Asymptotic Behaviour of Solutions to a Class of Semilinear Hyperbolic Systems in Arbitrary Domains

Frank Jochmann

Institut für angewandte Mathematik, Humboldt Universität Berlin, Unter den Linden 6, 10099 Berlin; and Weierstrass-Institut für angewandte Analysis und Stochastik, im Forschungsverbund Berlin e.v., Mohrenstr. 39, 10117 Berlin

Received December 1, 1998; revised March 29, 1999; accepted April 1, 1999

[View metadata, citation and similar papers at core.ac.uk](https://core.ac.uk/display/81118025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1)

The subject of this paper is the long time asymptotic behavior of solutions of semilinear hyperbolic systems of the form

$$
\partial_t \mathbf{E} = E^{(1)} \cdot \left[\left(\sum_{k=1}^3 H_k^* \partial_k \mathbf{F} \right) - \mathbf{S}(t, x, \mathbf{E}, \mathbf{F}) \right] + \mathbf{G}^{(1)}, \tag{1.1}
$$

$$
\partial_t \mathbf{F} = E^{(2)} \cdot \sum_{k=1}^3 H_k \partial_k \mathbf{E} + \mathbf{G}^{(2)},
$$
 (1.2)

with the initial-condition

$$
\mathbf{E}(0, x) = \mathbf{E}_0(x), \qquad \mathbf{F}(0, x) = \mathbf{F}_0(x). \tag{1.3}
$$

Here $\mathbf{E} \in C([0, \infty), L^2(\Omega, \mathbb{R}^M))$ and $\mathbf{F} \in C([0, \infty), L^2(\Omega, \mathbb{R}^N))$ are the unknown functions depending on the time $t\geq 0$ and the space-variable $x \in \Omega$. $G^{(1)} \in L^1((0, \infty), L^2(\Omega, \mathbb{R}^M))$ and $G^{(2)} \in L^1((0, \infty), L^2(\Omega, \mathbb{R}^N))$ are prescribed functions.

The domain $\Omega \subset \mathbb{R}^3$ is arbitrary. $H_k \in \mathbb{R}^{N \times M}$ are constant matrices, $E^{(1)} \in L^{\infty}(\Omega, \mathbb{R}^{M \times M})$ and $E^{(2)} \in L^{\infty}(\Omega, \mathbb{R}^{N \times N})$ are positive symmetric variable matrices, which depend on the space-variable $x \in \Omega$ and satisfy $E^{(1)}=1$ and $E^{(2)}=1$ on $\Omega_0=$ ^{def} $\Omega\backslash G$ with some subset $G\subset\Omega$.

The generally nonlinear function S: $[0, \infty) \times \Omega \times \mathbb{R}^{M+N} \to \mathbb{R}^M$ satisfies

$$
\mathbf{S}(t, x, \mathbf{y}, \mathbf{z}) = 0 \quad \text{for all} \quad x \in \Omega_0 = \Omega \backslash G \quad \text{and}
$$

$$
\mathbf{S}(t, x, 0) = 0 \quad \text{for all} \quad x \in \Omega, t \in (0, \infty).
$$

0022-0396/00 \$35.00

In particular the damping-term $S(t, x, E, F)$ is only present on a certain subset $G \subset \Omega$. The following dissipativity-assumption is imposed.

$$
\mathbf{yS}(t, x, \mathbf{y}, \mathbf{z}) \ge \gamma(x) \min\{|\mathbf{y}|^p, |\mathbf{y}|\} \quad \text{for all} \quad t \ge 0,
$$

$$
\mathbf{y} \in \mathbb{R}^M, \quad \mathbf{z} \in \mathbb{R}^N, \quad x \in G.
$$

Here $p \in [2, \infty)$ and $\gamma \in L^{\infty}(G)$ is a positive function on G, which does not necessarily have a uniform positive lower bound on G.

This means that $S(t, x, y, z)$ is allowed to be bounded as $|y| \rightarrow \infty$ and $|S(t, x, y, z)|$ behaves like $|y|^{p-1}$ for small $|y|$. In particular a linear damping-term $S(t, x, E, F) = \sigma(t, x) E$ with $\sigma \in L^{\infty}([0, \infty) \times G), \sigma \ge 0$ is possible.

A domain $D(B) \subset L^2(\Omega, \mathbb{R}^{M+N})$ containing $C_0^{\infty}(\Omega, \mathbb{R}^{M+N})$ is chosen, such that the operartor

$$
B(\mathbf{E}, \mathbf{F}) \stackrel{\text{def}}{=} \left(E^{(1)} \left[\sum_{k=1}^{3} H_k^* \partial_k \mathbf{F} \right], E^{(2)} \left[\sum_{k=1}^{3} H_k \partial_k \mathbf{E} \right] \right)
$$

is skew-adjoint on $D(B)$, i.e., $B^* = -B$ with respect to a weighted scalarproduct. The choice of $D(B)$ depends on the boundary conditions on $\partial\Omega$ supplementing $(1.1)-(1.2)$.

A physically important example for this system are Maxwell's equations describing the propagation of the electromagnetic field

$$
\varepsilon \partial_t \mathbf{E} = \text{curl } \mathbf{H} - \mathbf{S}(t, x, \mathbf{E}, \mathbf{H}) - \mathbf{j} \quad \text{and} \quad \mu \partial_t \mathbf{H} = -\text{curl } \mathbf{E}, \quad (1.4)
$$

supplemented by the initial-boundary conditions

$$
\vec{n} \wedge \mathbf{E} = 0 \quad \text{on} \quad (0, \infty) \times \Gamma_1, \qquad \vec{n} \wedge \mathbf{H} = 0 \quad \text{on} \quad (0, \infty) \times \Gamma_2, \tag{1.5}
$$

$$
\mathbf{E}(0, x) = \mathbf{E}_0(x), \qquad \mathbf{H}(0, x) = \mathbf{H}_0(x). \tag{1.6}
$$

In (1.5) $\Gamma_1 \subset \partial \Omega$ and $\Gamma_2 \stackrel{\text{def}}{=} \partial \Omega \setminus \Gamma_1$. **E**, **H** denote the electric and magnetic field respectively which depend on the time $t\geq0$ and the space-variable $x \in \Omega$, whereas $\mathbf{j} \in L^1((0, \infty), L^2(\Omega, \mathbb{R}^3))$ is a prescribed external current. The term $S(t, x, E, H)$ describes a possibly nonlinear resistor. The dielectric and magnetic susceptibilities $\varepsilon, \mu \in L^{\infty}(\Omega)$ are assumed to be uniformly positive.

