
Journal of Algebra 372 (2012) 488–504

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

A direct limit for limit Hilbert–Kunz multiplicity for smooth
projective curves

Holger Brenner a, Jinjia Li b,1, Claudia Miller b,∗,2

a Fachbereich für Mathematik und Informatik, Universität Osnabrück, Osnabrück, Germany
b Mathematics Department, Syracuse University, Syracuse, NY 13244, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 April 2011
Available online 23 October 2012
Communicated by Luchezar L. Avramov

MSC:
13D40
14H60

Keywords:
Hilbert–Kunz multiplicity
Harder–Narasimhan filtrations

This paper concerns the question of whether a more direct limit
can be used to obtain the limit Hilbert–Kunz multiplicity, a pos-
sible candidate for a characteristic zero Hilbert–Kunz multiplicity.
The main goal is to establish an affirmative answer for one of the
main cases for which the limit Hilbert–Kunz multiplicity is even
known to exist, namely that of graded ideals in the homogeneous
coordinate ring of smooth projective curves. The proof involves
more careful estimates of bounds found independently by Brenner
and Trivedi on the dimensions of the cohomologies of twists of
the syzygy bundle as the characteristic p goes to infinity and uses
asymptotic results of Trivedi on the slopes of Harder–Narasimham
filtrations of Frobenius pullbacks of bundles. In view of unpub-
lished results of Gessel and Monsky, the case of maximal ideals
in diagonal hypersurfaces is also discussed in depth.

© 2012 Elsevier Inc. All rights reserved.

Introduction

In 1983, following Kunz’s lead in [12], Monsky defined in [14] a new multiplicity in positive
characteristic – the Hilbert–Kunz (HK) multiplicity – as follows: Let R be a ring of characteristic
p > 0 and I = ( f1, . . . , f s) an ideal with the length �(R/I) finite. Consider the Frobenius powers
I [pn] = ( f pn

1 , . . . , f pn

s ) of I and define

eHK(I, R) = lim
n→∞

�(R/I [pn])
(pn)dim(R)
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Just like the usual Hilbert–Samuel multiplicity, this new multiplicity seems to measure the degree
of singularity at a point on a variety. Furthermore, it plays the role for tight closure that ordinary
Hilbert–Samuel multiplicity plays for integral closure. But the numbers seem much more complex
(they are usually not integers and possibly not always rational or even algebraic) than usual multi-
plicities (which are integers) and, despite intense study in recent years, are still not well understood
or even computable except in a few cases.

However what little is known seems to indicate that the numbers may get simpler in the limit
as the characteristic p goes to infinity, leading to the question of whether a characteristic zero HK
multiplicity defined in such a way could have a more transparent meaning or behavior than the one
in characteristic p does. More precisely, if R is a Z-algebra essentially of finite type over Z and I an
ideal, let R p be the reduction of R mod p and I p the extended ideal. If �(R p/I p) is finite and nonzero
for almost all p, define

e∞
HK(I, R)

def= lim
p→∞ eHK(I p, R p)

whenever this limit exists, and call it the limit Hilbert–Kunz multiplicity of I .
Although experimental results indicate this limit might always exist, very few cases have been

established. It is, of course, clear when eHK(I p, R p) is constant for almost all p, such as for the homo-
geneous maximal ideal in the coordinate rings of plane cubics [3,15,17], in certain monomial ideals
[2,6,7,22], in two-dimensional invariant rings under finite group actions [23], and for full flag varieties
and for elliptic curves embedded by complete linear systems [8] (see also [4]). That this is also the
case for ideals of finite projective dimension can be seen via local Riemann–Roch theory (private com-
munication with Kurano); it is interesting that in this last case the limit has an intrinsic geometric
interpretation in characteristic zero. A few nonconstant cases are known as well: The limit was shown
to exist for the homogeneous maximal ideal of diagonal hypersurfaces, in unpublished work of Gessel
and Monsky [9] building on [10]. It was also shown to exist for any homogeneous ideal primary to the
homogeneous maximal ideal in homogeneous coordinate rings of smooth projective curves by Trivedi
in [20] by delicate study of the variation of Harder–Narasimhan filtrations of Frobenius pullbacks of
the syzygy bundle relative to the characteristic p. The limit in this case turns out again to have an
intrinsic geometric description in characteristic zero.

In this paper, we are interested in the question of whether a simpler limit gives the same result.
In particular, is it necessary to use the full HK multiplicity eHK(I p, R p) in each characteristic p? This

value is itself the usually uncomputable limit limn→∞
�(R p/I [pn ]

p )

(pn)d where d = dim R . We propose to

replace this complex limit with its first term
�(R p/I [p]

p )

pd or more generally any fixed degree term as

follows:

Question. Assuming e∞
HK(I, R) exists, is it true that for any fixed n � 1

e∞
HK(I, R) = lim

p→∞
�(R p/I [pn]

p )

(pn)d
?

