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Abstract

Call a sequence in a metric space cofinally Cauchy if for each positive ε there exists a cofinal (rather than residual) set of indices
whose corresponding terms are ε-close. We give a number of new characterizations of metric spaces for which each cofinally
Cauchy sequence has a cluster point. For example, a space has such a metric if and only each continuous function defined on it is
uniformly locally bounded. A number of results exploit a measure of local compactness functional that we introduce. We conclude
with a short proof of Romaguera’s Theorem: a metrizable space admits such a metric if and only if its set of points having a
compact neighborhood has compact complement.
© 2007 Published by Elsevier B.V.
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1. Introduction

All mathematicians are familiar with compact metric spaces and complete metric spaces and their standard proper-
ties. Between these lies the class of boundedly compact metric spaces—spaces in which closed and bounded sets are
compact, to which Euclidean spaces belong. One invariably learns the following facts about a compact metric space
〈X,d〉: (1) each continuous function defined on X with values in an arbitrary metric space 〈Y,ρ〉 is uniformly contin-
uous; (2) each pair of disjoint closed nonempty subsets of X lie a positive distance apart; and (3) each open cover of X

has a Lebesgue number. While none of these properties are characteristic properties of compact spaces, they are each
characteristic properties of a larger class of spaces most frequently called UC spaces in the literature. It is obvious that
the UC spaces neither contain nor are contained in the spaces in which closed and bounded sets are compact: an infi-
nite set equipped with the zero–one metric belongs to the former but not the latter, whereas n-dimensional Euclidean
space in which closed and bounded sets are compact is not UC.

The UC spaces, first systematically studied by Atsuji [2], have been the subject of a number of articles over the
years, most recently the survey article [17], where they are called Atsuji spaces, following [4,5]. Occasionally, they
have been called normal metric spaces [19] and Lebesgue metric spaces [20,24] in the literature. One sequential
characterization that was discovered early on is this: if 〈xn〉 is a sequence in X with limd(xn, {xn}c) = 0, then 〈xn〉
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has a cluster point [2,15]. This implies immediately that the set of limit points of a UC space is compact. But there is
a second sequential characterization of UC spaces discovered by Toader [26] that clarifies their relation to complete
spaces as distinct from compact ones. A sequence 〈xn〉 is of course Cauchy if ∀ε > 0 ∃n0 ∈ N ∀{n, j} ⊆ N, n > n0,
and j > n0 ⇒ d(xn, xj ) < ε. If we permute the inner two quantifiers we call the result a pseudo-Cauchy sequence [5]:

∀ε > 0 ∀n0 ∈ N ∃{n, j} ⊆ N with n > n0 and j > n0 and d(xn, xj ) < ε.

A metric space is evidently complete if and only if each Cauchy sequence with distinct terms has a cluster point.
Toader proved that 〈X,d〉 is a UC space if and only if each pseudo-Cauchy sequence with distinct terms has a cluster
point.

Toader’s pseudo-Cauchy sequences are those for which pairs of terms are arbitrarily close frequently. But there is
a second natural way to generalize the definition of Cauchy sequence [13,14]. A sequence is Cauchy if for each ε > 0,
there exists a residual set of indices Nε such that each pair of terms whose indices come from Nε are within ε of each
other. If we replace residual by cofinal then we obtain sequences that we here call cofinally Cauchy.

Definition 1.1. A sequence 〈xn〉 in a metric space 〈X,d〉 is called cofinally Cauchy if ∀ε > 0 there exists an infinite
subset Nε of N such that for each n, j ∈ Nε we have d(xn, xj ) < ε.

It is the purpose of this paper to cast new light on those metric spaces in which each cofinally Cauchy sequence
has a cluster point, a collection of spaces that we call here the cofinally complete metric spaces. Our results reveal
that such spaces position themselves relative to uniformly locally compact spaces in the same way that UC spaces sit
relative to the uniformly discrete spaces, and we exhibit more generally a striking parallelism between the two classes
of spaces. Central in our analysis is a measure of local compactness functional that parallels the index of isolation so
important in the study of UC spaces and that leads to Cantor-type theorems. We also characterize such spaces in terms
of a uniform property that continuous functions defined on them must have, and produce a short proof of Romaguera’s
Theorem [23, Thm. 2]: a metrizable space has a compatible cofinally complete metric if and only if its set of points
having no compact neighborhood is compact.

Cofinal completeness can of course be formulated in terms of nets and entourages and it is in this more general
form that it was considered first implicitly by Corson [8] and then by Howes [13] who showed that a completely
regular Hausdorff space is paracompact if and only if it admits a compatible cofinally complete uniformity. A few
years later, Rice [22] introduced the notion of uniform paracompactness for a Hausdorff uniform space X: for each
open cover {Vi : i ∈ I } of X there exists an open refinement and an entourage U such that for each x ∈ X, U(x) meets
only finitely many members of the refinement. Subsequently, the reviewer of Rice’s paper [25] observed that uniform
paracompactness is equivalent to net cofinal completeness for a Hausdorff uniform space (see also [14, Thm. 4.6]).