For (1.4), (1.5) the operator B is defined in the space $X = \text{def } L^2(\Omega, \mathbb{C}^6)$ by

$$
B(\mathbf{E}, \mathbf{F}) \stackrel{\text{def}}{=} (\varepsilon^{-1} \operatorname{curl} \mathbf{F}, -\mu^{-1} \operatorname{curl} \mathbf{E}) \qquad \text{for} \quad (\mathbf{E}, \mathbf{F}) \in D(B) \stackrel{\text{def}}{=} W_E \times W_H.
$$

Here W_H is the closure of $C_0^{\infty}(\mathbb{R}^3 \setminus \overline{\Gamma_2}, \mathbb{C}^3)$ in $H_{\text{curl}}(\Omega)$, where $H_{\text{curl}}(\Omega)$, is the space of all $\mathbf{E} \in L^2(\Omega, \mathbb{C}^3)$ with curl $\mathbf{E} \in L^2(\Omega)$.

 W_F denotes the set of all $\mathbf{E} \in H_{curl}(\Omega)$, such that

$$
\int_{\Omega} \mathbf{E} \operatorname{curl} \mathbf{F} - \mathbf{F} \operatorname{curl} \mathbf{E} \, dx = 0 \qquad \text{for all} \quad \mathbf{F} \in W_H,
$$

which includes a weak formulation of the boundary-condition $\vec{n} \wedge \vec{E} = 0$ on Γ_1 , see [8] and [9].

Another example for $(1.1)-(1.2)$ is the first-order system corresponding to the initial-boundary-value-problem of the scalar wave-equation with nonlinear damping, for which the long-time behaviour in the case of a bounded domain has been investigated in $[3, 4-6, 10, 14,$ and 17].

$$
\partial_t^2 \varphi = \text{div}(E \nabla \varphi) - S(x, \partial_t \varphi) \tag{1.7}
$$

supplemented by the initial-boundary-onditions

$$
\varphi = 0 \qquad \text{on} \quad (0, \infty) \times \partial \Omega \tag{1.8}
$$

$$
\varphi(0, x) = f_0(x)
$$
 and $\partial_t \varphi(0, x) = f_1(x)$ (1.9)

for initial-data $f_0 \in \hat{H}^1(\Omega)$ and $f_1 \in L^2(\Omega)$. Here $E \in L^{\infty}(\Omega, \mathbb{R}^{3 \times 3})$ is a symmetric matrix-valued function satisfying $E=1$ on $\Omega_0 = \Omega \backslash G$.

Note that $\mathbf{u} = \text{def}(\partial_t \varphi, E \nabla \varphi) \in C([0, \infty), L^2(\Omega, \mathbb{R}^4))$ solves the system

$$
\partial_t \mathbf{u} = (\text{div}(\mathbf{u}_2, ..., \mathbf{u}_4) - S(t, x, \mathbf{u}_1), E \nabla \mathbf{u}_1)
$$
(1.10)

which is of the form $(1.1)-(1.3)$.

The aim of this paper is to show that the solution (E, F) of (1.1) – (1.3) satisfies

$$
(\mathbf{E}(t), \mathbf{F}(t)) \xrightarrow{t \to \infty} 0 \quad \text{in } L^2(\Omega) \text{ weakly}
$$
 (1.11)

if and only if the initial-data $(\mathbf{E}_0, \mathbf{F}_0) \in L^2(\Omega)$ obey

$$
\int_{\Omega} \left(E^{(1)} - {}^1 \tilde{\mathbf{E}}_0 \mathbf{e} + E^{(2)} - {}^1 \tilde{\mathbf{F}}_0 \mathbf{f} \right) dx = 0 \quad \text{for all} \quad (\mathbf{e}, \mathbf{f}) \in \mathcal{N}. \quad (1.12)
$$

Here

$$
\widetilde{\mathbf{E}}_0 \stackrel{\text{def}}{=} \mathbf{E}_0 + \int_0^\infty \mathbf{G}^{(1)} dt \quad \text{and} \quad \widetilde{\mathbf{F}}_0 \stackrel{\text{def}}{=} \mathbf{F}_0 + \int_0^\infty \mathbf{G}^{(2)} dt
$$

and $\mathcal{N} \subset L^2(\Omega, \mathbb{R}^{M+N})$ denotes the set of all $(E, F) \in \text{ker } B$ with $E=0$ on G.

Furthermore it is shown that for arbitrary initial-states $(\mathbf{E}_0, \mathbf{F}_0) \in L^2(\Omega)$ the solution (E, F) of (1.1) – (1.3) converges weakly in $L^2(\Omega)$ to some element of $\mathcal N$ as $t \to \infty$.

It follows easily from the assumptions on S that $\mathcal N$ is the set of stationary states of the system $(1.1)-(1.3)$ provided that $G=0$.

In the case of Maxwell's equations (1.4) – (1.6) the condition (1.12) on (E_0, F_0) implies

$$
\operatorname{div}\left(\varepsilon \mathbf{E}_0 - \int_0^\infty \mathbf{j} \, dt\right) = 0 \quad \text{on } \Omega_0 \qquad \text{and} \qquad \operatorname{div}(\mu \mathbf{H}_0) = 0 \quad \text{on } \Omega \tag{1.13}
$$

since N contains all elements of the form $(\nabla \varphi, \nabla \psi)$ with $\varphi \in C_0^{\infty}(\Omega_0)$ and $\psi \in C_0^{\infty}(\Omega)$.

If S is independent of t and monotone with respect to E strong L^r -convergence is shown, i.e.,

$$
\|\mathbf{E}(t)\|_{L^{r}(K)} + \|\mathbf{F}(t)\|_{L^{2}(K)} \xrightarrow{t \to \infty} 0 \quad \text{for all} \quad 1 \leq r < 2, \text{ and compact sets}
$$
\n
$$
K \subset \Omega \tag{1.14}
$$

if the initial-data $(\mathbf{E}_0, \mathbf{F}_0) \in L^2(\Omega)$ obey condition (1.12).

Finally (1.11) is used to prove that the solution the wave-equation $(1.7)-(1.8)$ in an arbitrary domain $\Omega \subset \mathbb{R}^3$ decays with respect to the energy-norm on each bounded subdomain of Ω . For all $R \in (0, \infty)$, $f_0 \in \overline{H}^1(\Omega)$ and $f_1 \in L^2(\Omega)$ it is shown that

$$
(\|\nabla \varphi(t)\|_{L^2(\Omega \cap B_R)} + \|\partial_t \varphi(t)\|_{L^2(\Omega \cap B_R)}) \xrightarrow{t \to \infty} 0.
$$

The proof of (1.11) is based on a suitable modification of the approach in [4] for the case that the operator B does not necessarily have purely discrete spectrum. The basic idea is to show that for each $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and $g \in \omega_0(E_0, F_0)$ the function $f(iB)$ g is real-analytic and vanishes on G, where $\omega_0(E_0, F_0)$ denotes the ω -limit-set with respect to the weak topology of the orbit belonging to the initial-state (E_0, F_0) . This implies $f(iB)$ g = 0 for all $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and hence $g \in \text{ker } B$. (Here the operator $f(iB)$ can be defined by the spectral-theorem, since *iB* is self-adjoint in $L^2(\Omega, \mathbb{C}^{M+N})$.)