Informally, in measuring colengths of pnth bracket powers of the ideal, if p goes to infinity, is it
really necessary to first let n go to infinity?

The motivation behind such a modification is that a simpler limit may make it easier to find a
geometric interpretation of the limit HK multiplicity in characteristic zero. It would be encouraging to
see a simpler limit giving the possible characteristic zero concept. A drawback is that it still does not
yield an intrinsic definition of e∞

HK(I, R) in a characteristic zero setting.
The main goal of this paper is to establish an affirmative answer to the question for the case of the

homogeneous coordinate rings of smooth projective curves. Our proof is based on the proofs in this
setting of Brenner [1] and Trivedi [19,21] of a formula for the HK multiplicity and of Trivedi [20] re-
garding the existence of e∞

HK(I, R), but requires some additional work as we may not assume that the
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fixed value n is large enough to give strong Harder–Narasimham filtrations of the syzygy bundle (the
case n = 1 is the most important). Fortunately, the gap can be filled using Trivedi’s results mentioned
above to yield:

Corollary 3.3. Let R be a standard-graded flat domain over Z such that almost all fiber rings R p = R ⊗ZZ/pZ
are geometrically normal 2-dimensional domains and let I = ( f1, . . . , f s) be a homogeneous R+-primary
ideal. With the notation as above, for any fixed n � 1 one has

�(R p/I [pn]
p )

(pn)2
= e∞

HK(I, R) + O

(
1

p

)

We remark that, with this result, the answer to the question above is known to be yes in all the
main cases in which e∞

HK(I, R) is known to exist so far.
Section 1 contains a review of the background. The groundwork for our main result is done in

Section 2 via some lemmas on the asymptotic growth of cohomologies of bundles as the characteristic
p goes to infinity. In Section 3 these lemmas are applied to the syzygy bundle, defined in (1.1), to
obtain the corollary above.

The remaining part, Section 4, is devoted to a discussion of consequences of Gessel and Mon-
sky’s unpublished work [9]. We see that a side-product of their proof is an affirmative answer to the
question above for the case of diagonal hypersurfaces. Furthermore, their work shows that the most
tempting naive limit in characteristic zero does not give e∞

HK(I, R).
Finally, we mention our convention regarding asymptotics throughout the paper: Let q = pn . We

emphasize that for the asymptotic notation O (−) used throughout the paper, such as in O (
q2

p ), O (q),
or even O (1), we have fixed n > 0 and let p → ∞ (unlike in [1] and [19], where p is fixed and n is
allowed to go to infinity).

1. Preliminaries and background

In this section, we present the basic set-up and notations and review relevant results on vector
bundles.

Basic set-up

Let R be a standard-graded flat domain over Z such that almost all fiber rings R p = R ⊗Z Z/pZ
are geometrically normal 2-dimensional domains. Let I = ( f1, . . . , f s) be a homogeneous R+-primary
ideal with deg f i = di . Let Y = Proj RQ where RQ = R ⊗Z Q. For each prime p, consider the reduction
to characteristic p

R p = R ⊗Z Z/pZ, I p = I R p, Y p = Proj R p

Due to our assumptions, Y and Y p are smooth projective curves for almost all p. The corresponding
Hilbert–Kunz multiplicity is

eHK(I p, R p)
def= lim

n→∞
�(R p/I [q]

p )

q2

where q = pn . The key idea in [1] and [19] for determining the Hilbert–Kunz multiplicity is to consider
the syzygy bundle S = Syz( f1, . . . , f s) on Y p (and on Y ) given by

0 −→ S −→
s⊕

O(−di)
f1,..., f s−−−−→ O −→ 0 (1.1)
i=1
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and the pullback of this exact sequence n times along the absolute Frobenius morphism F : Y p −→ Y p

(with a subsequent twist by m ∈ Z)

0 −→ Sq(m) −→
s⊕

i=1

O(m − qdi)
f q
1 ,..., f q

s−−−−−→ O(m) −→ 0 (1.2)

where Sq denotes the pullback (F ∗)n(S) = Syz( f q
1 , . . . , f q

s ).

Remark 1.1. Notice that for simplicity, we use the notation S for the syzygy bundle over any Y p , as
the characteristic is usually obvious from the context (we study mostly Sq , not S). The first sequence
is just a reduction mod p of the corresponding sequence in characteristic zero. In particular, S is the
reduction to Y p of the syzygy bundle on Y .

As R p is normal, the cokernel of the second map in the associated long exact sequence of coho-
mology

0 −→ H0(Y p,Sq(m)
) −→

s⊕
i=1

H0(Y p,O(m − qdi)
) f q

1 ,..., f q
s−−−−−→ H0(Y p,O(m)

) −→ · · ·

is the mth graded piece of R p/I [q]
p . Brenner [1] and Trivedi [19] exploited this connection to

H0(Y p,Sq(m)) to determine the Hilbert–Kunz multiplicity of I p in terms of intrinsic properties of
the syzygy bundle, which we review next.