2. Preliminaries

First we list some notational conventions. Let x0 be a point in a metric space 〈X,d〉 and let ε > 0. We write Sε(x0)

(resp., Sε[x0]) for the open (resp., closed) ε-ball with center x0. If A is a nonempty subset of X, we write d(x0,A) for
the distance from x0 to A, and if A = ∅ we agree that d(x0,A) = ∞. We denote the open ε-enlargement of A by Aε ,
i.e.,

Aε = {
x: d(x,A) < ε

} =
⋃
x∈A

Sε(x).

If A,B are subsets of X, we define the Hausdorff distance [16,6] between them by

Hd(A,B) = max
{
sup

{
d(a,B): a ∈ A

}
, sup

{
d(b,A): b ∈ B

}}
= inf

{
ε > 0: B ⊆ Aε and A ⊆ Bε

}
.

Restricted to the nonempty closed subsets of X, Hausdorff distance so defined is an extended real-valued metric which
is finite valued when restricted to the nonempty closed and bounded sets. Of course, x → {x} is an isometry.

If A is a subset of X we write diam(A), int(A), cl(A), bd(A) and A′ for the diameter, interior, closure, boundary
and set of limit points of A. Perhaps the most visual characterization of UC spaces involves the set of limit points of
X itself [2,15,6]: X′ is compact and ∀ε > 0 ∃δ > 0 such that {x,w} ∩ (X′)ε = ∅ ⇒ d(x,w) � δ. Atsuji introduced
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the notation I (x) for d(x, {x}c) to connote the degree of isolation of a point x ∈ X. Clearly, I (x) = 0 if and only if
x ∈ X′. As mentioned in the introduction the functional I arises in a basic sequential characterization of UC spaces.
In our work here, another geometric functional comes into play that measures the local compactness of the space at
each point. If x ∈ X has a compact neighborhood, set ν(x) = sup{ε > 0: Sε[x] is compact}; otherwise, set ν(x) = 0.
The set {x: ν(x) = 0} is the set of points of non-local compactness of X, which we denote by nlc(X) in the sequel.
Notice that if ν(x0) = ∞ for some x0, then ν(x) = ∞ for all x and X is a boundedly compact space. Also notice that
uniform local compactness of X amounts to inf{ν(x): x ∈ X} > 0. We collect some facts in an elementary lemma
whose proof is left to the reader.

Lemma 2.1. Let 〈X,d〉 be a metric space.

(1) ∀x ∈ X, I (x) � ν(x);
(2) ∀x ∈ X, ν(x) = inf{lim infn→∞ d(x, xn): 〈xn〉 has no cluster point};
(3) If X is not boundedly compact, then ν :X → [0,∞) is uniformly continuous.

From condition (3) of Lemma 2.1 we obtain the well-known fact nlc(X) is closed. We also note that condition (3)
is a special case of condition (5) of Lemma 3.9 infra which we do prove. The spaces that are the focus of this paper
are next properly defined.

Definition 2.2. Let 〈X,d〉 be a metric space. We call X cofinally complete provided each cofinally Cauchy sequence
in X has a cluster point.

Evidently, a uniformly locally compact metric space is cofinally complete. A cofinally complete space need not
be locally compact: as a metric subspace of the Hilbert space �2 of square summable sequences with origin θ and
standard o.n. base {en: n ∈ N}, let X = {θ} ∪ { 1

j
en: j ∈ N, n ∈ N}. Since Cauchy sequences are cofinally Cauchy,

each cofinally complete metric space is complete. The reverse inclusion fails. To clarify this, we include the next
functional analytic result (see less generally [14, p. 34]).

Proposition 2.3. Let X be a Banach space. Then X is cofinally complete if and only if X is finite dimensional.

Proof. As is well known, the closed unit ball B of a Banach space X is compact if and only if X is finite dimensional
[11]. Now there exists a compact closed ball in X if and only if each closed ball in X is compact, so a finite dimensional
normed linear space is boundedly compact and is thus cofinally complete. If X is not finite dimensional, take x0 ∈ X

with ‖x0‖ = 17. For each j ∈ N let 〈xnj 〉 be a sequence in jx0 + j−1B without a cluster point. Partition N into a

countable family of infinite subsets {Mj : j ∈ N} where for each j Mj = {kj
n : n ∈ N}. Then the assignment a : N → X

defined by a(k
j
n) = xnj yields a cofinally Cauchy sequence in the Banach space without a cluster point. �

In the Toader sequential characterization of UC spaces given in the Introduction, it is required that, the se-
quence have distinct terms, for in the UC space of a integers equipped with the Euclidean metric, the sequence
1,1,2,2,3,3,4,4, . . . is a pseudo-Cauchy sequence without a cluster point. The unpleasant reality is that a pseudo-
Cauchy sequence need not have a pseudo-Cauchy subsequence with distinct terms. This unpleasantness does not occur
with cofinally Cauchy sequences, provided there is no constant subsequence. Further, if 〈εn〉 is a positive real sequence
convergent to zero, we can take the infinite sets of integers Nεn in the definition of cofinally Cauchy sequence to be
pairwise disjoint. This observation greatly simplifies several proofs in the sequel.

