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Abstract

We derive a class of cubic interaction vertices for three higher spin fields, with integer spins λ1, λ2, λ3, 
by closing commutators of the Poincaré algebra in four-dimensional flat spacetime. We find that these ver-
tices exhibit an interesting factorization property which allows us to identify off-shell perturbative relations 
between them.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Interactions of massless particles are, in general, very highly constrained. In flat spacetime 
backgrounds, there exist consistent cubic interaction vertices describing massless higher spin 
fields [1,2] and their couplings to gravity [3]. At the level of the equations of motion, there has 
been considerable progress in our understanding of higher spin theories in both flat and anti-de 
Sitter spacetimes. Fully interacting, non-linear equations of motion describing higher spin fields 
are known [4]. However, a consistent description of higher spin fields (λ > 2), at the level of the 
action, remains elusive. Interesting attempts to address this problem using a Fock space approach 
and the Poincaré algebra include Refs. [2,3]. In this paper, we adopt a more direct method, 
conducive to our aim of identifying factorization properties and establishing perturbative ties in 
the space of higher spin theories.
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In this paper, we work with the Poincaré generators for (3 + 1)-dimensional flat spacetime 
in light-cone gauge. We write down a general ansatz for the cubic interaction vertex in a theory 
describing three different higher spin fields. Demanding closure of the Poincaré algebra yields 
a class of generic higher spin cubic interaction vertices which we rewrite in momentum space, 
using spinor helicity notation.

In this spinor helicity language, interesting structures and relations are manifest. Specifically, 
the cubic vertex in higher spin theories may be obtained by simply multiplying the corresponding 
cubic vertices involving lower spin fields. Given two theories, one involving spins (λ1, λ2, λ3)

and the other (λ′
1, λ

′
2, λ

′
3), one may obtain by the direct product of their cubic vertices, the cubic 

interaction term for a theory involving spins (λ1 + λ′
1, λ2 + λ′

2, λ3 + λ′
3). A converse of this 

property is the factorization of the higher spin vertex into the corresponding lower spin ones.
One obvious consequence of these properties is that the cubic vertex describing fields of 

spins (nλ1, nλ2, nλ3) is the nth power of the (λ1, λ2, λ3) cubic vertex. This is reminiscent of 
the KLT relations [7] and even more so of their off-shell extensions [8]. An interesting question 
is whether such relations extend to quartic and higher order vertices in higher spin theories. 
Further study along the lines described here requires the extension of the Poincaré generators 
and the calculations presented here to order α2. There is, however, reason to believe that such an 
attempt might run into difficulties. The no-go theorems for higher spin theories [5] do not allow 
consistent interacting theories involving particles of spin greater than two. On the other hand, 
many of these results were derived assuming that locality and Lorentz invariance were manifest 
in the theory under consideration. Neither of these properties is manifest in light-cone gauge 
making it an ideal choice for the study of higher spin fields, a point we return to at the end of 
this paper. The cubic interaction vertices we derive here are not a comprehensive listing of all 
possible vertices1 since our aim here is not to be encyclopedic but to establish both factorization 
properties and perturbative links in higher spin theories.

2. Poincaré generators

We define light-cone coordinates in (−, +, +, +) Minkowski spacetime by

x± = x0 ± x3

√
2

, x = x1 + ix2

√
2

, x̄ = x1 − ix2

√
2

. (1)

The corresponding derivatives being ∂±, ∂̄ and ∂ . In four spacetime dimensions, all massless 
fields have two physical degrees of freedom for which we use the notation φ and φ̄. We choose 
the field φ to have helicity λ while the field φ̄ has helicity −λ. The generators of the Poincaré 
algebra, in light-cone coordinates are

p− = i
∂∂̄

∂−
= −p+ p+ = −i∂+ = −p− p̄ = −i∂̄ p = −i∂, (2)

j = i(x∂̄ − x̄∂ − λ), j+ = (
x+∂ − x∂+)

,

j+− =
(

x+ ∂∂̄

∂+ − x−∂+
)

, j− =
(

x−∂ − x
∂∂̄

∂+ + λ
∂

∂+

)
, (3)

and their complex conjugates. 1
∂− is defined using the prescription in [9].