Harder–Narasimhan filtrations

Let X be a smooth projective curve over an algebraically closed field. For any vector bundle V
on X of rank r, the degree and slope are defined respectively as

deg(V)
def= deg

(∧r
V

)
, μ(V)

def= deg(V)

r

Slope is additive on tensor products of bundles: μ(V ⊗W) = μ(V) +μ(W). If f : X ′ −→ X is a finite
map of degree q, then deg( f ∗(V)) = q deg(V) and so μ( f ∗(V)) = qμ(V).

A bundle V is called semistable if for every subbundle W ⊆ V one has μ(W) � μ(V). Clearly,
bundles of rank 1 are always semistable, and duals and twists of semistable bundles are semistable.

Any bundle V has a filtration by subbundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V

such that Vk/Vk−1 is semistable and μ(Vk/Vk−1) > μ(Vk+1/Vk) for each k. This filtration is unique,
and it is called the Harder–Narasimhan (or HN) filtration of V .

The maximal and minimal slopes are defined as

μmax(V)
def= μ(V1/V0), μmin(V)

def= μ(Vt/Vt−1)

Remark 1.2. In positive characteristic, pulling back under the Frobenius morphism F does not nec-
essarily preserve semistability. Therefore, the pullback under F n of an HN filtration of V does not
always give an HN filtration of (F ∗)n(V). The existence of a strong HN filtration from [13] was crucial
to the work in [1] and [19], i.e., for some n0, the HN filtration of (F ∗)n0 (V) has the property that all
its Frobenius pullbacks are the HN filtrations of (F ∗)n(V), for all n > n0.
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We do not need strong HN filtrations here since for us n is fixed at a given value and cannot
be modified, but we do need some relation between the HN filtrations of S and Sq . Fortunately, for
p 
 0, the following refinement result by Trivedi [20, Lemmas 1.8 and 1.14] applies:

Proposition 1.3 (Trivedi). Let V be a bundle of rank r on a smooth projective curve X of genus g over an
algebraically closed field of characteristic p with p > 4(g − 1)r3 . Let n � 1 and q = pn. If

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V

is the HN filtration of V , then its pullback

0 = (
F ∗)n

(V0) ⊂ (
F ∗)n

(V1) ⊂ · · · ⊂ (
F ∗)n

(Vt) = (
F ∗)n

(V)

can be refined to the HN filtration of (F ∗)n(V).
Furthermore, denoting the kth portion of the refined filtration as follows

(
F ∗)n

(Vk−1) = Vk,0 ⊂ Vk,1 ⊂ · · · ⊂ Vk,tk = (
F ∗)n

(Vk)

one has that for any i ∣∣∣∣μ(Vk,i/Vk,i−1)

q
− μ(Vk/Vk−1)

∣∣∣∣ � C

p

where C is a constant depending only on g and r.

In our situation the curves Y and Y p are not defined over an algebraically closed field, but due
to our assumptions the curves YQ = Y ×Q Q and Y p = Y p ×Z/pZ Z/pZ are smooth projective curves
over the algebraic closures. In our setting the definition of degree, semistability and the Harder–
Narasimhan filtration descends to the original curves. Hence we will move to the algebraic closure
and back whenever this is convenient. Moreover, because of the openness of semistability in a fam-
ily, the Harder–Narasimhan filtration of S on Y extends to the Harder–Narasimhan filtration almost
everywhere, so that the slopes of the quotients in the Harder–Narasimhan filtration of S on Y p are
constant for almost all p.

2. Asymptotic lemmas for bundles

In this section we prove various asymptotic results on the cohomologies of bundles that will be
used in the next section for the proof of the main result. Let S be any bundle on the relative curve
Proj R → SpecZ. Fix n � 0 and set q = pn for varying p. We denote the restriction of S to Y p again
by the symbol S , as this should cause no confusion in context. We first review the notation that we
use to describe concisely the data from the various HN filtrations.

Notation

We continue this practice of introducing notation unadorned by the characteristic p as it will
always be obvious from the context.

First, for each p, write the HN filtration of S as

0 = S0 ⊂ S1 ⊂ · · · ⊂ St = S

with slopes, normalized slopes, and ranks (for k = 1, . . . , t) defined as follows:

μk
def= μ(Sk/Sk−1), νk

def= −μk

deg Y
, rk

def= rank(Sk/Sk−1)

p
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Throughout we will assume that p has been taken to be large enough so that the notations μk , νk
and rk refer to constants.