In [14] it is shown that the solution of the scalar wave-equation in a bounded domain tends to zero weakly in the energy-space if $S(x, y) =$ $a(x) g(y)$ obeys ker $g \subset (-\infty, 0]$ or ker $g \subset [0, \infty)$. The assumptions on the nonlinear damping-term have been further weakened in [5] where strong convergence is obtained in the case that Ω is a bounded one-dimensional interval. In [17] also decay-rates for the energy-norm are obtained, which depend on the behaviour of the damping term for y near zero.

In [4, 6, 14] the following unique-continuation-principle is used. Let $\Omega \subset \mathbb{R}^N$ be bounded and $u \in C([0, \infty), \overset{0}{H}^1(\Omega)) \cap C^1([0, \infty), L^2(\Omega))$ be a solution of the wave-equation $\partial_t^2 u = 2u$ on $[0, \infty) \times \Omega$ with the property

that $u(t, x) = 0$ on $[0, \infty) \times E$ for some subset $E \subset \Omega$ with positive measure. Then $u=0$ on all of $[0, \infty) \times \Omega$.

In this paper the following modification for not necessarily bounded domains is proved, see Theorem 1. Let $(e, f) \in C(\mathbb{R}, L^2(\Omega, \mathbb{R}^{M+N}))$ solve ∂_t (e, f) = B(e, f) with the property that $e(t, x)=0$ for all $t \in \mathbb{R}$ and $x \in G$. Then $(e(0), f(0)) \in \text{ker } B$.

2. NOTATION, ASSUMPTIONS

For an arbitrary open set $K \subset \mathbb{R}^3$ the space of all infinitely differentiable functions with compact support contained in K is denoted by $C_0^{\infty}(K)$.

Let $\Omega \subset \mathbb{R}^3$ be a (connected) domain and let $\Omega_0 \subset \Omega$ be an open subset, such that $G \stackrel{\text{def}}{=} \Omega \setminus \Omega_0$ has nonempty interior. The variable matrices $E^{(1)} \in L^{\infty}(\Omega, \mathbb{R}^{(M \times M)})$ and $E^{(2)} \in L^{\infty}(\Omega, \mathbb{R}^{(N \times N)})$ assumed to be symmetric and uniformly positive in the sense that

$$
y^{\perp} \cdot E^{(1)}(x) y \ge c_0 |y|^2
$$
 and $z^{\perp} \cdot E^{(2)}(x) z \ge c_0 |z|^2$ (2.15)

for all $x \in \Omega$, $y \in \mathbb{R}^M$ and $z \in \mathbb{R}^N$ with some $c_0 \in (0, \infty)$ independent of x, y, z.

Next,

$$
E^{(1)}(x) = 1
$$
 and $E^{(2)}(x) = 1$ for all $x \in \Omega_0$. (2.16)

The assumptions on S: $[0, \infty) \times \Omega \times \mathbb{R}^{M+N} \to \mathbb{R}^M$ are the following.

$$
\mathbf{S}(t, x, \mathbf{y}, \mathbf{z}) = 0 \quad \text{if} \quad x \in \Omega_0 = \Omega \backslash G, \tag{2.17}
$$

 $S(\cdot, \cdot, y, z)$ measurable for fixed $y \in \mathbb{R}^M$, $z \in \mathbb{R}^N$ (2.18)

and Lipschitz-continuous, i.e., there exists $L \in (0, \infty)$, such that

$$
|\mathbf{S}(t, x, y, z) - \mathbf{S}(t, x, \tilde{y}, \tilde{z})| \le L(|y - \tilde{y}| + |\mathbf{z} - \tilde{\mathbf{z}}|)
$$
 (2.19)

for all $y, \tilde{y} \in \mathbb{R}^M$, $z, \tilde{z} \in \mathbb{R}^N$ and $x \in \Omega$.

$$
|\mathbf{S}(t, x, y, z)|^2 \leqslant C_0 y \cdot \mathbf{S}(t, x, y, z)
$$
\n(2.20)

for all $t \geq 0$, $x \in G$, $y \in \mathbb{R}^M$, $z \in \mathbb{R}^N$, with some $C_0 \in (0, \infty)$. Moreover,

$$
\mathbf{yS}(t, x, \mathbf{y}, \mathbf{z}) \ge \gamma(x) \min\{|\mathbf{y}|^p, |\mathbf{y}|\}\
$$
 (2.21)

for all $t\geq0, y \in \mathbb{R}^M$, $z \in \mathbb{R}^N$, $x \in G$.

Here $\gamma \in L^{\infty}(G)$ with $\gamma > 0$ and $p \in [2, \infty)$. The function γ does not necessarily have a uniform positive lower bound on G. It follows from the two latter assumptions that $S(t, x, y, z) = 0$ if and only if $y = 0$ for all $x \in G$.

In the sequel $L^q_\gamma(K)$ denotes for a measurable subset $K \subset G$ the weighted L^q -space endowed with the norm

$$
||u||_{L^q_\gamma(K)} \stackrel{\text{def}}{=} \left(\int_K |u|^q \, \gamma \, dx \right)^{1/q}
$$

where $q \in [1, \infty)$ and γ as in (2.21).

The matrices $H_j \in \mathbb{R}^{N \times M}$ obey the following algebraic condition, which is fulfilled in the examples (1.4) – (1.6) and (1.7) – (1.9) .

$$
\left(\sum_{k=1}^{3} \xi_k H_k\right)\left(\sum_{k=1}^{3} \xi_k H_k^*\right)\left(\sum_{k=1}^{3} \xi_k H_k\right) = |\xi|^2 \left(\sum_{k=1}^{3} \xi_k H_k\right) \qquad \text{for all} \quad \xi \in \mathbb{R}^3
$$
\n(2.22)

Let $W_0 \subset L^2(\Omega, \mathbb{C}^M)$ be the space of all $e \in L^2(\Omega, \mathbb{C}^M)$ with $\sum_{k=1}^3$ $\partial_k (H_k \mathbf{e}) \in L^2(\Omega)$ in the sense of distributions endowed with the norm

$$
\|\mathbf{e}\|_{W_0}^2 \stackrel{\text{def}}{=} \|\mathbf{e}\|_{L^2}^2 + \left\|\sum_{k=1}^3 \partial_k (H_k \mathbf{e})\right\|_{L^2}^2.
$$

Furthermore, let $D(A)$ with $C_0^{\infty}(\Omega, \mathbb{C}^M) \subset D(A)$ be closed subspace of W_0 with respect to the above norm and

$$
A \mathbf{e} \stackrel{\text{def}}{=} \sum_{k=1}^{3} \partial_{k} (H_{k} \mathbf{e}) \quad \text{for} \quad \mathbf{e} \in D(A). \tag{2.23}
$$

Then the adjoint operator A^* obeys $C_0^{\infty}(\Omega, \mathbb{C}^N) \subset D(A^*)$ and

$$
A^* \mathbf{F} = -\sum_{k=1}^3 \partial_k (H_k^* \mathbf{F}) \qquad \text{for all} \quad \mathbf{F} \in D(A^*). \tag{2.24}
$$

For a vector $\mathbf{w} \in \mathbb{C}^{M+N}$ we denote by $\underline{\mathbf{w}}_1$ the first M and by $\underline{\mathbf{w}}_2$ the last ׅ֖֖֖֖֖֖֖֧ׅׅ֪ׅ֖֖֧֪֪ׅ֖֧֪֪֪֪֪ׅ֖֧֖֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֡֡֬֝֝֝֝֓֞֡֝֝֬֝֓֞֞֞֝ ׅ֖֖֖֖֖֖֖ׅ֖ׅ֖֖֪֪ׅ֖֧֪ׅ֖֧֖֧֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֪֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֡֡֬֝֝֓֞֡֡֝֝֓֞֞֝֬֝֓֞֞֡ N components of w.

