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Abstract

We develop an approach based on the Noether method to construct nilpotent BRST charges and BRST-invariant actions. We
apply this approach first to the holomorphic part of the flat-space covariant superstring, and we find that thie ghagkéch
we introduced by hand in our earlier work, are needed to fix gauge symmetries of the ghost action. Then we apply this technique
to the superparticle and determine its cohomology. Finally, we extend our results to the combined left- and right-moving sectors
of the superstring.
0 2002 Published by Elsevier Science B.V. Open access under CC BY license.

1. Introduction and summary tent, and another BRST-inert ghost system (namely,
n™, o' in [1], replaced byn”, »™ in [2]) was in- _

Recently, a new approach to the completely super- troduced by hand to cancel the central chgrge. In this
Poincaré covariant quantization of the superstring with Letter Wﬁ shall cpnstrhuct the ﬂuantumh e:jchon dand thbe
spacetime supersymmetry was developed in [1-3], BRS_T c;]_arge usgg _t e_Noe]E ﬁr m;:t 0d, and we ob-
based on earlier work by Berkovits [4-7]. A free quan- &N IN this V\;ay a herlvlatlon OI the ghost phalrcz. _
tum action invariant under BRST transformations and Ve start from the classica Gre(_en—Sc warz action,
a nilpotent BRST generatap were constructed [1]. but we take a flat worldsheet rﬂnetﬂuand we replace

i a :

The correct massless and massive spectrum for theth®« transforma’qorﬁ,(ga = Vn "kcg ?xy the more
open and closed string was obtained [2]. The defini- 9eneral expression, 6 = A% where A% is a real
tion of physical states in terms of equivariant cohomol- €ommuting 16-componenD = (9, 1) spinor. Using
ogy was established [3]. In [1] a ghost péit, b) was the Noether method applied to BRST symmetry,
introduced by hand to make the BRST charge nilpo- N€W ghosts are added to the action. A preliminary

E-mail addresses: pgrassi@insti.physics.sunysb.edu 1 At the tree level the choice of a flat worldsheet metric is
(P.A. Grassi), g.policastro@sns.it (G. Policastro), sufficient, but clearly at one loop or for higher genus surfaces (with
vannieu@insti.physics.sunysb.edu (P. van Nieuwenhuizen). or without punctures) it is inadequate.
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ghost action will turn out to have a rigid symmetry

but is not BRST-invariant. Making this symmetry 1

local leads to the ghost systeinc, leads and a  drue = PRua + (iaﬂxm + EGLV”’%GL
BRST-invariant action. We apply this general method

to several cases: (i) the heterotic superstring, (ii) the 1
® perstring, (i +—9Ry’"8M9R)<ymeR>a,

superpatrticle and, (iii) the flat space superstring with 2
combined left- and right-moving sectors. In all the
cases we do arrive at an invariant action and a nilpotent /7 = 3, x™ — i6} Vp aﬂef — 0% Vs 8H0£. (2.3)
BRST charge. ) .
There exists now a derivation of thiec, system [N chiral notation one has

from first principles. For the)”", »™ ghost system a
similar derivation is still lacking.

A different approach, starting from a twisted ver- B
sion of the complexifiedV = 2 superembedding for- ~ with 3 =9, — 9, andd = 9, + 9;. Further,
mulation of the superstring, has been studied in [8].

1 _ _ _
£elass_ = 503" 8 — pLaDO} — pradO

1
dL(x = PLa+ <i8xm + EQL)/ma@L

2. Heterotic superstring and superparticle n %GRVm89R>()/m9L)a,
The basis for our work is a remarkable identity
between the free classical (i.e., without ghosts) su-
perstring Sfcrfjs, the full nonlinear classical Green—
Schwarz (GS) superstrirfigss, and antihermitian com- 1 _
posite objectsd;, and dg, [9]. In the conformal +§9Rym89R>(Vm9R)a-