Taking pullbacks under the nth Frobenius morphism and setting

Sq
k

def= (
F ∗)n

(Sk)

gives

0 = Sq
0 ⊂ Sq

1 ⊂ · · · ⊂ Sq
t = Sq

By Proposition 1.3, for p 
 0, the HN filtration of Sq can be obtained by refining each containment
above, say as

Sq
k−1 = Sk,0 ⊂ Sk,1 ⊂ · · · ⊂ Sk,tk = Sq

k

We denote the maximal and minimal slopes in this portion as

μmax
k

def= μ(Sk,1/Sk,0) and μmin
k

def= μ(Sk,tk /Sk,tk−1)

(we will not need the intermediate slopes). Further, we define normalized versions of these slopes as

νmax
k

def= −μmax
k

q deg Y p
and νmin

k
def= −μmin

k

q deg Y p

Note that

μmax
1 �μmin

1 > μmax
2 �μmin

2 > · · · > μmax
k �μmin

k > · · · > μmax
t �μmin

t

and therefore

νmax
1 � νmin

1 < νmax
2 � νmin

2 < · · · < νmax
k � νmin

k < · · · < νmax
t � νmin

t

In this situation, Trivedi’s result, Proposition 1.3, becomes:

Corollary 2.1 (Trivedi). With the notations as above, for any k, as p → ∞

νmax
k = νk + O

(
1

p

)
and νmin

k = νk + O

(
1

p

)

Furthermore, letting ω denote the canonical bundle, we set

θ = degωY p

deg Y p

which is constant for p 
 0 by the earlier discussion.
Lastly, for any sheaf F on Y p we write hi(F) or hi(Y p,F) for dimk Hi(Y p,F).
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Asymptotic lemmas

We first prove a lemma on the cohomology of the twisted bundles Sq(m) in various ranges of m.
Both the lemma and its proof are in direct analogy with Proposition 3.4 of [1], but as now we have
that p, not n, is going to infinity, some more care must be taken. In particular, note that we cannot
use strong HN filtrations as n is fixed. Instead we compare the filtration to that of the original bundle
using the results of Trivedi described in Section 1.

In the proofs of the asymptotic parts of the next few results, we assume that p has been taken
large enough so that the genus and degree of Y p equal those of Y , and we denote them by g and
deg Y , respectively. We also assume that p is large enough so that the slopes μk and normalized
slopes νk are constant and that degωY p = degωY .

Note that for p 
 0 one has inequalities

qνmax
k � qνmin

k < qνmin
k + θ < qνmax

k+1

where the last one holds by Corollary 2.1, the inequality νk < νk+1 and the fact that θ is constant for
p 
 0.

Lemma 2.2. Let S be a bundle on Y . With the notation above (and setting νt+1 = ∞), one has for 1 � k � t:

(i) If m < qνmax
k+1 , then

H0(Y p,Sq(m)
) = H0(Y p,Sq

k (m)
)

In particular, if m < qνmax
1 , then H0(Y p,Sq(m)) = 0.

(ii) If qνmin
k + θ < m, then

H1(Y p,Sq
k (m)

) = 0

(iii) One has

�qνmin
k +θ�∑

m=qνmax
k �

h1(Y p,Sq
k (m)

) = O

(
q2

p

)

In particular, setting k = t and noting that St = S , one sees that (ii) and (iii) yield the following.

Corollary 2.3.

∞∑
m=qνmax

t �
h1(Y p,Sq(m)

) = O

(
q2

p

)

Proof of Lemma 2.2. (i) Consider the exact sequence

0 −→ Sq
k (m) −→ Sq(m) −→ Sq/Sq

k (m) −→ 0

When m < qνmax
k+1 = −μmax

k+1
deg Y p

, we have

μmax
(
Sq/Sq

(m)
) = μmax

(
Sq/Sq) + m deg Y p = μmax

k+1 + m deg Y p < 0
k k
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where the second equality is due to the fact that the HN filtration of Sq/Sq
k is obtained via quotients

from the portion of the HN filtration of Sq that contains Sq
k . Thus H0(Y p,Sq/Sq

k (m)) = 0, and the
result follows from the long exact sequence of cohomology.

(ii) By Serre duality,

H1(Y p,Sq
k (m)

) ∼= H0(Y p,Sq
k (m)∨ ⊗ ωY p

)

But when m > qνmin
k + θ = −μmin

k +degωY p
deg Y p

, we have

μmax
(
Sq

k (m)∨ ⊗ ωY p

) = −μmin
(
Sq

k (m)
) + μ(ωY p )

= −(
μmin

k + m deg Y p
) + degωY p < 0

and so H0(Y p,Sq
k (m)∨ ⊗ ωY p ) = 0.

(iii) Since for p 
 0 the bundle Sk on Y p is the specialization (reduction mod p) of the cor-
responding subbundle in the HN filtration of the syzygy bundle in characteristic zero, there exist
integers α1, . . . ,αs (independent of p) and surjections of sheaves on Y p

s⊕
j=1

O(α j) −→ Sk −→ 0

for all p 
 0. Applying the Frobenius pullback (F ∗)n , twisting by m, and taking cohomology yields
surjections

s⊕
j=1

H1(Y p,O(qα j + m)
) −→ H1(Y p,Sq

k (m)
) −→ 0

Therefore it is enough to show that for any fixed integer α

�qνmin
k +θ�∑

m=qνmax
k �

h1(Y p,O(qα + m)
) = O

(
q2

p

)