Now, the following operators are defined. Let $D(B_0) \stackrel{\text{def}}{=} D(A) \times D(A^*)$ and

$$
B_0 \mathbf{w} \stackrel{\text{def}}{=} (-A^* \mathbf{w}_2, A \mathbf{w}_1) \quad \text{for} \quad \mathbf{w} \in D(B_0) = D(A) \times D(A^*).
$$

Next, $B \stackrel{\text{def}}{=} EB_0$ with $E \stackrel{\text{def}}{=} \text{diag}(E^{(1)}, E^{(2)})$, i.e., $D(B) \stackrel{\text{def}}{=} D(B_0)$ and

$$
B\mathbf{w} \stackrel{\text{def}}{=} EB_0\mathbf{w} = (-E^{(1)}A^* \mathbf{w}_2, E^{(2)}A \mathbf{w}_1) \tag{2.25}
$$

for $w \in D(B)$. It turns out that B is a densely defined skew self-adjoint operator in the Hilbert-space $X \stackrel{\text{def}}{=} L^2(\Omega, \mathbb{C}^{M+\tilde{N}})$ endowed with the scalarproduct

$$
\langle \mathbf{u}, \mathbf{v} \rangle_X \stackrel{\text{def}}{=} \int_{\Omega} E^{-1} \mathbf{u} \overline{\mathbf{v}} \, dx
$$

This follows from the closedness of A, which implies that $A^{**} = \overline{A} = A$. (It is advantageous for following considerations to consider a complex space X. But whenever the term $S(t, x, E, F)$ occurs in an equation, the functions E and F are of course assumed to be real-valued.)

Now, let N be the set of all $\mathbf{a} \in \text{ker } B$ with $\mathbf{a}_1(x) = 0$ for all $x \in G$.

Ï Moreover, let $X^0 \stackrel{\text{def}}{=} \mathcal{N}^{\perp}$ be the space of all $\mathbf{w} \in X$ with $\langle \mathbf{u}, \mathbf{w} \rangle_X = 0$ for all $\mathbf{u} \in \mathcal{N}$.

For $\mathbf{G} = (\mathbf{G}^{(1)}, \mathbf{G}^{(2)}) \in L^1((0, \infty), L^2(\Omega, \mathbb{R}^{M+N}))$ and $\mathbf{w} \in L^2(\Omega, \mathbb{R}^{M+N})$ a function $\mathbf{u} \in C([0, \infty), X)$ is called a weak soution to the problem (1.1) – (1.3) , if

$$
\frac{d}{dt}\langle \mathbf{u}(t), \mathbf{a}\rangle_X = -\langle \mathbf{u}(t), B\mathbf{a}\rangle_X + \langle \mathbf{G}(t) - F(t, \mathbf{u}(t)), \mathbf{a}\rangle_X
$$

for all $\mathbf{a} \in D(B)$ (2.26)

and u fulfilles the initial-condition.

Here $F: (0, \infty) \times X \rightarrow X$ is defined by

$$
F(t, \mathbf{u}) \stackrel{\text{def}}{=} (E^{(1)}\mathbf{S}(t, \cdot, \mathbf{u}(\cdot)), 0).
$$

(2.26) is equivalent to the variation of constant formula

$$
\mathbf{u}(t) = \exp(tB)\,\mathbf{w} + \int_0^t \exp((t-s)\,B)\big[\,\mathbf{G}(s) - F(s,\mathbf{u}(s))\,\big]\,ds \qquad(2.27)
$$

where $(\exp(tB))_{t \in \mathbb{R}}$ is the unitary group generated by B. Since $F(t, \cdot)$ is assumed to be Lipschitz-continuous in \overline{X} by assumption (2.19), it follows from a standard result that this integal-equation has a unique solution $\mathbf{u} \in C([0, \infty), X)$, (see [11, chap. 7]).

(2.27) yields the energy-estimate

$$
\frac{1}{2} \frac{d}{dt} \|\mathbf{u}(t)\|_{X}^{2} = \langle \mathbf{G}(t) - F(t, \mathbf{u}(t)), \mathbf{u}(t) \rangle_{X}
$$
\n
$$
= \langle \mathbf{G}(t), \mathbf{u}(t) \rangle_{X} - \int_{G} \mathbf{S}(t, x, \mathbf{u}(t)) \cdot \underline{\mathbf{u}(t)}_{1} dx
$$
\n
$$
\leq \langle \mathbf{G}(t), \mathbf{u}(t) \rangle_{X}.
$$
\n(2.28)

In the sequel $T(\cdot) \mathbf{w} \in C([0, \infty), X)$ denotes the unique solution to $(1.1)-(1.3)$ in the sense of (2.26) .

3. WEAK CONVERGENCE FOR $T \rightarrow \infty$

In the following lemma it is shown in particular that $T(\cdot)$ w \in $L^{\infty}((0, \infty), X)$, i.e., $||T(t) \mathbf{w}||_X$ is bounded as $t \to \infty$.

LEMMA 1. Suppose $\mathbf{w} \in X$ and $\mathbf{u}(t) \stackrel{\text{def}}{=} T(t) \mathbf{w}$. Then

$$
\|\mathbf{u}(t)\|_{X} \leqslant \|\mathbf{w}\|_{X} + \|\mathbf{G}\|_{L^{1}((0,\infty), X)},
$$

$$
\int_{0}^{\infty} \langle \mathbf{u}(t), F(t, \mathbf{u}(t)) \rangle_{X} dt \leqslant (\|\mathbf{w}\|_{X} + \|\mathbf{G}\|_{L^{1}((0,\infty), X)})^{2}
$$
\n(3.29)

and

$$
\int_0^\infty \|F(t, \mathbf{u}(t))\|_X^2 dt \leq C_0 (\|\mathbf{w}\|_X + \|\mathbf{G}\|_{L^1((0, \infty), X)})^2
$$

with some $C_0 \in (0, \infty)$ independent of **w**. Moreover,

$$
\underline{\mathbf{u}}_1 \in L^p((0,\infty), L_{\gamma}^{-1}(K)) \qquad \text{for all bounded measurable subsets} \quad K \subset G. \tag{3.30}
$$

Proof. Let $\mathbf{u}(t) = (\mathbf{E}(t), \mathbf{F}(t)) \stackrel{\text{def}}{=} T(t)$ w. By the assumptions (2.20) on S one has

$$
||F(t, f)||_{X}^{2} \leq C_{0} \langle F(t, f), f \rangle_{X} \quad \text{for all} \quad f \in X
$$

with some $C_0 > 0$ independent of **f**. Therefore, the energy-estimate (2.28) yields

$$
\frac{1}{2} \frac{d}{dt} \|\mathbf{u}(t)\|_{X}^{2} \leq \langle \mathbf{G}(t) - F(t, \mathbf{u}(t)), \mathbf{u}(t) \rangle_{X}
$$
\n
$$
\leq \|\mathbf{G}(t)\|_{X} \|\mathbf{u}(t)\|_{X} - \langle F(t, \mathbf{u}(t)), \mathbf{u}(t) \rangle_{X}
$$
\n
$$
\leq \|\mathbf{G}(t)\|_{X} \|\mathbf{u}(t)\|_{X} - C_{0}^{-1} \|F(t, \mathbf{u}(t))\|_{X}^{2}.
$$

This implies (3.29) by Gronwall's lemma.