Proposition 2.4. Let 〈xn〉 be a cofinally Cauchy sequence without a constant subsequence. Then there is a pairwise
disjoint family {Mj : j ∈ N} of infinite subsets of N such that

(1) if {i, l} ⊆ ⋃{Mj : j ∈ N} then xi �= xl ; and
(2) if i ∈ Mj and l ∈ Mj then d(xi, xl) < 1

j
.
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Proof. Suppose 〈xn〉 has a Cauchy subsequence. Since 〈xn〉 has no constant subsequence, we can assume that this
Cauchy subsequence based on N0 ⊆ N has distinct terms. For each j ∈ N choose Nj ∈ N such that i > l � Nj and
{i, l} ⊆ N0 ⇒ d(xi, xl) < 1

j
. Partition N0 into countably many infinite subsets {Kj : j ∈ N}. Then {Mj : j ∈ N} does

the job where for each j

Mj = {n ∈ Kj : n � Nj }.
Otherwise choose an infinite M1 ⊆ N such that {i, l} ⊆ M1 ⇒ 0 < d(xi, xl) < 1. Since we are now assuming 〈xn〉
has no Cauchy subsequence, {xi : i ∈ M1} cannot be totally bounded [9, p. 312]. By passing to an infinite subset
of M1 we can find ε1 < 1

2 such that {i, l} ⊆ M1 ⇒ ε1 < d(xi, xl) < 1. Now choose an infinite M2 ⊆ N such that
{i, l} ⊆ M2 ⇒ 0 < d(xi, xl) < ε1. By construction {xi : i ∈ M1} ∩ {xi : i ∈ M2} consists of at most one point. Also,
{xi : i ∈ M2} is not totally bounded, so by passing to an infinite subset of {xi : i ∈ M2} we can assume the two sets are
disjoint and further that there exists ε2 < 1

3 such that

{i, l} ⊆ M2 ⇒ ε2 < d(xi, xl) <
1

2
.

Choosing an infinite M3 ⊆ N such that {i, l} ⊆ M3 ⇒ 0 < d(xi, xl) < ε2, by deleting at most two indices from
M3 we can assume {{xi : i ∈ Mj }: j = 1,2,3} is a pairwise disjoint family. Continuing in this way we produce
{Mj : j ∈ N} with the asserted properties. �

A cofinally Cauchy sequence that has a constant subsequence obviously has a cluster point. Otherwise, by Propo-
sition 2.4, the cofinally Cauchy sequence has a pseudo-Cauchy subsequence with distinct terms. From this, it follows
that each UC space is cofinally complete. On the other hand, R with the usual metric is a cofinally complete space
that is not UC.

3. Characterizations of cofinally complete metric spaces

For one of our first characterizations of cofinally complete metric spaces, we require a standard result regarding
convergence of a decreasing sequence of closed sets in Hausdorff distance [6, p. 90].

Proposition 3.1. Let 〈An〉 be a decreasing sequence of nonempty closed sets in a metric space 〈X,d〉 with intersec-
tion A. The following conditions are equivalent:

(1) Whenever 〈an〉 is a sequence in X with an ∈ An for each n, then 〈an〉 has a cluster point;
(2) A is a nonempty compact set and for each ε > 0 there exists n ∈ N such that An ⊆ Aε .

Theorem 3.2. Let 〈X,d〉 be a metric space. The following are equivalent:

(1) X is cofinally complete;
(2) Whenever 〈xn〉 is a sequence in X with limn→∞ ν(xn) = 0, then 〈xn〉 has a cluster point;
(3) Either X is uniformly locally compact or nlc(X) is nonempty and compact and 〈{x: ν(x) � 1

n
}〉 converges to

nlc(X) in Hausdorff distance;
(4) nlc(X) is compact and ∀ε > 0 (nlc(X)ε)c is uniformly locally compact in its relative topology.

Proof. (1) ⇒ (2) Suppose condition (2) fails, and let 〈xn〉 be a sequence in X with limn→∞ ν(xn) = 0 that has no
cluster point. Without loss of generality, we can assume by passing to a subsequence that ν(xn) < 1

n
and so we can find

a sequence 〈wn
j 〉 in S1/n[xn] with no cluster point. Partition N into an countable family of infinite subsets {Kn: n ∈ N}.

Then the assignment yj = w
j
n for j ∈ Kn defines a cofinally Cauchy sequence 〈yj 〉 in X without a cluster point. Thus

(1) fails.
(2) ⇒ (3) For each n ∈ N, let Fn = {x: ν(x) � 1/n}, a closed set by the continuity of ν. If for some n, Fn is empty,

then X is uniformly locally compact. Otherwise pick xn ∈ Fn for n = 1,2,3, . . . . By (2), 〈xn〉 has a cluster point which
by the continuity of ν must lie in nlc(X). By the general result on Hausdorff metric convergence of Proposition 3.1,
(3) follows.
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(3) ⇒ (4) Assume (3) holds. If nlc(X) = ∅, then nlc(X) is compact and X is uniformly locally compact. Thus,
∀ε > 0 (nlc(X)ε)c = X is (relatively) uniformly locally compact. Otherwise nlc(X) is nonempty and compact. Let
ε > 0 and choose by (3) n such that {x: ν(x) � 1/n} ⊆ nlc(X)ε . As a result, if x ∈ (nlc(X)ε)c , then S1/n[x] is
compact, and since complements of ε-enlargements are closed, S1/n[x] ∩ (nlc(X)ε)c is compact. Condition (4) now
follows.