Reindexing and setting L0 = qα + qνmax
k � and L1 = qα + �qνmin

k + θ� yields the sum

L1∑
l=L0

h1(Y p,O(l)
)

For those p for which L0 � 0, this sum is bounded by Remark 2.4 below. So, we may assume
that L0 < 0. In that case, Remark 2.4 again yields that the sum of the terms with � � 0 is bounded
independent of p, and so, setting L = min(L1,−1), we get

L1∑
l=L

h1(Y p,O(l)
) =

L∑
l=L

h1(Y p,O(l)
) + O (1)
0 0
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In this remaining range, h0(Y p,O(l)) = 0 since l < 0 and so the Riemann–Roch theorem yields the
sum

L∑
l=L0

(−l deg Y − (1 − g)
) + O (1) = −deg Y

2
(L − L0 + 1)(L + L0) − (1 − g)(L − L0 + 1) + O (1)

where we have used the following summation formula

b∑
l=a

l = (b − a + 1)(b + a)

2
for any a � b ∈ Z

Now, since νmin
k = νk + O ( 1

p ) and νmax
k = νk + O ( 1

p ) by Corollary 2.1, we have

|L + L0|� |L1| + |L0| �
∣∣qα + qνmin

k + θ
∣∣ + ∣∣qα + qνmax

k

∣∣ + 2 = O (q)

and more crucially

0 � L − L0 + 1 � L1 − L0 + 1 = ⌊
qνmin

k + θ
⌋ − ⌈

qνmax
k

⌉ + 1

� q
(
νmin

k − νmax
k

) + θ + 1 = O

(
q

p

)

Plugging these two estimates in the above yields the desired result. �
The following variation of Serre’s Vanishing Theorem is used in the proof above.

Remark 2.4. Note that for a locally free sheaf F on our family Proj R → SpecZ there exists an M > 0
(independent of p) such that

H1(Y p,Fp(m)
) = 0 for all m � M

and

M∑
m=0

h1(Y p,Fp(m)
) = O (1)

For the generic fiber YQ there exists such a bound by Serre vanishing [11, Theorem III.5.2]. By semi-
continuity [11, Theorem III.12.8] it follows that H1(Y p,Fp(M)) = 0 for almost all primes p, and by
the surjections H1(Y p,Fp(m)) → H1(Y p,Fp(m + 1)) this is also true for all larger twists. The second
statement follows also from semicontinuity.

As a first step, we now use the lemma above to prove

Lemma 2.5. For any integer k with 1 � k � t − 1, let R = ∑k
i=1 ri and D = ∑k

i=1 riνi . Then

qνmax
k+1 �−1∑

m=qνmax
k �

h0(Y p,Sq(m)
) = q2 deg Y

(
R

2

(
ν2

k+1 − ν2
k

) − D(νk+1 − νk)

)
+ O

(
q2

p

)
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Proof. By Lemma 2.2(i), in this range for m, one has h0(Y p,Sq(m)) = h0(Y p,Sq
k (m)). Applying the

Riemann–Roch theorem then gives

qνmax
k+1 �−1∑

m=qνmax
k �

h0(Y p,Sq(m)
) =

qνmax
k+1 �−1∑

m=qνmax
k �

(
degSq

k (m) + (
rankSq

k

)
(1 − g) + h1(Y p,Sq

k (m)
))

By parts (ii) and (iii) of Lemma 2.2,
∑

h1(Y p,Sq
k (m)) = O (

q2

p ). Also, since rankSq
k = rankSk , one has∑

(rankSq
k )(1 − g) = O (q). Furthermore, by additivity of slopes on tensor products

degSq
k (m) = deg Sq

k + (
rankSq

k

)(
degO(m)

)
= q degSk + (rankSk)m deg Y

= q
k∑

i=1

riμi + m deg Y
k∑

i=1

ri

= deg Y

(
−q

k∑
i=1

riνi + m
k∑

i=1

ri

)

= deg Y (mR − qD)

Therefore the sum becomes

qνmax
k+1 �−1∑

m=qνmax
k �

deg Y (mR − qD) + O

(
q2

p

)

= deg Y

(
R

2

(⌈
qνmax

k+1

⌉ − ⌈
qνmax

k

⌉)(⌈
qνmax

k+1

⌉ + ⌈
qνmax

k

⌉ − 1
) − qD

(⌈
qνmax

k+1

⌉ − ⌈
qνmax

k

⌉))

+ O

(
q2

p

)

But νmax
k = νk + O ( 1

p ) for each k by Corollary 2.1, and so the sum indeed simplifies to

deg Y

(
R

2
q2(ν2

k+1 − ν2
k

) − Dq2(νk+1 − νk)

)
+ O

(
q2

p

)

as desired. �
3. Main result

Now we return to the basic setting of this paper described at the start of Section 1. Recall that
pulling back the exact sequence on Y p

0 −→ S −→
s⊕

O(−di)
f1,..., f s−−−−→ O −→ 0
i=1
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along the absolute Frobenius morphism n times (with a subsequent twist by m ∈ Z) yields the long
exact sequence of cohomology

0 −→ H0(Y p,Sq(m)
) −→

s⊕
i=1

H0(Y p,O(m − qdi)
) f q

1 ,..., f q
s−−−−−→ H0(Y p,O(m)

) −→ · · ·

where Sq denotes the pullback bundle (F ∗)n(S) = Syz( f q
1 , . . . , f q

s ). When R p is normal, one has that
H0(Y p,O(n)) ∼= Rn for all n ∈ N, and so the cokernel of f q

1 , . . . , f q
s is precisely the mth graded piece

of R p/I [q]
p .