To prove (3.30) let $f \in X$ and define $a, b \in L^2(G, \mathbb{R}^M)$ by $a(x) \stackrel{\text{def}}{=} \mathbf{f}_1(x)$ if ֚֞֘ $|\mathbf{f}_1(x)| \leq 1$ and $\mathbf{a}(x) \stackrel{\text{def}}{=} 0$ if $|\mathbf{f}_1(x)| > 1$. Moreover, $\mathbf{b}(x) \stackrel{\text{def}}{=} \mathbf{f}_1(x)$ if $|\mathbf{f}_1(x)| > 1$ ׇ֚֞֘ ֺׅ֖֚֝֡֬֝֬ ֖ׅ֞֘֝֬֘֝֬֝ ֺׅ֖֚֝֡֬֝֬ and $\mathbf{b}(x) \stackrel{\text{def}}{=} 0$ if $|\mathbf{f}_1(x)| \leq 1$. ֖֚֞֘֝֬

Then it follows from assumption (2.21) that

$$
\mathbf{a}(x) \mathbf{S}(t, x, \mathbf{a}(x), \mathbf{f}_2(x)) \ge \gamma(x) |\mathbf{a}(x)|^p \quad \text{and}
$$

$$
\mathbf{b}(x) \mathbf{S}(t, x, \mathbf{b}(x), \mathbf{f}_2(x)) \ge \gamma(x) |\mathbf{b}(x)|
$$

for all $x \in G$. Hölder's inequality yields

$$
\|\mathbf{f}_{1}\|_{L_{\gamma}^{1}(K)} \leq \|\mathbf{a}\|_{L_{\gamma}^{1}(K)} + \|\mathbf{b}\|_{L_{\gamma}^{1}(K)}
$$
\n
$$
\leq C_{K, 1} \|\mathbf{a}\|_{L_{\gamma}^{p}(K)} + \|\mathbf{b}\|_{L_{\gamma}^{1}(K)}
$$
\n
$$
= C_{K, 1} \left(\int_{G} |\mathbf{a}(x)|^{p} \gamma \, dx \right)^{1/p} + \int_{G} |\mathbf{b}(x)| \gamma \, dx
$$
\n
$$
\leq C_{K, 1} \left(\int_{G} \mathbf{a}(x) \mathbf{S}(t, x, \mathbf{a}(x), \mathbf{f}_{2}(x)) \, dx \right)^{1/p}
$$
\n
$$
+ \int_{G} \mathbf{b}(x) \mathbf{S}(t, x, \mathbf{b}(x), \mathbf{f}_{2}(x)) \, dx
$$
\n
$$
\leq C_{K, 1} \left(\int_{G} \mathbf{f}(x) \mathbf{S}(t, x, \mathbf{f}(x)) \, dx \right)^{1/p}
$$
\n
$$
+ \int_{G} \mathbf{f}(x) \mathbf{S}(t, x, \mathbf{f}(x)) \, dx
$$
\n
$$
= C_{K, 1} (\langle \mathbf{f}, F(t, \mathbf{f}) \rangle_{X})^{1/p} + \langle \mathbf{f}, F(t, \mathbf{f}) \rangle_{X}
$$
\n
$$
\leq C_{K, 2} (1 + \|\mathbf{f}\|_{X}^{2 - 2/p}) (\langle \mathbf{f}, F(t, \mathbf{f}) \rangle_{X})^{1/p} \qquad (3.31)
$$

Finally, the assertion (3.30) follows from (3.29) and (3.31).

Next some lemmata concerning the operator B are given.

LEMMA 2. (i) $\Delta \mathbf{w} = B_0^2 \mathbf{w}$ on Ω for all $\mathbf{w} \in (\text{rang } B_0) \cap D(B_0^2)$, in particular $-\Delta e = A^*Ae$ and $-\Delta f = AA^*f$ on Ω for all $e \in (\text{rang } A^*) \cap$ $D(A)$ and $f \in ($ rang $A) \cap D(A^*)$ with $A \in D(A^*)$ and $A^*f \in D(A)$.

(ii) $\Delta \mathbf{w} = B^2 \mathbf{w}$ on $\Omega_0 = \Omega \backslash G$ for all $\mathbf{w} \in X^0 \cap D(B^2)$.

Proof. Let $\mathbf{u} \in C_0^{\infty}(\Omega, \mathbb{C}^{M+N}) \subset D(B_0^n)$ for all $n \in \mathbb{N}$. Then it follows from the algebraic condition (2.22) using Fourier-transform that

$$
\mathscr{F}(\underline{B}_{0}^{3}\mathbf{u})_{1}(\xi) = -i \left(\sum_{j=1}^{3} \xi_{j} H_{j}^{*} \right) \left(\sum_{k=1}^{3} \xi_{k} H_{k} \right) \left(\sum_{l=1}^{3} \xi_{l} H_{l}^{*} \right) \mathscr{F}(\mathbf{u}_{2})(\xi)
$$

$$
= -i |\xi|^{2} \left(\sum_{l=1}^{3} \xi_{l} H_{l}^{*} \right) \mathscr{F}(\mathbf{u}_{2})(\xi)
$$

Analogously,

$$
\mathscr{F}(\underline{B_0^3 \mathbf{u}})_2(\xi) = -i |\xi|^2 \left(\sum_{l=1}^3 \xi_l H_l \right) \mathscr{F}(\mathbf{u}_1)(\xi)
$$

and hence

$$
B_0^3 \mathbf{u} = B_0 \varDelta \mathbf{u} \qquad \text{for all} \quad \mathbf{u} \in C_0^\infty(\Omega, \mathbb{C}^{M+N}). \tag{3.32}
$$

Now, assume $\mathbf{w} \in (\text{rang } B_0) \cap D(B_0^2)$, i.e., $\mathbf{w} = B_0 \mathbf{v}$ with some $\mathbf{v} \in D(B_0^3)$. Then

$$
\int_{\Omega} (B_0^2 \mathbf{w}) \mathbf{u} \, dx = \langle B_0^3 \mathbf{v}, \mathbf{\bar{u}} \rangle_{L^2} = -\langle \mathbf{v}, B_0^3 \mathbf{\bar{u}} \rangle_{L^2}
$$

$$
= -\langle \mathbf{v}, B_0 \Delta \mathbf{\bar{u}} \rangle_{L^2} = \langle \mathbf{w}, \Delta \mathbf{\bar{u}} \rangle_{L^2} = \int_{\Omega} \mathbf{w} \, \Delta \mathbf{u} \, dx
$$

for all $\mathbf{u} \in C_0^{\infty}(\Omega)$, which means $B_0^2 \mathbf{w} = \Delta \mathbf{w}$ in the sense of distributions.