(4) ⇒ (1) If nlc(X) = ∅, then by (4) X is uniformly locally compact and hence is cofinally complete. Otherwise
nlc(X) is nonempty and compact. Let 〈xn〉 be a cofinally Cauchy sequence without a constant subsequence, and let
{Mj : j ∈ N} be the family of infinite subsets of N for 〈xn〉 described in Proposition 2.4. If for some ε > 0 and for
infinitely many j ∈ N {xn: n ∈ Mj } ∩ (nlc(X)ε)c is infinite, then by (4), 〈xn〉 has a cluster point by (relative) uniform
local compactness of (nlc(X)ε)c . Otherwise, for each ε > 0 ∃j0 ∈ N such that j � j0 ⇒ {xn: n ∈ Mj } ∩ (nlc(X)ε)c

is a finite set. In particular, ∀ε > 0 (nlc(X))ε contains infinitely many terms of 〈xn〉, and by compactness 〈xn〉 has a
cluster point in nlc(X). This proves that X is cofinally complete. �

Conditions (2) and (4) are analogs of characterizations of UC spaces mentioned earlier. On the other hand, the
condition parallel to (3) for UC spaces, namely, either X is uniformly discrete, or X′ is nonempty and compact and
〈{x: I (x) � 1

n
}〉 converges to X′ in Hausdorff distance seems not to be explicit in the literature. Noncompactness of

nlc(X) is the first thing one looks for to spot a space that is not cofinally complete; this works in the case that X is
an infinite dimensional normed linear space. In the same way the completely metrizable space of irrationals has no
admissible cofinally complete metric (see Theorem 4.1 infra).

Condition (4) is a variant of a condition presented by Hohti [12, Thm. 2.1.1] in his thesis that characterizes uniform
paracompactness in metric space as defined by Rice [22]. Since uniform paracompactness is equivalent to net cofinal
completeness in a general uniform space [25,14], it follows that sequential cofinal completeness and the formally
stronger net cofinal completeness coincide in the context of metric spaces. This is not always the case in uniform
spaces. In fact, Burdick [7] has given an example showing that cofinal completeness for all transfinite sequences may
be properly weaker than net cofinal completeness.

Our next goal is to characterize cofinally complete spaces in terms of an additional uniform property that continuous
functions defined on them must enjoy. For complete clarity we include the following definition.

Definition 3.3. Let f be an arbitrary function defined on a metric space 〈X,d〉 with values in a metric space 〈Y,ρ〉.
We say f is uniformly locally bounded if ∃δ > 0 such that ∀x ∈ X f (Sδ(x)) is a bounded subset of Y .

Continuous functions are locally bounded but need not be uniformly locally bounded, e.g., f (x) = 1/x restricted to
(0,∞). Continuous functions defined on uniformly locally compact spaces as well as uniformly continuous functions
are uniformly locally bounded.

Theorem 3.4. Let 〈X,d〉 be a metric space. The following conditions are equivalent:

(1) X is cofinally complete;
(2) Each continuous function on X with values in a metric space 〈Y,ρ〉 is uniformly locally bounded;
(3) Each real-valued continuous function on X is uniformly locally bounded.

Proof. (1) ⇒ (2) Suppose X is cofinally complete yet some continuous function f : 〈X,d〉 → 〈Y,ρ〉 fails to be uni-
formly locally bounded. Obviously, X cannot be uniformly locally compact, so by Theorem 3.2, nlc(X) is nonempty
and compact. Choose a sequence 〈xn〉 in X such that for each n, f (S1/n(xn)) is an unbounded subset of Y . Again
by Theorem 3.2. if ε > 0 is arbitrary, ∃δ > 0 such that d(x,nlc(X)) � ε ⇒ Sδ[x] is compact. As a result, if 1

n
< δ,

then d(xn,nlc(X)) < ε. By the compactness of nlc(X), 〈xn〉 has a cluster point p ∈ nlc(X) at which f fails to be
continuous.

(2) ⇒ (3) This is trivial.
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(3) ⇒ (1) If 〈X,d〉 is not cofinally complete, there exists a cofinally Cauchy sequence 〈xn〉 ∈ X without a cluster
point. Since this sequence has no constant subsequence, we once again make use of the family {Mj : j ∈ N} of infinite
subsets of N for 〈xn〉 described in Proposition 2.4. Clearly,

{
x: x = xi for some i ∈

∞⋃
j=1

Mj

}

is a closed discrete set. Since different indices in
⋃∞

j=1 Mj give distinct terms of the sequence, we can by the Tietze
Extension Theorem [9, p. 149] define a continuous real-valued function on X whose restriction to each set of the form
{xi : i ∈ Mj } is unbounded as we can assign values to the points of each such set of terms as we choose. Such an f ,
while continuous, is not uniformly locally bounded. �

Each of the classes of metric spaces we have introduced can be characterized by boundedness properties of con-
tinuous functions defined on them. In the context of metrizable spaces, pseudo-compactness reduces to compactness
[10]: 〈X,d〉 is compact iff each continuous function on X is bounded. A metric space is boundedly compact (resp.,
complete) iff each continuous function defined on it is bounded on bounded (resp., totally bounded) subsets of X.
Finally, Atsuji [2, Theorem 1] has shown that 〈X,d〉 is UC iff each continuous function defined on it is bounded on
{x: I (x) < δ} for some positive δ.