For the proof of the main theorem, we will use the results from the previous section to analyze
the cohomologies of Sq(m). As for the cohomologies of the twists of the structure sheaf, we need the
following ingredient. Note that although the statement looks like that of Lemma 2.2 of [1], that result
cannot be applied here: For one thing, νmax

t is not a fixed number, and, even more crucially, ours is
an asymptotic statement as p → ∞, not as n → ∞. Yet the proof is essentially the same, with these
modifications in mind.

Lemma 3.1.

qνmax
t �−1∑
m=0

h0(Y p,O(m)
) = q2 deg Y

2
ν2

t + O

(
q2

p

)
,

qνmax
t �−1∑
m=0

h0(Y p,O(m − qdi)
) = q2 deg Y

2
(νt − di)

2 + O

(
q2

p

)

Proof. As in Section 2, we assume that p has been taken large enough so that the genus and degree
of Y p equal those of Y , and we denote them by g and deg Y , respectively.

We prove the second statement; the proof of the first is similar. By the Riemann–Roch theorem,
one has

qνmax
t �−1∑
m=0

h0(O(m − qdi)
) =

qνmax
t �−1∑

m=qdi

h0(O(m − qdi)
)

=
qνmax

t �−1∑
m=qdi

(m − qdi)deg Y + (1 − g) + h1(O(m − qdi)
)

=
qνmax

t �−qdi−1∑
l=0

(
l deg Y + (1 − g) + h1(O(l)

))

= deg Y

2

(⌈
qνmax

t

⌉ − qdi
)(⌈

qνmax
t

⌉ − qdi − 1
)

+ (1 − g)
(⌈

qνmax
t

⌉ − qdi
) +

qνmax
t �−qdi−1∑

l=0

h1(O(l)
)

The last term is O (1) by Remark 2.4. Furthermore, since

⌈
qνmax

t

⌉ = qνmax
t + O (1) = qνt + O

(
q · 1

p

)
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by Corollary 2.1, the second term is O (q) and the first term becomes

q2 deg Y

2
(νt − di)

2 + O

(
q2

p

)

as desired. �
We are now ready to compute the desired limit.

Theorem 3.2. Let R be a standard-graded flat domain over Z such that almost all fiber rings R p = R ⊗ZZ/pZ
are geometrically normal 2-dimensional domains and let I = ( f1, . . . , f s) be a homogeneous R+-primary
ideal. Set rk and νk to be the ranks and normalized slopes of the quotients in the HN filtration of the syzygy
bundle over Y = Proj RQ . For any fixed integer n � 1, setting q = pn, one has

�(R p/I [q]
p )

q2
= deg Y

2

(
t∑

k=1

rkν
2
k −

s∑
i=1

d2
i

)
+ O

(
1

p

)

where R p = R ⊗Z Z/pZ, I [q]
p = ( f q

1 , . . . , f q
s )R p.

Proof. The long exact sequence of cohomology for the exact sequence

0 −→ Sq(m) −→
s⊕

i=1

O(m − qdi)
f q
1 ,..., f q

s−−−−−→ O(m) −→ 0

yields the containment

Coker H0( f q
1 , . . . , f q

s
) = (

R p/I [q]
p

)
m ⊆ H1(Y p,Sq(m)

)
.

Therefore by Corollary 2.3

�
(

R p/I [q]
p

) =
∞∑

m=0

�
((

R p/I [q]
p

)
m

) =
qνmax

t �−1∑
m=0

�
((

R p/I [q]
p

)
m

) + O

(
q2

p

)

The beginning of the long exact sequence then yields

�
(

R p/I [q]
p

) =
qνmax

t �−1∑
m=0

(
h0(O(m)

) −
s∑

i=1

h0(O(m − qdi)
) + h0(Sq(m)

)) + O

(
q2

p

)

After changing the order of summation, one may apply Lemma 3.1 to get

= q2 deg Y

2

(
ν2

t −
s∑

i=0

(νt − di)
2

)
+

qνmax
t �−1∑
m=0

h0(Sq(m)
) + O

(
q2

p

)

Plugging in the result of Lemma 2.5, using the fact that h0(Sq(m)) = 0 for m < qνmax
1 � by

Lemma 2.2(i), and simplifying as in Theorem 3.6 of [1] yields the desired result. �
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This finally brings us to our main goal: The expression on the right hand side of the equation in
Theorem 3.2 is equal to the limit Hilbert–Kunz multiplicity

e∞
HK(I, R)

def= lim
p→∞ eHK(I p, R p)

as proved by Trivedi in [20]. Therefore, we obtain the following consequence.