To prove (ii) let $w \in X^0 \cap D(B^2)$. Suppose $u \in C_0^{\infty}(\Omega_0, \mathbb{C}^{M+N})$, and define $\tilde{\mathbf{u}} \stackrel{\text{def}}{=} (B_0^2 - A) \mathbf{u} \in C_0^{\infty}(\Omega_0, \mathbb{C}^{M+N}) \subset D(B_0^n)$. Then (3.32) yields $B_0 \tilde{\mathbf{u}} = 0$ and hence $\tilde{\mathbf{u}} \in \mathcal{N}$. In particular $0 = \langle \mathbf{w}, \tilde{\mathbf{u}} \rangle_X$, because $\mathbf{w} \in X^0$. Since $E = 1$ on Ω_0 , it follows $B\mathbf{u} = B_0\mathbf{u} \in D(B)$ and $\tilde{\mathbf{u}} = (B^2 - \Delta) \mathbf{u}$. Now,

$$
0 = \langle \mathbf{w}, \tilde{\mathbf{u}} \rangle_X = \langle \mathbf{w}, B^2 \mathbf{u} \rangle_X - \langle \mathbf{w}, A \mathbf{u} \rangle_X = \langle B^2 \mathbf{w}, \mathbf{u} \rangle_X - \langle \mathbf{w}, A \mathbf{u} \rangle_X
$$

=
$$
\int_{\Omega} ([B^2 \mathbf{w}] \bar{\mathbf{u}} - \mathbf{w} A \bar{\mathbf{u}}) dx
$$

Since $\mathbf{u} \in C_0^{\infty}(\Omega_0, \mathbb{C}^{M+N})$ is arbitrary, the assertion follows.

Remark 1. Due to the facts that generally $E^{(j)} \neq 1$ and $\mathbf{a}_1 = 0$ on G for ֧֖֖֧֧֧֧֪֪֪֪֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֝֝֟֓֝֬֝֓֞֝֬֝֓֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬ all $\mathbf{a} \in \mathcal{N}$ we have $\Delta \mathbf{w}_1 \neq (B^2 \mathbf{w})_1$ on G for all $\mathbf{w} \in X^0 \cap D(B^2)$ in general.

j For example is the case of Maxwell's Eqs. (1.4)–(1.6) all $\mathbf{w} \in X^0 \cap D(B^2)$ obey $(B^2w)_1 = -\varepsilon^{-1} \operatorname{curl}(\mu^{-1} \operatorname{curl} \Psi_1)$. The condition $w \in X^0$ implies $div(\varepsilon \mathbf{w}_1) = 0$ on Ω_0 and $div(\mu \mathbf{w}_2) = 0$ on Ω , as mentioned in the introducį ֖֖֖֪֪֪֦֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֡֬֝֓֡֡֬֝֬֝֓֞֝֓֬ tion, but it does not provide any information on the divergence of \mathbf{w}_1 on ׅ֖֖֚֚֚֚֡֡֬֝ the set G, since $\mathbf{a}_1 = 0$ on G for all $\mathbf{a} \in \mathcal{N}$. ĺ

The next theorem is the generalization of the unique-continuationprinciple in [4] and [6] as mentioned in the introduction.

THEOREM 1. Let $g \in X$ with the property

$$
(\exp(tB) \mathbf{g})_1 = 0 \qquad on \ G \ for \ all \quad t \in \mathbb{R}.\tag{3.33}
$$

Then $g \in \mathcal{N}$ \subset ker B.

Proof. Since iB is self-adjoint in X, $f(iB) = \int_{\mathbb{R}} f(\lambda) dE_{\lambda}$ can be defined by the spectral-theorem for a Borel-measurable function $f: \mathbb{R} \to \mathbb{C}$. Here $(E_{\lambda})_{\lambda \in \mathbb{R}}$ denotes the family of spectral-projectors of *iB*. If $f \in C_0^{\infty}(\mathbb{R})$, then bounded operator $f(iB)$ has the representation

$$
f(iB) \mathbf{u} = (2\pi)^{-1/2} \int_{\mathbb{R}} \hat{f}(t) \exp(-tB) \mathbf{u} dt \quad \text{for all} \quad \mathbf{u} \in X. \quad (3.34)
$$

Here \hat{f} denotes the Fourier-transform of f. To see this let **u**, $v \in X$. Then

$$
\langle f(iB) \mathbf{u}, \mathbf{v} \rangle_X = \int_{\mathbb{R}} f(\lambda) d\langle E_{\lambda} \mathbf{u}, \mathbf{v} \rangle_X
$$

= $(2\pi)^{-1/2} \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(t) \exp(it\lambda) dt d\langle E_{\lambda} \mathbf{u}, \mathbf{v} \rangle_X$
= $(2\pi)^{-1/2} \int_{\mathbb{R}} \hat{f}(t) \langle \exp(-tB) \mathbf{u}, \mathbf{v} \rangle_X dt$

Suppose $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$. Then (3.33) and (3.34) yield

$$
\left(\frac{f(iB) \mathbf{g}}{g}\right)_1 = 0 \qquad \text{on } G. \tag{3.35}
$$

Moreover,

$$
\tilde{f}(iB) \mathbf{g} = iBf(iB) \mathbf{g} = i(-E^{(1)}A^* \underbrace{(f(iB) \mathbf{g})}{2}, E^{(2)}A \underbrace{(f(iB) \mathbf{g})}_{1}) \qquad \text{on } \Omega,
$$
\n(3.36)

where $\tilde{f}(\lambda) = \lambda f(\lambda)$. In particular (3.35) and (3.36) yield by replacing f by $g(\lambda) \stackrel{\text{def}}{=} \lambda^{-1} f(\lambda) \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ that

$$
(f(iB) \mathbf{g})_2 = iE^{(2)} A (g(iB) \mathbf{g})_1 = 0
$$
 on *G*

and hence by (3.35)

$$
f(iB) \mathbf{g} = 0 \qquad \text{on } G \tag{3.37}
$$

Since $E(x) = 1$ on $\Omega \backslash G$, (3.35)–(3.37) yield

$$
B_0 f(iB) \mathbf{g} = B(f(iB) \mathbf{g}) = -i\tilde{f}(iB) \mathbf{g} \quad \text{for all} \quad f \in C_0^{\infty}(\mathbb{R} \setminus \{0\}) \tag{3.38}
$$

with $\tilde{f}(\lambda)=\lambda f(\lambda)$.