If X is a UC space, then each continuous function defined on X is uniformly continuous. Since cofinally complete
spaces properly contain the UC spaces, it is natural to try to characterize the cofinally complete spaces as those for
which each function in some proper subclass of the continuous functions is uniformly continuous. In this direction,
we offer

Theorem 3.5. Let 〈X,d〉 be a metric space. The following are equivalent:

(1) X is cofinally complete;
(2) Each continuous function on X with values in a metric space 〈Y,ρ〉 that for each ε > 0 is uniformly continuous

on {x: ν(x) > ε} is globally uniformly continuous;
(3) Each bounded continuous real valued function on X that for each ε > 0 is uniformly continuous on {x: ν(x) > ε}

is globally uniformly continuous.

Proof. (1) ⇒ (2) Assume X is cofinally complete and f is uniformly continuous on {x: ν(x) > ε} for each positive ε,
yet f is not globally uniformly continuous. There exists λ > 0 and for each n ∈ N xn,wn ∈ X with d(xn,wn) < 1

n

but ρ(f (xn), f (wn)) > λ. Then for each ε > 0 eventually {xn,wn} ∩ {x: ν(x) � ε} �= ∅. By Lemma 2.1 actually
limn→∞ ν(xn) = limn→∞ ν(wn) = 0, so that by condition (2) of Theorem 3.2, a common cluster point p exists at
which continuity of f fails. This contradiction establishes the implication.

(2) ⇒ (3) This is trivial.
(3) ⇒ (1) Suppose X is not cofinally complete. Let 〈xn〉 be a sequence with distinct terms in X without a cluster

point such that limn→∞ ν(xn) = 0. By passing to a subsequence, we can guarantee that one of two scenarios occurs:

(i) ∀n xn is a limit point of X, or
(ii) ∀n xn is an isolated point of X.

In case (i), for each n ∈ N choose δn ∈ (0,1/n) such that {Sδn[xn]: n ∈ N} is a discrete family of closed balls.
Since ∀n xn ∈ X′ we can pick wn �= xn in Sδn[xn]. For each n set εn = d(xn,wn) and define a Lipschitz function fn

on X by

fn(x) =
{

1 − d(x,xn)
εn

if x ∈ Sεn[xn],

0 otherwise.



G. Beer / Topology and its Applications 155 (2008) 503–514 509
By the discreteness of the family of closed balls, f := ∑∞
n=1 fn is continuous with values in [0,1]. Now let ε > 0 be

arbitrary. Since limn→∞ ν(xn) = 0 and ∀n δn < 1
n

, the uniform continuity of ν guarantees that for some k ∈ N

{
x: ν(x) > ε

} ∩
∞⋃

n=k+1

Sδn[xn] = ∅

so that f restricted to {x: ν(x) > ε} is represented by
∑k

n=1 fn. Thus f restricted to each set of the form
{x: ν(x) > ε} is actually Lipschitz continuous. But f is not globally uniformly continuous as ∀n d(xn,wn) < 1

n
yet f (xn) − f (wn) = 1.

In case (ii), where all terms xn are isolated, we consider two subcases: either 〈xn〉 is a pseudo-Cauchy sequence,
or not. In the first subcase, by passing to a subsequence, we may assume ∀n d(x2n−1, x2n) < 1

n
. Then g :X → [0,1]

defined by

g(x) =
{

1 if x = x2n for some n,

0 otherwise,

obviously fails to be globally uniformly continuous. Yet g is uniformly continuous restricted to {x: ν(x) > ε} for each
positive ε, because each such set contains only finitely many points of {x2n: n ∈ N}. In fact g so restricted is uniformly
locally constant. In the second subcase, after passing to a subsequence, we may assume for some δ > 0 and for all
n, j ∈ N that d(xn, xj ) > δ. Then it is easy to verify that h defined below does the job:

h(x) =
{

1 if x = xn for some n,

0 otherwise.

This completes the proof of the theorem. �
In a UC space, disjoint nonempty closed sets lie a positive distance apart which means that disjoint closed sets

cannot be asymptotic.

Definition 3.6. Let A and B be disjoint subsets of 〈X,d〉. We call A and B asymptotic if ∀ε > 0 ∃a ∈ A,b ∈ B with
d(a, b) < ε.

Our next result characterizes cofinally complete spaces in terms of the asymptotics of disjoint closed sets.

Theorem 3.7. A metric space 〈X,d〉 is cofinally complete if and only if whenever F1 and F2 are disjoint asymptotic
closed sets, there exists δ > 0 such that F1 ∩ {x: ν(x) > δ} and F2 ∩ {x: ν(x) > δ} are asymptotic.