gauge/*’ = n*¥, one has in Minkowski space

_ 1 _
dRo( = pRa—l—(iaxm + EQL)/’"BGL

For us the identity in (2.1) is useful because it
Sfcrglessz Ses— /dzz (drjam™ — €),6% defings objectsl; ., anddg,e Which play a crL.JciaI.
role in what follows. They become constraints in
+ drua (" +€"")3,6%), the quantum theory and form the starting point for
1 the BRST charge. We denote the left-moving spinor
class_ _ to _mau. wa po in the Green-Schwarz action kg, while 6y is
Liree = =502 0%m = PLya P 000 the right-moving spinor. Chirab’s have spinorial
— PRua PV 0,05, (2.1) superscrippy and6y and antichirab’s are denoted
by 6,,. Thus for the IIA case, we use the notatigy.
There also exists a relation in Berkovits’ approach
between the free quantum action, the GS action and a
1 BRST exact term. It reads (we use the notatignfor
Lyin = —517[[’17”’} the conjugate momentum af instead of8, of our
earlier work to facilitate the comparison with [4—7])

where PHV = gtV — eV and PHY = gtV 4 €MV,
FurthermoreSgs = Skin + Swz with

Lwz = —€"’ [i 8uxm(9L7/m 0v0L — ORYm IvOR)
— (OLY™3,00) OrRYm,0R)] (2.2) Stee= Scs+ Q5 f d?z (wr e P* 9,05

and + WRua Pﬂvayez), (2.4)
. 1
dL;ux == pLua + (l 8uxm -+ EGLVmaMGL Where
£19r:e= gggs_ WLpa PHY 81/)\% — WRua P 31;)»%.

1 m
+§9R7/ OuOR | (YmOL)as
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Further,0p = (Qp,1 + Op,r) With

. 8 8
QB,L :/dUdt (l)\.(z@ +)\‘Lym9L(3x—m

) )
+ dL/L SWLa - Hm()‘LVm)a m)v (25)

and similarlyQ g g, which satisfy

0%, =/do dt (—irLy™ArrL)

) )
— + (3u0y"
X (3)6’" +( mty )“Sdm)

- ()\L Vm)oz

: 2.6
S (2.6)

In Berkovits approach the BRST operat@rs is
not hermitian or antihermitian, because hisis com-

We choose the conformal gauge and replace the com-
posite paramete@« of k symmetry by a new local
classical gauge parameterThe GS action (from now

on in the conformal gauge) is of course not invariant
under then transformations of” andé®, but we shall

use the Noether method to obtain a BRST-invariant
free quantum action. The new local gauge transforma-
tions ofx andé follow straightforwardly by replacing
Hzmy"‘ﬁlcé by A%

8 x™ = —iry™0, 5;,0% = 2%, (2.8)

The matricesy,; are real and symmetric, hence the
reality of §, x™ and of§, 0% is preserved.

The geometrical meaning is at this point unclear.
However, Eq. (2.8) has the same form as the BRST
transformations generated by the BRST cha@g
in Berkovits’ formalism. Therefore, we interpret

plex, but in our approach the BRST operator, denoted from this point on as a real ghost which changes its

by Q, is antihermitian. For pure spinogssatisfying
Ay™A =0, Qp is clearly nilpotent onx™, 6%, A* and

d,, but does not vanish om,. The free quantum ac-

statistics: . becomes commuting. The BRST trans-
formations with constant anticommuting antihermitian
parametert readspf* =i ALY anddpx™ =i A, x™.

tion (2.4) is invariant under the gauge transformation Denoting the BRST transformation of andé* with-

swh = Al (y™1), if the A’s are pure spinors, and the

out A by s, we obtains6* = iA* andsx™ = ry™6.

BRST operators are nilpotent up to a gauge transfor- The BRST transformations close (they are nilpotent)

mation. TheQp variation of Sgs does not vanish ei-
ther, butSgy, is Qp-invariant. The relation in (2.4)

if the A’s are pure spinors. In our approach [1] we do
not impose any constraints on the spinorand there-

was discovered by Oda and Tonin [10], and has been fore, to still regain nilpotency of the transformation,
used by Berkovits to construct the pure spinor action we modify thex transformation rules of andé by
in a curved background [11]. In our derivation below adding further fields such that they become nilpotent.
this relation plays no role. We shall use the Noether Nilpotency ofs is achieved by definingr* = 0, but

method, applied to BRST symmetry.