Corollary 3.3. With the notation as above, for any fixed n � 1 one has

�(R p/I [pn]
p )

(pn)2
= e∞

HK(I, R) + O

(
1

p

)

In particular,

e∞
HK(I, R) = lim

p→∞
�(R p/I [pn]

p )

(pn)2

In fact, Trivedi shows that for these rings

eHK(I p, R p) = e∞
HK(I, R) + O

(
1

p

)

It is interesting to note that the bound O ( 1
p ) on the speed of convergence is of the same order as in

Trivedi’s result.

Example 3.4. The following example can be found in Monsky’s paper [16]. For the ring R =
Z/pZ[x, y, z]/(x4 + y4 + z4) and the homogeneous maximal ideal I = (x, y, z), one has

eHK(I, R) =
{

3 + 1
p2 p ≡ 3,5 mod 8,

3 p ≡ 1,7 mod 8

It is not clear whether all these results are optimal since we have not been able to find an example
with the slower convergence rate of O ( 1

p ). See also Example 4.2 for diagonal hypersurfaces.

4. Diagonal hypersurfaces

Unpublished results of Gessel and Monsky [9] show that e∞
HK(m, R) exists also for any diagonal

hypersurface over Z, that is, a ring of the form

R = Z[x1, . . . , xs]
(xd1

1 + · · · + xds
s )

with respect to the homogeneous ideal m generated by the variables. In this section we show how
the proof simultaneously gives an affirmative answer to the question in our introduction for these
rings, i.e., that for any fixed n � 1

e∞
HK(m, R) = lim

p→∞
�(R p/m

[pn]
p )

n d
(p )
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Furthermore, we then use these methods to provide examples to show that a certain naive limit in
characteristic zero analogous to the one used in positive characteristic to define the HK multiplicity
does not give the same answer in general.

Affirmative answer for diagonal hypersurface rings

We repeat a small part of the arguments from [9] here to show how it yields the result above. It
uses the machinery developed by Han and Monsky in [10] for computing HK multiplicities of diagonal
hypersurfaces in positive characteristic. For the notation, we generally refer the reader to their paper,
although the necessities are repeated here. For positive integers k1, . . . ,ks and field F = Z/pZ define

D F (k1, . . . ,ks) = dimF F [x1, . . . , xs−1]
(
xk1

1 , . . . , x
ks−1
s−1 , (x1 + · · · + xs−1)

ks
)

= dimF F [x1, . . . , xs]/
(
xk1

1 , . . . , xks
s , x1 + · · · + xs

)
In [9], Gessel and Monsky show that, for any p and n, there are inequalities

d1 · · ·ds

D F (� p
d1

�, . . . , � p
ds

�)
pd

�
�(R p/m

[pn]
p )

(pn)d
� d1 · · ·ds

D F (� p
d1

� + 1, . . . , � p
ds

� + 1)

pd
(4.1)

As the outside terms are independent of n, taking the limit as n goes to infinity yields inequalities

d1 · · ·ds

D F (� p
d1

�, . . . , � p
ds

�)
pd

� eHK(mp, R p) � d1 · · ·ds

D F (� p
d1

� + 1, . . . , � p
ds

� + 1)

pd
(4.2)

they then prove that, as p goes to infinity, the outside terms both converge to the same limit, and in
fact, both equal

g

(
1

d1
, . . . ,

1

ds

)
+ O

(
1

p

)

for the function g: [0,1]s →R defined as follows: for any numbers x1, . . . , xs ∈ [0,1], set

g(x1, . . . , xs) = 1

2s−1(s − 1)!
∑
λ∈Z

gλ(x1, . . . , xs) (4.3)

where

gλ(x1, . . . , xs) =
∑

εi=±1 and
∑

εi xi�2λ

ε1 · · ·εs(ε1x1 + · · · + εsxs − 2λ)s−1 (4.4)

Note that g is well-defined since gλ = 0 for |λ| 
 0. But then the middle terms in both inequalities
(4.1) and (4.2) go to the same limit (at the same rate) as well.

In summary, we arrive at the following conclusion.

Theorem 4.1 (Gessel–Monsky). For any diagonal hypersurface ring

R = Z[x1, . . . , xs]
(xd1 + · · · + xds )

di � 2 for all i

1 s
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with homogeneous maximal ideal m and any fixed n, one has

e∞
HK(m, R) = eHK(mp, R p) + O

(
1

p

)
= �(R p/m

[pn]
p )

(pn)d
+ O

(
1

p

)

Furthermore,

e∞
HK(m, R) = g

(
1

d1
, . . . ,

1

ds

)

where the function g is defined as above in (4.3) and (4.4).