Proof. Suppose no such δ exists. Then for each n ∈ N there exists xn ∈ F1 and wn ∈ F2 with d(xn,wn) < 1
n

and {xn,wn} ∩ {x: ν(x) � 1
n
} �= ∅. Since the functional ν is uniformly continuous, we have limn→∞ ν(xn) =

limn→∞ ν(wn) = 0. Clearly, 〈xn〉 can have no cluster point, else it would lie in F1 ∩ F2. By condition (2) of The-
orem 3.2, we see that X is not cofinally complete. Conversely, suppose X is not cofinally complete. Again, we call on
Proposition 2.4. Let 〈xn〉 be a cofinally Cauchy sequence without a cluster point, and let {Mj : j ∈ N} be our infinite
family of infinite subsets of N for 〈xn〉 as described therein. Since each pair of terms in {xi : i ∈ Mj } lie within 1

j
of

each of other, we see that ∀i ∈ Mj ν(xi) < 1
j

. For each j ∈ N choose {ij1, ij2} ⊆ Mj arbitrarily. Then

F1 = {xij1 : j ∈ N} and F2 = {xij2 : j ∈ N}
are asymptotic disjoint closed sets such that for each δ > 0 both F1 ∩ {x: ν(x) > δ} and F2 ∩ {x: ν(x) > δ} are finite
and are a fortiori not asymptotic. �

We note that complete metric spaces can be characterized in a similar way in terms of asymptotics: 〈X,d〉 is
complete if and only if whenever F1,F2 are asymptotic closed sets and T is totally bounded, then for some δ > 0
F1 ∩ (T δ)c and F2 ∩ (T δ)c are asymptotic. For the amusement of the reader, we now give as an application of Theo-
rem 3.4 a second asymptotics result for cofinally complete spaces that unfortunately does not characterize this class.
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Proposition 3.8. Let F1 and F2 be disjoint closed sets in a cofinally complete metric space 〈X,d〉. Then there exists
δ > 0 such that whenever E ⊆ X and diam(E) < δ then E ∩ F1 and E ∩ F2 are not asymptotic.

Proof. Define f :X → (0,∞) by

f (x) = max
{
d(x,F1), d(x,F2)

}
.

Evidently, f is 1-Lipschitz, so g(x) = 1
f (x)

is globally continuous. By Theorem 3.4 ∃δ > 0 such that g restricted to
each ball of radius δ is bounded above and f so restricted is thus bounded away from zero. As a result, if diam(E) < δ,
then E ∩ F1 and E ∩ F2 are not asymptotic. �

One of course wonders what property of open covers for cofinally complete metric spaces corresponds to the
Lebesgue number property for open covers of UC spaces. Rice [22] showed that uniform paracompactness of a Haus-
dorff uniform space is equivalent to this formally weaker property: for each open cover {Vi : i ∈ I } of X, ∃ an entourage
U such that ∀x ∈ X, U(x) has a finite subcover from {Vi : i ∈ I }. Given the equivalence of uniform paracompactness
and net cofinal completeness, in the context of metric spaces, Rice’s result says this: 〈X,d〉 is cofinally complete if
and only if for each open cover {Vi : i ∈ I }, there exists μ > 0 such that diam(A) < μ ⇒ A has a finite subcover from
{Vi : i ∈ I }. This of course is the sought-after parallel property.

Complete metric spaces are characterized by the nonempty intersection of decreasing sequences of nonempty
closed sets 〈Fn〉 having either of the following properties [18]: (1) limn→∞ diam(Fn) = 0, or (2) limn→∞ α(Fn) = 0,
where for each E ⊆ X

α(E) = inf{ε > 0: E is a contained in a finite union of sets of diameter < ε}.
Notice that α(E) = 0 if and only if E is totally bounded. In the literature, the functional α is called the Kuratowski

measure of noncompactness functional [3]. In fact, α is really a measure of non-total boundedness. In [5], the author
easily characterized UC spaces in a similar manner, replacing the two set functionals above by either of two set
functionals defined in terms of Atsuji’s measure of isolation defined for points of X:

Ī (E) = sup
{
I (x): x ∈ E

}
or

I (E) = inf
{
I (x): x ∈ E

}
.

The Cantor-type characterizations obtained for UC spaces motivate us to look at two parallel set functionals for
cofinally complete spaces, namely

ν̄(E) = sup
{
ν(x): x ∈ E

}
and

ν(E) = inf
{
ν(x): x ∈ E

}
.

We next collect some facts about these two new set functionals.

Lemma 3.9. Let 〈X,d〉 be a metric space. Then the extended real-valued set functional ν̄(·) defined for subsets of X

has these properties:

(1) A ⊆ B ⇒ ν̄(A) � ν̄(B);
(2) ν̄(A ∪ B) = max{ν̄(A), ν̄(B)};
(3) ν̄(A) = ν̄(cl(A));
(4) If Hd(A,B) is finite, then ν̄(A) = ∞ if and only if ν̄(B) = ∞;
(5) ν̄(·) is Hd -uniformly continuous restricted to {A: ν̄(A) < ∞}.