In this section we restrict ourselves to one (left-
moving) sector (the heterotic string). In Section 4 we
discuss the combined left- and right-moving sector.
We start from the GS action which we decompose
into a kinetic term and a Wess—Zumino (WZ) term,

Scs = Skin + Swz. We shall not needsywz but only

its exterior derivative which is given by the following

3-form both for the IIB and the |IA cases

dlwz = —i dGLMdGL +id9R1]7d9R. 2.7)

The action is invariant under local(Siegel) gauge
transformations if one does not fix the conformal
gauge. We consider the GS action in the conforma
gauge. In this gauge the symmetry transformations
acquire extra compensating terms and are quite com-

sinces is not nilpotent orx, we introduce a new ghost
&p in sx™

sx™m=1pMO + &M, sEM™ = —iAy™A, (2.9)

whereg,, is anticommuting and real. We have obtained
s2 = 0 onx. For the variation of the action we need the
variation ofIT) which is given by

ST = 9,6™ + 24y™8,6. (2.10)

The variation ofSki, contains a term with a deriva-
tive of a ghost which we can handle with the Noether
approach, and a term wiih,6 which poses a problem

| as far as the Noether method is concerned and which

therefore should be removed

1
plicated. We follow, therefore, a different approach. S(EH;THV’") = H{ﬁ(avﬁm + 20Ym91)0). (2.11)
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To remove the term withd,6 we modify the induced
metricG,, = HE’;HV),,, by adding a suitable term to it

G/TvOd = H(’ZLHV)m + Zd(uaau)ea’ (212)

whered,,,, is a new antihermitian anticommuting field.
The extra term-d,,, P*¥9,6% in the action should be
interpreted as a gauge fixing term which breaks the
k-symmetry. The gauge fixed kinetic term varies as
follows

scg‘gd = 2010, 80y 6m + [4(M (1) , + 25d ()90
— 2id,q0,0%. (2.13)

The most general expression fei,, which leaves
only terms with derivatives of ghosts is given by

sdye = =201, 1), + 0ux + An(y"8,0),. (2.14)

where A,, is an antihermitian anticommuting vector
to be fixed. We used thék,y™9,)0 vanishes, made

a Fierz rearangement and introduced a new real

commuting ghost fieldy,, which can be interpreted
as the antichiral counterpart of the chival. We fix
these free objects by requiring thed,, be s inert
(nilpotency ofs ond,.q). This yields

sdy = ux — 2 uh — 20E™ Y 0,0,

sx = 2"y (2.15)
So far we have achieved that theariation of

1
£mod — — ST — dyuad"0" (2.16)

contains only terms with derivatives of the ghosts
Xa, andE™, namely

SLIO = _[TEY,E™ — 9400, X + id,qd"2%. (2.17)

We now repeat this program for the WZ term. Itis a
good consistency check that this is possible at all. We
define a modified WZ term as follows

ﬁmod

Mo Lz + €' d)1q0,6°. (2.18)

One finds that alse £{}%% only contains terms with
derivatives of ghosts

Sﬁw%d: v [Hﬂmavém + 0,00, x — idﬂaavka]‘

(2.19)
The sum of all variations is given by
S(LRRd+ LS = =TT PV 3y + idyue P 0,1
— 3,0 P" 3, xa. (2.20)

99

The next step is to cancel these variations by adding
free ghost actions and defining suitable transformation
laws for the antighost fields

Lgh=—Bum P*’9,6™ — wye P* 0,A%

— P8y xa- (2.21)

The antighosp;, is anticommuting and antihermitian,
while w,q andxl‘j are commuting and real. Because
the variation of Lxin + Lwz contain the operator
PHY = gtV — *V| the antighosts are holomorphic
(chiral on the worldsheet: they have the index structure

", Baz @andk). One finds easily a particular solution
for the variation of the antighosts, but the most general
solution contains a free constantand a target-space
bispinoryt-«f

[

m

1
(=ITk — 2" ymd) + (bB“Em + 58“b$m>

+ (xn"¥m1).
swl = (id" = 2iBlyy™ ) — 2&ny™" "),

3
—i<b3“xa + Za"bxa> + (#n"x).
1
sk = (—310%) + i (ba“x“ + Za“bx"‘)

+ (n“fk).