1 For such listings, see for example [6].



170 Y.S. Akshay, S. Ananth / Nuclear Physics B 887 (2014) 168–174
Using the free equations of motion ∂+ = ∂∂̄
∂− which is modified in the interacting theory. The 

Hamiltonian for the free field theory is

H ≡
∫

d3xH = −
∫

d3x φ̄ ∂∂̄ φ, (4)

where the second equality only holds for the free theory. This is rewritten as

H ≡
∫

d3xH =
∫

d3x ∂−φ̄ δHφ, (5)

in terms of the time translation operator

δHφ ≡ ∂+φ = {φ,H}, (6)

where { , } denotes the Poisson bracket. When interactions are switched on, δH picks up correc-
tions, order by order in the coupling constant α. The other generators that pick up corrections are

δj+−φ = δ0
j+−φ − ix+δα

Hφ + O
(
α2),

δj−φ = δ0
j−φ + ixδα

Hφ + δα
s φ + O

(
α2),

δj̄−φ = δ0
j̄−φ + ix̄δα

Hφ + δα
s̄ φ + O

(
α2). (7)

Here, δα
s and δα

s̄ represent spin transformations. We assume these to be of the form φ̄φ as this 
form agrees with the known transformations. At cubic order, these do not mix with any of the 
other terms and are therefore not relevant to the calculations in this paper.

3. Deriving cubic interaction vertices

We focus on the following three structures for cubic interaction vertices at order α.

δα
Hφ1 ∼ φ2φ3; δα

Hφ2 ∼ φ1φ3; δα
Hφ3 ∼ φ1φ2, (8)

where the fields φ1, φ2 and φ3 have integer spins λ1, λ2 and λ3 respectively. The first of these 
structures, at the level of the action would correspond to terms of the form

S ∼
∫

d4x φ̄1φ2φ3 + c.c. (9)

We enhance this basic form with derivatives to arrive at the Ansatz

δα
Hφ1 = αA∂+μ

[
∂̄a∂+ρφ2∂̄

b∂+σ φ3
] + c.c., (10)

where μ, ρ, σ, a, b are integers and A is a numerical factor that could depend on the variables 
and spins. Note that terms of the form φ̄2φ̄3 in δα

H φ1 are independent of terms of the form φ2φ3
and hence will not ‘talk’ to one another. The commutators[

δj , δ
α
H

]
φ1 = 0,[

δj+− , δα
H

]
φ1 = −δHφ1, (11)

impose the following conditions on our Ansatz

a + b = λ2 + λ3 − λ1,

μ + ρ + σ = −1. (12)
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Since a, b > 0, the first of these conditions2 implies that the vertex cannot exist unless λ2 +
λ3 > λ1. Now, let λ ≡ λ2 + λ3 − λ1 so the first equation of (12) reads a + b = λ. There are 
precisely (λ + 1) possible values for a pair (a, b). We now rewrite our Ansatz in (10) as a sum of 
these (λ + 1) terms

δα
H φ1 = α

λ∑
n=0

An ∂+μn
[
∂̄n∂+ρnφ2 ∂̄ (λ−n)∂+σnφ3

] + c.c. (13)

The next set of commutators are

[δj̄− , δH ]αφ1 = 0 [δj+ , δH ]αφ1 = 0, (14)

and yield the following conditions

λ∑
n=0

An

{
(μn + 1 − λ1)∂

+(μn−1)∂̄
(
∂̄n∂+ρnφ2∂̄

(λ−n)∂+σnφ3
)

+ (ρn + λ2)∂
+μn

(
∂̄ (n+1)∂+(ρn−1)φ2∂̄

(λ−n)∂+σnφ3
)

+ (σn + λ3)∂
+μn

(
∂̄n∂+ρnφ2∂̄

(λ−n+1)∂+(σn−1)φ3
)} = 0, (15)

λ∑
n=0

An

{
n∂+μn

(
∂̄ (n−1)∂+(ρn+1)φ2∂̄

(λ−n)∂+σnφ3
)

+ (λ − n)∂+μn
(
∂̄n∂+ρnφ2∂̄

(λ−n−1)∂+(σn+1)φ3
)} = 0. (16)

These conditions are satisfied if the coefficients obey the following recursion relations.

An+1 = − (λ − n)

(n + 1)
An = (−1)(n+1)

(
λ

n + 1

)
A0,

ρn+1 = ρn − 1; σn+1 = σn + 1; μn+1 = μn, (17)

with the last condition showing that μn is independent of n. The following “boundary” conditions 
are also necessary.