Proof. Properties (l)–(3) are obvious. We establish property (5); the arguments required to establish (4) are similar.
Suppose Hd(A,B) < ε; we claim that |ν̄(A) − ν̄(B)| � ε. We just show ν̄(A) � ν̄(B) + ε. Suppose to the contrary
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that ν̄(A) > ν̄(B) + ε. Pick a0 ∈ A with ν(a0) > ν̄(B) + ε. Then pick λ > ν̄(B) + ε such that Sλ[a0] is compact and
b0 ∈ B such that d(a0, b0) < ε. If d(x, b0) � λ − ε, then d(x, a0) < λ. As a result Sλ−ε[b0] is compact, and as

λ − ε > ν̄(B) � ν(b0),

we obtain a contradiction. �
Lemma 3.10. Let 〈X,d〉 be a metric space. Then the real-valued set functional v(·) defined for subsets of X has these
properties:

(1) A ⊆ B ⇒ ν(A) � ν(B);
(2) ν(A ∪ B) = min{ν(A), ν(B)};
(3) ν(A) = ν(cl(A));
(4) ν(·) is Hd -uniformly continuous.

Theorem 3.11. Let 〈X,d〉 be a metric space. The following are equivalent:

(1) X is cofinally complete;
(2) Whenever 〈Fn〉 is a decreasing sequence of nonempty closed subsets of X with limn→∞ ν(Fn) = 0, then⋂∞

n=1 Fn �= ∅;
(3) Whenever 〈Fn〉 is a decreasing sequence of nonempty closed subsets of X with limn→∞ ν̄(Fn) = 0, then⋂∞

n=1 Fn �= ∅.

Proof. (1) ⇒ (2) For each n ∈ N pick xn ∈ Fn with ν(xn) < max{2ν(Fn),
1
n
}. Then by condition (2) of Theorem 3.2,

〈xn〉 has a cluster which must lie in each Fn as each Fn is closed and ∀n Fn+1 ⊆ Fn.
(2) ⇒ (3) This is trivial.
(3) ⇒ (1) We show that condition (2) of Theorem 3.2 is met. Let 〈xn〉 be a sequence in X with limn→∞ ν(xn) = 0.

Without loss of generality, we may assume for each n, ν(xn) � ν(xn+1). For each n set Fn = cl({xk: k � n}). By
Lemma 3.9

ν̄(Fn) = ν
({xk: k � n}) = ν(xn).

By condition (3) the set of cluster points of 〈xn〉 which is just
⋂∞

n=1 cl({xk: k � n}) is nonempty. This verifies that X

is cofinally complete. �
The following corollary is anticipated by [5, Theorem 2].

Corollary 3.12. Let 〈X,d〉 be a complete metric space. Then X is cofinally complete if and only if ∀ε > 0 ∃δ > 0 such
that ∀A ⊆ X, ν̄(A) < δ ⇒ α(A) < ε.

Proof. In light of Kuratowski’s Theorem [18, p. 412] and condition (3) of Theorem 3.11, the continuity condition is
sufficient. For necessity, if nlc(X) = ∅, by Theorem 3.2 ∃δ > 0 such that ν̄(A) < δ ⇒ A = ∅ and so the condition
holds vacuously. On the other hand, if nlc(X) is nonempty and compact, let ε > 0. By total boundedness of nlc(X) we
have α(nlc(X)ε/3) < ε. Now choose by Theorem 3.2 δ > 0 such that {x: ν(x) < δ} ⊆ nlc(X)ε/3; clearly this choice
of δ is adequate for the continuity condition to hold. �

Total boundedness is usually coupled with completeness as a criterion for compactness. This seems quite natural in
that a metric space is totally bounded if and only if each sequence in the space has a Cauchy subsequence [9, p. 312].
Obviously, total boundedness can equally well be paired with cofinal completeness or UCness to yield compactness.
Our final simple result shows that such pairings are equally natural.

Proposition 3.13. Let 〈X,d〉 be a metric space. The following conditions are equivalent:

(1) d is a totally bounded metric;
(2) Each sequence in X is cofinally Cauchy;
(3) Each sequence in X is pseudo-Cauchy.
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Proof. (1) ⇒ (2) Let 〈xn〉 be a sequence in X and let ε > 0. Choose {w1,w2,w3, . . . ,wk} in X with X = {w1,

w2,w3, . . . ,wk}ε/2. Then for some infinite subset Nε of N and some i � k we have {xn: n ∈ Nε} ⊆ Sε/2(xi) so that
diam{xn: n ∈ Nε} � ε.

(2) ⇒ (3) This is trivial.
(3) ⇒ (1) If X is not totally bounded, then X has a uniformly discrete infinite subset {xn: n ∈ N} and the associated

sequence 〈xn〉 is not pseudo-Cauchy. �
4. Which metrizable spaces admit a cofinally complete metric?

According to the celebrated theorem of Alexandrov, a metrizable topological space X is completely metrizable if
and only if it is homeomorphic to a Gδ subset of some complete metric space; this is true if and only if X is Čech
complete, i.e., X sits as a Gδ set in its Stone–Čech compactification [10]. By a theorem of Vaughan [27], X admits a
boundedly compact metric if and only if X is locally compact and separable, or equivalently, there exists a countable
cover of X by compacta {Kn: n ∈ N} such that for each n Kn ⊆ int(Kn+1) [10, p. 250]. By a theorem of Arens [1],
a metrizable space X admits a boundedly compact metric if and only the compact-open topology on the real-valued
continuous functions on X is metrizable. The UC-metrizability of X is equivalent to any of the following conditions
[21]: (1) X′ is compact; (2) for any subset E of X, bd(E) is compact; (3) each closed subset F of X has a countable
neighborhood base (see also [24]).