The transformations with mapg into its own ghosg
andw andk into the other commuting ghosts while the
transformations withy**# map each antighost into
the two noncorresponding ghosts.

Setting the anticommuting and antihermitiaand
the real commutingy~*# to zero yields a solution
of the inhomogeneous equation for the transformation
laws of the antighosts, but the terms witbnstant
and n*-*# yield further homogeneous solutions. In
other words, we are encountering a system with
constant ghosts-for-ghosts. We have already added the
terms with a derivative df for reasons to be explained
now.

The terms in the transformation rules with con-
stant b and n**f yield new rigid symmetries of
the ghost action. Although we have obtained an
s-invariant action, the transformation rules for the
antighosts are not nilpotent. We now ketbecome a
field and add the terms with, b in (2.22). The ac-
tion then ceases to be invariant, but the transformation

(2.22)
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laws of the antighosts can be made nilpotent by defin-
ing suitable transformation laws férandn, namely,
spt%f = Q.

sh=1, (2.23)

In fact the terms in (2.22) with*-*# can be removed
by redefiningc** — k** + (1/2)(n* x)* and for this
reason we omit them from now on. This redefini-
tion leads to a new term in the action of the form
XantP 9. xg; however, this extra term is a total deriv-
ative which we also omit.

Returning to the problem of making the action
BRST-invariant, we need a kinetic term fbr Hence,
we introduce also a new real anticommuting ghgst
and add the following term to the ghost action:
L’g)ﬁtra: —bP*’3,c,. We determine the transforma-
tion rule ofc,, such that the action becomegvariant.
One finds

3i

2

i

Xa0ur® + 5

BMXQ)LO‘).
(2.24)

1
scy = -5 (g’"ausm -

Also this transformation law is nilpotent.

In this way we have reobtained the free BRST-inva-
riant action and the nilpotent BRST transformation
rules of [1]. In particular, we have given a derivation
of the need for the, ¢, system which follows from
the Noether procedure applied to symmetries of the
ghost action. However, the problem of giving a similar
fundamental derivation of the, w system remains.
For the string they, » system was needed to cancel the
central charge. For the superparticle, to which we now
turn, theb, ¢ system is needed, but thew system is

not needed because for the superparticle there is no

central charge and hence we do not need to cancel it.

3. Thesuperparticle

In this section we apply the procedure presented
in the previous section to the point particle. The
operator formalism of [1] cannot directly be applied
in this case becaugevanishes on-shell. The off-shell

P.A. Grassi et al. / Physics Letters B 553 (2003) 96-104

We start from theN = 1 supersymmetric ac-
tion [12]

1 .
S= fdr 5o (8" - i0°y6°)%, a=1,...,16,
(3.1)
which is invariant undeg-symmetry:
3/{90! znm(ym’()a’ (Sicxm =i9)/m3/c9,
See =4ied %Ky, (3.2)

wherelT,, = i" —i6*y 67 . The quantization of (3.1)
is nontrivial because of the fermionic constraint
85/80% = py = i P (y0)s With P, and p, the con-
jugate momenta to the andé coordinates. The anti-
commutator

{Pa =i P" (YmO)as pp —iP" (ym8)p} = —2vis Pm

shows that the fermionic constraints are both first and
second class: only half of them anticommute with each
other? However, it is difficult to disentangle these
two classes and construct a covariant set of indepen-
dent basis vectors for these constramiBhe theory

is invariant under reparametrization of the worldline;
however, we will sete = 1 from the beginning and
construct a consistent model with local transforma-
tion rules. In the original superparticle, one could
choose the gauge= 1, but thenc transformations ac-
quire extra nonlocal compensating terms wjiln) =
[Tt (4ibk) ().