ρn=λ = −λ2; σn=0 = −λ3. (18)

The solution of the recursion relations for ρ, σ and μ subject to (18) is

ρn = λ − λ2 − n; σn = n − λ3; μn = λ1 − 1. (19)

Thus (13) reads

δα
H φ1 = α

λ∑
n=0

(−1)n
(

λ

n

)
∂+(λ1−1)

[
∂̄n∂+(λ−λ2−n)φ2 ∂̄ (λ−n)∂+(n−λ3)φ3

] + c.c. (20)

Since

H =
∫

d3x ∂−φ̄1 δHφ1, (21)

2 Note that this reduces to the condition in [2] if we set λ1 = λ2 = λ3.
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the interaction Hamiltonian is

Hα = α

∫
d3x

λ∑
n=0

(−1)n
(

λ

n

)
φ̄1 ∂+λ1

[
∂̄n∂+(λ−λ2−n)φ2 ∂̄ (λ−n)∂+(n−λ3)φ3

] + c.c. (22)

Notice that if we set λ1 = λ2 = λ3 = λ′ in (22) with λ′ odd, Hα vanishes. Hence, a non-
vanishing self-interaction Hamiltonian, for odd integer spins exists, if and only if we introduce 
a gauge group. However, a consistent non-trivial vertex, coupling three fields of different spins, 
exists irrespective of whether the spins are even or odd.

We note that if the action obtained from the above Hamiltonian is to describe a theory involv-
ing fields of odd integer spins with cubic self interaction terms, the existence of a gauge group 
is forced upon the theory. Interestingly, the three fields could, in principle, carry different gauge 
groups.

4. Factorization properties and perturbative relations

We now rewrite the above results in the language of spinor helicity [10] where a four-vector 
is expressed as a bispinor using paȧ = pμσ

μ
aȧ , with det(paȧ) yielding −pμpμ. The spinor prod-

ucts are

〈kl〉 = √
2
(kl− − lk−)√

k−l−
; [kl] = √

2
(k̄l− − l̄k−)√

k−l−
. (23)

Eq. (22) involves the sum of two kinds of terms: φ̄φφ and φφ̄φ̄. In Fourier space, the coeffi-
cient of the second kind of term φ1(p)φ̄2(k)φ̄3(l)δ

4(p + k + l) up to a sign reads

p
λ1−

k
λ2− l

λ3−
(lk− − l−k)λ2+λ3−λ1 , (24)

which may be rewritten as

1√
2λ

〈pk〉(−λ1+λ2−λ3)〈kl〉(λ1+λ2+λ3)〈lp〉(−λ1−λ2+λ3). (25)

It is clear that (25) exhibits the nice factorization property described in the introduction. It fol-
lows from the expression that given vertices for spins (λ1, λ2, λ3) and (λ′

1, λ
′
2, λ

′
3), their product 

yields the vertex for (λ1 + λ′
1, λ2 + λ′

2, λ3 + λ′
3). As a corollary, note that the coefficient for 

the coupling of three fields (nλ1, nλ2, nλ3) is the n-th power of the coefficient for the coupling 
(λ1, λ2, λ3).

This factorization property is similar in spirit to the KLT factorization relations. However, 
it is important to note that while the KLT relations are on-shell relations concerning amplitudes, 
the above relations are off-shell and valid at the level of the action. The next logical step in 
this program of research is to attempt a derivation of consistent quartic interaction vertices for 
higher spin fields in four-dimensional flat spacetime. This step is likely to reveal whether this 
factorization property exists for higher orders in the interaction. In principle, this would involve 
the same procedure followed in this paper after incorporating correction terms at order α2. Such 
a derivation, if successful, would seem to suggest that many no-go results [5] apply primarily 
to quantum field theories in which both locality and Lorentz invariance are manifest. Light cone 
gauge formulations of higher spin theories [11] are very interesting in this regard since locality 
and Lorentz invariance are no longer manifest and instead need to be checked. The factorization 
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property and the perturbative ties that follow are much broader than the results in [12,13]. They 
are also very similar in spirit to much of the work devoted to relating spin 1 and spin 2 theo-
ries [14,15] but we still have much to learn about higher spin theories perhaps through unitarity 
methods [16] and S-matrix studies [17].
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