Note that, as for the case of homogeneous coordinate rings over smooth curves in the previous
section (see Corollary 3.3 and the discussion after it), the bounds on the rates of convergence of the
various quantities to e∞

HK(m, R) are the same. We do not know in this case either whether the bound
O ( 1

p ) on the speed of convergence is optimal.

Example 4.2. The diagonal hypersurface ring in Example 3.4 satisfies

eHK(I, R) = e∞
HK(I, R) + O

(
1

p2

)

The same is true of the following example worked out by Chang in [5] and Gessel and Monsky
in [9] using the techniques from [10]. For the homogeneous maximal ideal I = (w, x, y, z) in the ring
R = Z/pZ[w, x, y, z]/(w4 + x4 + y4 + z4), one has

eHK(I, R) = 8

3

(
2p2 ± 2p + 3

2p2 ± 2p + 1

)

according as p ≡ 1(4) or p ≡ 3(4). Therefore, one finds that

eHK(I, R) = 8

3
+ O

(
1

p2

)

We do not know an example with the slower converge rate of O ( 1
p ).

Limits in characteristic zero

Now we turn to using the results of Gessel and Monsky to examine why a certain naive limit in
characteristic zero fails to give the same answer. Given a local (or graded) ring R of equicharacteristic
zero with (graded) maximal ideal m, it might be tempting (in analogy with the definition of HK
multiplicity in positive characteristic) to take a set of generators x1, . . . , xr of m and to look at the
following limit (if it exists)

e∞
naive = lim

�(RQ/(xN
1 , . . . , xN

r ))

d
N→∞ N
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Unfortunately, this can depend on the choice of generators, see Example 4.4, and even for minimal
generators it does not yield e∞

HK(m, R) in general, see Example 4.3. In fact, their unpublished work [9]
enables one to compute this limit as well for diagonal hypersurfaces. Indeed, if we set

R = Z[x1, . . . , xs]
(xd1

1 + · · · + xds
s )

then by Lemma 2.2 of [9] in view of Theorem 2.14 of [10] for the generators x1, . . . , xs this limit
equals the λ = 0 term of g( 1

d1
, . . . , 1

ds
), that is

e∞
naive = 1

2s−1(s − 1)! g0

Therefore, whenever there are nonzero gλ terms in g( 1
d1

, . . . , 1
ds

) for some λ �= 0, one might have
e∞

naive �= e∞
HK(m, R) by Theorem 4.1. We give explicit examples below.

We begin with an example in which a minimal set of generators is used for m in computing e∞
naive

and yet one still does not obtain e∞
HK(m, R) as the limit. This is the “smallest” example of which we

know.

Example 4.3. In the notation above, let s = 5 and di = 2 for all i, that is, take the ring

R = Z[x1, . . . , x5]/
(
x2

1 + · · · + x2
5

)
Then, writing gλ for gλ(

1
2 , 1

2 , 1
2 , 1

2 , 1
2 ), we have gλ = 0 whenever |λ| � 2 and

g1 = g−1 =
(

1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
− 2

)4

=
(

1

2

)4

Monsky’s Theorem 4.1 then yields

e∞
HK(m, R) = 2

244!
(

g0 + 2

(
1

2

)4)

whereas

e∞
naive = 2

244! g0

Now we present a simpler example using similar ideas. It has the drawback though that minimal
generating sets were not used when computing e∞

naive.

Example 4.4. In the notation above, let s = 3 and di = 1 for all i, that is, take the ring

R = Z[x1, x2, x3]/(x1 + x2 + x3)

Then Theorem 2.14 of [10] shows that RQ/(xN
1 , xN

2 , xN
3 ) has dimension equal to  3

4 N2�. (Monsky
pointed out to us that this can also be proved by a simple argument involving a matrix of bino-
mial coefficients.) So e∞

naive = 3
4 . But, as R is isomorphic to the regular ring Z[x1, x2], we know that

e∞
HK(m, R) = 1.
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Remark 4.5. It is interesting to compare and contrast these examples to the one given by Buchweitz
and Chen in [3]. In contrast to our discussion above in characteristic 0, their results show that in
characteristic p the naive limit does not even necessarily exist, even for a fixed choice of generators
of the homogeneous maximal ideal. Specifically, for the ring

R p = Z/pZ[x1, x2, x3]/(x1 + x2 + x3)

(namely the reduction to characteristic p of the ring in Example 4.4 above) they show that the limit

lim
N→∞

�(R p/(xN
1 , xN

2 , xN
3 ))

N2

does not exist. Indeed for the subsequence N = pn the limit is just the HK multiplicity, which equals 1
since R p is regular, but for the subsequence N = 2pn the limit turns out to equal 3

4 by an elementary
computation.

More generally, the study in characteristic p of how the length of

F [x, y]/( f i, g j,hk)
where F is a field, depends on i, j and k when f , g and h are fixed was carried out by Teixeira in
his thesis [18]; the answer involves “p-fractals”.
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