2 Decomposingly = py — i P (ymB)q into Pdy + (1 — P)dy,
the Pdy are first class and th@ — p)d, are second class.

3 Recently, two of the authors [13] presented a solution of the
quantization of the superparticle using a “twistor’-like redefinition
of variables Py = 3% (o + P257)4,2P where ? are the
twistor-like variables ands®* the Pauli matrices. One way to
disentangle the two types of constraints is an infinite number of
ghosts. Using Batalin—Vilkovisky techniques the ghosts of level
greater than three do not interact with the ghost of lower levels and
with the other fields of the theory.

4 There should be a better way to do this: first go to the light-
cone gauge for the superparticle action (3.1) and reparameterize
the fermions byc® = /p* (y~6)* where y* = 1,0 + »9).

The BRST operator for the quantized model is oly= ¢ P2 and

BRST approach is successful. We consider the openthe states are representations of the Clifford algefgta ¢”} =

string, hence rigidv = 1 spacetime susy with orte

We shall show that the correct spectrum, namely the
field equations off = (9, 1) N =1 super-Yang—Mills
theory, is obtained.

2595, Berkovits [14] finds an interpolating BRST operator in
an enlarged functional space with the unconstrained spifoend
their conjugate momenté, , and the composite field, . One can
show that the cohomology can be constructed in two equivalent
ways: the first reproduces the light-cone massless states of the
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We compute the variation of (3.1) under the BRST withoutn™. The nilpotency of the BRST symmetry is
transformations achieved by definingb = 1.

m em m v i The last step is to addia— ¢ term to the action and
sxT =80+ 0y A, SO% =i2%, derive the BRST transformation for the ghost
SEM = —iAy™A, sA¥ =0. (3.3)

In order that the variation of (3.1) be proportional to Sgh.2 = /df be,
the equations of motion of the ghost fields, we add the

term [ dt d,6% whered, and its BRST variation are  sc = 1 EME, — ixa)l“ + l—xak‘x . (3.7)
: 2 2 2
given by
1 . The sumS + Sgh1 + Sgh2 is now invariant under
do = po +ixm(y™0),, + 5()/’"9)&(9)/”19), BRST symmetry. At this point, we can rewrite the
. terms of the action which contain the field® in a
— v m m
$da = Joo = 2y " A+ An(y"0) . (3.4) first-order formalism. Namely, dt $17? = [dt x
whereA,, andy, are two arbitrary fields. Notice that (p,, ;7" — %P2)_ Canonical quantization implies that
we can freely add the ghogt, since on-shellthisterm  [pm xn] = —jpm"_ This will be used in the next
vanishes. The BRST transformationdyf is nilpotent section.
if We now turn to the determination of the massless

Ay = —2if — 26 () cohomology for the superparticle. The physical states

m = —<lsm; 5o = Ym#Ja- of the superparticle should be found at ghost number 1.
Then, following the procedure already discussed, we Without further restriction, the cohomology is, how-
add ghost terms to the action ever, trivial, but following [2] we assign a grading to
the ghost fields

Sgh,1 = /df (ﬂmém + wot)‘ha + KaXa) (3.5)
) | ) o or(r¥) =1, or(") =2,
whose variation cancels against the variations _ _
[ dt dy6* if the antighosts transform in the following 9r(xe) =3, gr(c) =4, (38)
way and the corresponding opposite numbers for antighosts.
] 1. We cannot use the affine Lie algebra to determine the
SBm = =1y — 26 yh + b&y, + Ebsm, grading of x andc as in [2], becausé =0 is a here

a field equation and there is no central charge for a
point particle. However, observing that the p&r

of the BRST operator which only contains ghost and
antighost fields is nilpotent by itself, one can introduce
a grading which explains this. Namelgp has vanish-
ing grading and this yieldgr (x) = 3 andgr (b) = —4.

