the CD45.1 marker and in

some cases carried the k-macroself Tg. All BM donors were of the CD45.2

allotype. Ten weeks after reconstitution, recipients were sacrificed and their

lymphoid tissues analyzed. Only chimeras in which at least 98% of cells in

BM and spleen were donor derived were included in the analysis.

B Cell Isolation

BM cells were depleted of erythrocytes then incubated with an antibody cock-

tail including biotinylated antibodies to CD43, Ter119, CD4, IgD, and Gr-1.

Cells with bound antibodies were removed by incubation with anti-biotin mag-

netic beads, and passage through LS columns (Miltenyi Biotec) followed. Un-

bound cells were collected. Splenic B cells were similarly isolated but without

the use of IgD-depleting antibodies. The purity of these preparations was over

90% in all cases, as determined by B220 and CD19 staining.

PCR Assays for RS and Ig Gene Recombinations

PCR reactions were done in a final volume of 50 ml containing 50, 12.5, 3.1, or

0.78 ng of B cell or spleen cell genomic DNA. The Vl1-to-Jl1 excision product

DNA rearrangements were done with the oligonucleotides and PCR conditions

as described (Tiegs et al., 1993). RS-to-IkRS and RS-to-Vk PCR assays were

performed with primers B and C (Retter and Nemazee, 1998) along with a Vk

degenerate primer (Schlissel and Baltimore, 1989). Samples were amplified for

25–30 cycles of 1 min at 94�C, 1 min at 60� C, and 1 min at 72� C. PCR prod-

ucts were electrophoresed in 1.5% agarose gels, blotted on nylon membranes

(Zeta-Probe membranes, Bio-Rad), and hybridized with radioactive probes as

previously described (Aı̈t-Azzouzene et al., 2005). Signals were quantified with

a Phosphorimager with ImageQuant software (Molecular Dynamics).

Sequencing of VkJk5 Joins

sIgl+ splenocytes were magnetically sorted with anti-Igl1-3 biotinylated anti-

body and anti-biotin microbeads (Miltenyi), and cell sorting (FACSAria, BD) fol-

lowed. Bead-isolated cells were stained with anti-Igk (187.1 Alexa 647), CD4

PerCP-Cy5.5, CD8 PerCP-Cy5.5, CD19 PE-Cy7, B220 PacificBlue, and strep-

tavidin PE for the detection of the l cells. Sorted l+k�B cells were confirmed to

be more than 98% Igl+. DNeasy kit was used for the isolation of genomic DNA

from approximately 2,000,000 cells/sample. Vk degenerate and Jk5 primer

(50-TGCCACGTCAACTGATAATGAGCCCTCTCC-30 ) were used for PCR am-

plification of VkJk5 rearrangements. The PCR products were electrophoresed

on 1% agarose gels, purified with a kit (QIAGEN), and cloned in PCR4-TOPO

plasmid vector (Invitrogen), and the inserts were sequenced (Eton Bioscience).

Sequence analysis was carried out with the Ig Blast program.

Hybridoma Generation and Analysis and Antibody Assays

B220+ spleen cells were cultured for 48 hr in Iscove’s modified Dulbecco’s me-

dium (IMDM) supplemented with 10% fetal calf serum (FCS) and lipopolysac-

charide (LPS) (50 mg/ml) and fused with the SP2/0 myeloma line with polyethe-

lene glycol. Cells from each fusion were then plated into 96-well plates and

hybrids selected with hypoxanthine-aminopterin-thymidine (HAT) medium

(ATCC). Because of the low plating density, no 96-well plate showed growth

in more than 15 wells. Any wells with two distinct colonies were excluded.

Cell supernatants were then screened for IgMk or IgMl and confirmed by in-

tracellular staining for Igl and Igk. Enzyme-linked immunosorbent assays for
antibodies and immunoglobulin levels in culture supernatants or mouse sera

were carried out essentially as described (Gavin et al., 2006).

Statistical Analysis

Group comparisons were analyzed by 2-tailed Student’s t test unless other-

wise indicated. p < 0.05 was considered significant.

Supplemental Data

Four figures and three tables are available at http://www.immunity.com/cgi/

content/full/28/2/161/DC1/.
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