In particular it follows by induction

$$
f(iB) \mathbf{g} \in (\text{rang } B_0) \cap D(B_0^n) \qquad \text{with} \quad B_0^n f(iB) \mathbf{g} = B^n(f(iB) \mathbf{g}) \tag{3.39}
$$

for all $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and $n \in \mathbb{N}$.

The aim of the following considerations is to show that $f(iB)$ g is real analytic on Ω . This will be achieved by means of a local integral representation.

Let $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and choose $\chi \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ with $\chi(\lambda) = 1$ on supp f. Define

$$
\mathbf{F}(t) \stackrel{\text{def}}{=} \exp(-t) \chi(iB) \mathbf{g} = (2\pi)^{-1/2} \int_{\mathbb{R}} \hat{\chi}(\xi) \exp((-t-\xi) B) \mathbf{g} d\xi.
$$

Then (3.39) and Lemma 2(i) yield

$$
\partial_t^2 \mathbf{F}(t) = B^2 \mathbf{F}(t) = B_0^2 \mathbf{F}(t) = \Delta \mathbf{F},
$$
\n(3.40)

in particular

$$
\partial_t^j A^k \mathbf{F} = (-1)^j B^{j+2k} \mathbf{F}(\cdot) \in L^\infty(\mathbb{R}, L^2(\Omega))
$$

for all $j \in \mathbb{N}$ and $k \in \mathbb{N}$,

which implies $\mathbf{F} \in C^\infty(\mathbb{R} \times \Omega)$ and

 $\partial_t^j \partial^{\alpha} \mathbf{F} \in L^{\infty}(\mathbb{R} \times \mathcal{K})$ for all compact $\mathcal{K} \subset \Omega$, $j \in \mathbb{N}_0$ and $\alpha \in \mathbb{N}_0^3$. (3.41)

Suppose $x_0 \in \Omega$ and choose $R > 0$ with $B_{2R}(x_0) \subset \Omega$. Let

$$
K(x, \xi) \stackrel{\text{def}}{=} (4\pi |x|)^{-1} \hat{f}(\xi - |x|) \quad \text{for} \quad \xi \in \mathbb{R} \quad \text{and} \quad x \in \mathbb{R}^3
$$

Then (3.41) yields for all $x \in B_{R/2}(x_0)$

$$
\lim_{r \to 0} \int_{\mathbb{R}} \int_{\partial B_r(x)} \vec{n}(y) [K(x - y, \xi) \nabla_y \mathbf{F}_j(\xi, y)] - \mathbf{F}_j(\xi, y) \nabla_y K(x - y, \xi)] dS(y) d\xi
$$
\n
$$
= (4\pi)^{-1} \lim_{r \to 0} \left(r^{-3} \int_{\mathbb{R}} \hat{f}(\xi - r) \int_{\partial B_r(x)} [\vec{n}(y)(x - y)] \mathbf{F}_j(\xi, y) dS(y) d\xi \right)
$$
\n
$$
= \int_{\mathbb{R}} \hat{f}(\xi) \mathbf{F}_j(\xi, x) d\xi
$$
\n
$$
= \int_{\mathbb{R}} \hat{f}(\xi) (\exp(-\xi B) \chi(iB) \mathbf{g})_j(x) d\xi
$$
\n
$$
= (2\pi)^{1/2} (f(iB) \chi(iB) \mathbf{g})_j(x)
$$
\n
$$
= (2\pi)^{1/2} (f(iB) \mathbf{g})_j(x).
$$
\n(3.42)

For all $x \in B_{R/2}(x_0)$ and all $y \in B_{2R}(x_0)$ with $y \neq x$ one has by (3.40)

$$
\begin{aligned} \operatorname{div}_{y} [K(x-y,\xi) \nabla_{y} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \nabla_{y} K(x-y,\xi)] \\ &= K(x-y,\xi) \Delta_{y} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \Delta_{y} K(x-y,\xi) \\ &= K(x-y,\xi) \partial_{\xi}^{2} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \partial_{\xi}^{2} K(x-y,\xi) \\ &= \partial_{\xi} [K(x-y,\xi) \partial_{\xi} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \partial_{\xi} K(x-y,\xi)] \end{aligned}
$$

and hence

$$
\int_{\mathbb{R}} \int_{\partial B_R(x_0)} \vec{n}(y) [K(x - y, \xi) \nabla_y \mathbf{F}_j(\xi, y) - \mathbf{F}_j(\xi, y) \nabla_y K(x - y, \xi)] dS(y) d\xi
$$

\n
$$
- \int_{\mathbb{R}} \int_{\partial B_r(x)} \vec{n}(y) [K(x - y, \xi) \nabla_y \mathbf{F}_j(\xi, y) - \mathbf{F}_j(\xi, y) \nabla_y K(x - y, \xi)] dS(y) d\xi
$$

\n
$$
= \int_{\mathbb{R}} \int_{B_R(x_0) \setminus B_r(x)} \text{div}_y [K(x - y, \xi) \nabla_y \mathbf{F}_j(\xi, y) - \mathbf{F}_j(\xi, y) \nabla_y K(x - y, \xi)] dy d\xi
$$

\n
$$
= \int_{B_R(x_0) \setminus B_r(x)} \int_{\mathbb{R}} \partial_{\xi} [K(x - y, \xi) \partial_{\xi} \mathbf{F}_j(\xi, y) - \mathbf{F}_j(\xi, y) \partial_{\xi} K(x - y, \xi)] d\xi dy = 0,
$$
 (3.43)

since $K(x-y, \xi) \xrightarrow{|\xi| \to \infty} 0$ and $\partial_{\xi} K(x-y, \xi) \xrightarrow{|\xi| \to \infty} 0$, whereas **F** and ∂_{ξ} **F** remain bounded as $|\xi| \to \infty$ by (3.41) for fixed $y \neq x$.

Now, (3.42) and (3.43) yield for all $x \in B_{R/2}(x_0)$

$$
(2\pi)^{1/2} (f(iB) \mathbf{g})_j(x) = \int_{\mathbb{R}} \int_{\partial B_R(x_0)} \vec{n}(y) [K(x - y, \xi) \nabla_y \mathbf{F}_j(\xi, y) - \mathbf{F}_j(\xi, y) \nabla_y K(x - y, \xi)] dS(y) d\xi
$$
(3.44)

Since $f \in C_0^{\infty}(\mathbb{R})$, there exists a constant $C_1 \in (0, \infty)$ with

$$
(1+\xi^2) |\hat{f}^{(k)}(\xi)| \leq C_1^k \quad \text{for all} \quad \xi \in \mathbb{R} \quad \text{and} \quad k \in \mathbb{N}.
$$

Hence there exists a constant $C_2 \in (0, \infty)$ with

$$
\int_{\mathbb{R}} \int_{\partial B_R(x_0)} \left(\left| \frac{d^k}{d\tau^k} K(x_0 + \tau \eta - y, \xi) \right| \right. \\
\left. + \left| \frac{d^k}{d\tau^k} (\vec{n}(y) \nabla_y K(x_0 + \tau \eta - y, \xi)) \right| \right) dS(y) d\xi
$$
\n
$$
\leq C_2^k k! |\eta|^k
$$

for all $\eta \in \mathbb{R}^3$ with $|\eta| \leq R/2$, $\tau \in (-1, 1)$ and $k \in \mathbb{N}$. Now it follows from (3.41) and (3.44) and the previous estimate that there exists a constant $C_3 \in (0, \infty)$ with

$$
\left| \frac{d^k}{d\tau^k} (f(iB) \mathbf{g}) (x_0 + \tau \eta) \right| \leq (C_3 |\eta|)^k k!
$$

for all $\eta \in \mathbb{R}^3$ with $|\eta| \le R/2$, $\tau \in (-1, 1)$ and $k \in \mathbb{N}$, which yields the analycity of $f(iB)$ g.