The contributions with ghosts—antighosts in the trans- The relevant cohomology is selected in the functional
formation rules are needed to compensate the SPace of non-negatively graded polynomials denoted
nonlinear variations of the ghost fiel§& and e in in the following by .>

the action (3.5). Further, the terms proportionabto

or b are needed to obtain a mlpqtent BRS_T Symm_e_ 5 Notice that in the pure spinor formulation® should be

try. As we learned from the previous section, a suit- complex and its complex conjugatg should transform under the
able redefinition ok* removes they” terms fromthe  conjugated representation 86in(9, 1). This implies that one can

symmetry, therefore, we have already chosen the basisconstruct a homotopy operatkirfor the BRST charge p = A%dy .

It is easy to show thakl = 1o0% /(A1) with (AL) = A, 1Y satisfies
- {0, K} = 1. This obviously renders the cohomology in [15] trivial
superparticle, the other reproduces the BRST cohomology with pure since everyQ-closed expression is alg@-exact. In order to obtain a
spinor constraints. It would be interesting to repeat this approach for nontrivial cohomology one may use the grading in (3.8) and observe
our formulation. that the homotopy operatd€ has negative grading.

SWy =idy — Ziﬂnl(ymk)a - ZE’” (ymK)a
L. 3
— 10 Xq — Z Xas

sk = —0% +ibi% + i—llﬁka. (3.6)
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The most general scalar expression?fy. with
ghost number one is

UD(2) =irAg +E™ A + xa W
+ b(E™E" Fyun + A xp Fo”

+ XaémFam + XaXﬂFaﬂ)s (3-9)

where Ay, ..., F*# are arbitrary superfields depend-
ing on x,,, 6%. The requirement of positive grading
has ruled oubA*A? andbr®&e™.

The condition{Q, U™ (z)} = 0 implies the follow-
ing equations

D Ap) + i}/&%Am =0,
8onz - DaAm —2i Ymap Wﬂ = 07
OmAn + Fun =0, DgW*® + Fg* =0,

AW+ F%, =0, Fe =0, (3.10)

where Dy = 3/06% — i0Py[48/0x™.% The terms in
{0, UD ()} which contain the field yield equations
which are the Bianchi identities [1]. From the first two
equations of (3.10) one gets the field equations for
N =1,d = (9, 1) super-Maxwell theory

DyAp =0, (3.11)

af
Yimnpgr

as well as the definition of the vector potentig} and
the spinorial field strengt* in terms ofA,

1
Ap = 1_63/;101lﬁD0lA/5’

1
W=y (Dg Ay — 0 Ap).

20
Moreover, the remaining equations in (3.10) imply that
the curvaturesy,,,, F*,,, and Fg* are expressed in
terms of the spinor potentia,, .

The gauge transformations of the ver (z)
are generated by the BRST variation of a spin-zero
ghost-number-zero field2© (z) € H,, whose most
general expression is given ky© (z) = C, with C
arbitrary superfield. The BRST variation @ is
SUD(2) =10, 2(2)] = ir"DuC + £™3,C. One
can easily check that' is the usual parameter of the

(3.12)

6 Notice thatDq is hermitian. We defin®, Ag) = 3 (Do Ag +
DgAq) anddjy Ay) = 3 @mAn — 8pAm).

P.A. Grassi et al. / Physics Letters B 553 (2003) 96-104

gauge transformations on the super-Maxwell poten-
tials: A, = D, C, §A,, = 9,,C. Thus, the only inde-
pendent superfield id,,, and it satisfies (3.11) which

is gauge-invariant. For further discussion of these field
equations we refer to [1].

4. Closed superstrings

In this section we again apply the procedure of
Section 2, but now to the combined left-moving and
right-moving sector of the Green—Schwarz superstring
simultaneously.