Ten years ago, Romaguera [23] introduced a condition for completely regular Hausdorff spaces aimed to parallel
Čech completness that he called cofinal Čech completeness. He showed that a metrizable space admits a cofinally
complete metric if and only if it is cofinally Čech complete, and then obtained as an application that the space has a
cofinally complete metric if and only if nlc(X) is compact (necessity was first observed by Rice [22, Thm. 5]).

We give a short direct proof of Romaguera’s Theorem on compactness of nlc(X) based on a well-know result re-
garding refinements of a sequence of open covers of a metrizable space [9, p. 196]: if X is metrizable and {Ωk: k ∈ N}
is a family of open covers of X, then there exists an admissible metric d for X such that ∀k ∈ N {S1/k(x): x ∈ X}
refines Ωk .

Theorem 4.1. Let X be a metrizable topological space. The following conditions are equivalent:

(1) X has a cofinally complete admissible metric d ;
(2) nlc(X) is compact;
(3) Whenever F is a closed subset of nlc(X), F has a countable base for its neighborhood system.

Proof. By Theorem 3.2 condition (1) is sufficient for (2) and evidently condition (2) is sufficient for (3). We intend
to prove (3) ⇒ (2) ⇒ (1).

For (3) ⇒ (2), suppose nlc(X) is noncompact. Let 〈xn〉 be a sequence in nlc(X) with distinct terms but without
a cluster point. Then F = {xn: n ∈ N} is a closed discrete subset of nlc(X). Let {Sεn(xn): n ∈ N} be a pairwise
disjoint family of open balls. Let {Vn: n ∈ N} be an arbitrary countable family of neighborhoods of F . We produce
a neighborhood V of F such that ∀n Vn � V . For each n, xn is a limit point of X so ∃δn > 0 such that Sδn(xn) is a
proper subset of Vn ∩ Sεn(xn). Then V = ⋃∞

n=1 Sδn(xn) does the job.
For (2) ⇒ (1), first suppose nlc(x) = ∅; then each x ∈ X has an open neighborhood Vx such that cl(Vx) is compact.

By the refinement result there exists an admissible metric d such that {S1(x): x ∈ X} refines {Vx : x ∈ X}. As a
result ∀x S1/2[x] is compact, and so d is cofinally complete. Otherwise, nlc(X) is nonempty and compact and thus
has a countable base {Wk: k ∈ N} for its system of neighborhoods. Again for each x /∈ nlc(X) let Vx be an open
neighborhood of x with compact closure. For each k ∈ N, define an open cover Ωk of X as follows:

Ωk = {Vx : x /∈ Wk} ∪ {Wk}.
Choose an admissible metric d such that for each k, {S1/k[x]: x ∈ X} refines Ωk . Now let 〈xn〉 satisfy
limn→∞ ν(xn) = 0 with respect to the metric d . Then for each k, Wk contains a tail of 〈xn〉, specifically xn ∈ Wk

when ν(xn) < 1
k

. But ∀ε > 0 ∃k with Wk ⊆ nlc(X)ε . Since nlc(X) is nonempty and compact, 〈xn〉 has a cluster point
and d is cofinally complete in this second case. �
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Corollary 4.2. Suppose X is a metrizable space that has an admissible cofinally complete metric and Y is a metrizable
space. If there exists an open continuous surjection f from X to Y , then Y has an admissible cofinally complete metric.

Proof. If x ∈ X has a compact neighborhood, then so does f (x). As a result, nlc(Y ) ⊆ f (nlc(X)). By continuity,
f (nlc(X)) is compact and so nlc(Y ) is a closed subset of a compact set. �

We note that if each admissible metric for X were cofinally complete, then X itself must be compact, as this is true
when each admissible metric is just complete [10, p. 347]. Thus, cofinally completeness of a metric is not preserved
under bicontinuous maps between metric spaces. In fact, if 〈X,d〉 is cofinally complete and f : 〈X,d〉 → 〈Y,ρ〉
is bicontinuous and Lipschitz, 〈Y,ρ〉 need not be cofinally complete. As a simple example, the homeomorphism
f : R → (−1,1) defined by

f (x) = x

1 + |x|
is 1-Lipschitz, as f is continuously differentiable with max |f ′(x)| = |f ′(0)| = 1.

We close with a positive result.

Theorem 4.3. Let 〈X,d〉 be a cofinally complete metric space and let f : 〈X,d〉 → 〈Y,ρ〉 be a continuous bijection
such that f −1 is uniformly continuous. Then 〈Y,ρ〉 is cofinally complete.

Proof. Let 〈yn〉 be a sequence in Y with limn→∞ ν(yn) = 0. For each n let xn = f −1(yn). The assumptions of the
theorem ensure that limn→∞ ν(xn) = 0, so 〈xn〉 has a cluster point p which by continuity of f is mapped to a cluster
point of 〈yn〉. �

In particular if 〈X,d〉 is cofinally complete, any admissible metric for X whose metric uniformity is finer than the
d-uniformity also gives rise to a cofinally complete metric space.
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