We start from the GS action in (2.2). The transfor-
mation rules are now given by

sx™ = Oy AL +EL) + (OrY™ AR +ER),
SO =iny, 6% =irG,

sAY = s)»‘,% =0,
SSZ’ = _i)\.Lym)\.L,

SEM = —idgy"Ag.  (4.1)

One clearly has nilpotency on these fields.
Next we add tolgs the terms withdy ;o =dp 10 —
dr. 0w aNddRrze = dR 10 + dR 0w

Lg=—dp;0007 — drzq96%. (4.2)

We recall thatd; ,, anddgzy, given below (2.3), are
such thatinCgs+ £ only the free kinetic terms for,
6.,k and pz g remain. As before we determine the
variations ofd; ., anddgz, (hence ofpr ., andprzy)

by requiring that in thes-variation of Lgs + £y the
terms without derivatives of ghosts cancel. However,
we also require nilpotency oty ,, anddgzy; Since
there are cross-terms, this is less trivial. We find it
convenient to introduce an auxiliary field forg', so
we replace(1/2)(I13")% by —(1/2) P' Pom + P§ Mom.
There are now two ways to proceed.

(i) We take the rules of the heterotic string in each
sector, but the cross-termss; ,, are determined by
requiring nilpotency orPy’ andd; ;. One can achieve
this, but one has then only nilpotency @p,,, modulo
the free field equations &%,z and& /g.

(i) We write all transformation rules with onlg;
derivatives, but not with anyg derivatives. This can
be achieved by using the free field equations. This
changes the rules of the heterotic string, but we obtain
nilpotency on all fields.
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Since one either works with the heterotic string or

with the Green—Schwarz string, we adopt the second

procedure. We obtain then

sdp e =201 XL — 21 — POm)VO'Z};)»‘z
—AiELmY g 9167,
sdrza = 201XRa — 2(ITun + Pom) Veprk
— 4ERmY o 0168,
sPy =—2(ALy" 0101 — Ary™016R)
— 01&]" + 018,
SITY = 20y 0101, + 2ARy™" 310k
+ 01&]" + 01€
sXLa =257 (YmAL)a,
S XRa = 28R (YmAR)a- 4.3)

It is clear that nilpotency of holds onI1{", I1;' and
Py' in each sector separately. We have writtdi;"
below s Py so that the difference becomes clear: in
s Pg' we have used the field equations

(81 +30)0] =0,
(91+ d0)§[' =0,

(91— 90)0% =0,
(01— do)ég =0.

Because there are only derivatives in/7;" and Py’,
nilpotency ofsd;,, and sdgz, is relatively easy to
prove.

Using these transformation rules, one finds

5S = /dzz [(PS" — 7)) &Lm — (P§ + 1) 3R
— 201 (L0 00F — 201X R DO
+idp.o0A] +idrza00%). (4.4)

To prove this simple result requires multiple partial in-
tegrations and Fierz identities. To cancel these varia-
tions we add the ghost action
Sgh,1 = /dZZ (wLwE_M‘z + ngaa)L%
+ ﬁLZméSZn + ,BRZmasg
+K1‘)fzéXLoz +K%28XR01) (4.5)

and choose the appropriate transformation laws for
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the antighosts

SWra = —idra — 2iBrm(y" A1), — 25Lm (¥ kL),
+2ibro1xLa + %albLXLa,

SBrm = —Pom + Mun — 2c1y™ Ar
—2b1016Lm — 01bLELm,

sk% = 2010% — 2iby 912% — ;albmi. (4.6)
The rules for the right-moving antighostg,, 8% and

Kk are obtained by replacing Py’ by Py’ (andL by R

of course). These rules are nilpotentdf, = sbr =1,
but the action is not yet invariant. Since it varies into
term withb we add the ghost action

Sgh2 = /dzz [brdcr +brdcg]. (4.7)

and find the transformation rules foy andcg from
the BRST invariance of the action
3i i
2 2
and, analogously, forg. Nilpotency only fixes the
terms with 916, in (4.6) up to an overall constant,
but invariance of the action fixes this constant. All
transformation rules for the combined sectors are now
nilpotent; this has been achieved by introducing only
one auxiliary field, namely".

Needless to say, we can again define the grading
current and we define the BRST cohomology on the
space of non-negatively graded vertices.

scp = =016 + = XLaO1IA] — 301XLar]  (4.8)
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