Next this analycity yields by (3.37) and the assumptions that G has nonempty interior and Ω is connected that

$$
f(iB) \mathbf{g} = 0 \qquad \text{for all} \quad f \in C_0^{\infty}(\mathbb{R} \setminus \{0\}). \tag{3.45}
$$

Choose a sequence $f_n \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$, $n \in \mathbb{N}$ with $|f_n(\lambda)| \leq 1$ and $f_n(\lambda) \xrightarrow{n \to \infty} 1$ for all $\lambda \in \mathbb{R} \backslash \{0\}$.

By the spectral-theorem (3.45) implies

$$
0 = \langle f_n(iB) \mathbf{g}, \mathbf{g} \rangle_X \xrightarrow{n \to \infty} \langle (1 - P_{\text{ker } B}) \mathbf{g}, \mathbf{g} \rangle_X
$$

and hence $\mathbf{g} = P_{\text{ker } B} \in \text{ker } B$. Together with (3.33) this yields $\mathbf{g} \in \mathcal{N}$, which completes the proof. \blacksquare

Remark 2. In [7], Chap. VIII the following result can be found (Theorem 8.6.8), which is a consequence of Holmgren's uniqueness-theorem:

Let $X_1, X_2 \subset \mathbb{R}^N$ open and convex with $X_1 \subset X_2$. Let L be a differential operator with constant coefficients. Then the following conditions are equivalent:

(i) All $u \in \mathcal{D}'(X_2)$ with $Lu = 0$ on X_2 and $u = 0$ on X_1 are identically zero on all of X_2 .

(ii) Every hyperplane which is characteristic with respect to L and intersects X_2 also intersects X_1 .

This can be used in the proof of the previous theorem as follows. Let $\chi \in C_0^{\infty}(\mathbb{R}\backslash \{0\})$ and define

$$
\mathbf{F}(t) \stackrel{\text{def}}{=} \exp(-t) \chi(iB) \mathbf{g} = (2\pi)^{-1/2} \int_{\mathbb{R}} \hat{\chi}(\xi) \exp((-t-\xi) B) \mathbf{g} d\xi.
$$

As above it follows from (3.37), (3.39) and Lemma 2(i) that $\mathbf{F} \in C^{\infty}(\mathbb{R} \times \Omega)$ solves the scalar wave-equation (3.40) and vanishes on the subset $\mathbb{R} \times G$. In order to apply Theorem 8.6.8 in [7] define U as the set of all $x \in \Omega$, such that there exists a neigbourhood \mathscr{B} of x with $\mathbf{F}=0$ on $\mathbb{R}\times\mathscr{B}$. The aim of the following considerations is to show $U = \Omega$, in particular F is identically zero.

By (3.37) and the assumption that G has nonempty interior there exists some $x_0 \in G$ with this property, in particular $U \neq \emptyset$. Since U is open and Ω is connected, it suffices to show that U is relatively closed in Ω . Suppose $x_1 \in \Omega \cap \overline{U}$ and choose $R > 0$ with $B_R(x_1) \subset \Omega$. Then one can find $y \in B_R(x_1) \cap U$ and $r > 0$ with $B_r(y) \subset B_R(x_1)$ and $F = 0$ on $X_1 \stackrel{\text{def}}{=}$ $\mathbb{R} \times B_r(y)$. Now every hyperplane, which is characteristic with respect to the wave-operator intersects X_1 . Therefore Theorem 8.6.8 in [7] asserts that $\mathbf{F} = 0$ on $X_2 \stackrel{\text{def}}{=} \mathbb{R} \times B_R(x_1)$, in particular $x_1 \in U$, which completes the proof of Theorem 1 with the aid of Theorem 8.6.8 in [7].

However the proof of Theorem 1 given in this paper is independent of Holmgren's theorem.

Remark 3. The proof of Theorem 1 can be simplyfied further under the additional assumption that

$$
\overline{\Omega_0} \subset \Omega \tag{3.46}
$$

Suppose that $g \in X$ satifies the assumption in Theorem 1. As above one has for all $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$

$$
f(iB) \mathbf{g} = 0 \qquad \text{on } G \tag{3.47}
$$

and $f(iB)$ g satisfies (3.39).

Next it is shown that $f(iB)$ g is real analytic on Ω . Lemma $2(i)$ and (3.39) yield

$$
B^{2}f(iB) g = B_{0}^{2} f(iB) g(t) = \Delta f(iB) g,
$$
 (3.48)

By induction it follows

$$
(1 - \Delta)^n f(iB) \mathbf{g} = (1 - B^2)^n f(iB) \mathbf{g} = \int_{\mathbb{R}} (1 + \lambda^2)^k f(\lambda) dE_{\lambda} \mathbf{g} \in L^2(\Omega)
$$
\n(3.49)

and hence

$$
\|(1-\Delta)^n f(iB) \mathbf{g}\|_X = \|(1 - B^2)^n f(iB)\|_X
$$

\$\leq\$ sup $((1 + \lambda^2)^n |f(\lambda)|) \| \mathbf{g}\|_X \leq C_1^n$ (3.50)

for all $n \in \mathbb{N}$ with some constant $C_1 \in (0, \infty)$ independent of n.

Let $\mathbf{F} \in L^2(\mathbb{R}^3)$ be the extension of $f(iB)$ **g** by zero defined by $\mathbf{F}(x) \stackrel{\text{def}}{=} (f(iB) \mathbf{g})(x)$ if $x \in \Omega$ and $\mathbf{F}(x) = 0$ if $x \in \mathbb{R}^3 \setminus \Omega$. Since $\mathbf{F}(x) = 0$ for all $x \in G = \Omega \backslash \Omega_0$ by (3.47) the support of F is contained in the closed subset $\overline{\Omega_0}$ \subset Ω by assumption (3.46). Now, it follows easily from (3.48)–(3.50) that $(1-\Delta)^n \mathbf{F} \in L^2(\mathbb{R}^3)$ and

$$
||(1-\Delta)^n \mathbf{F}||_{L^2(\mathbb{R}^3)} \leq ||(1-\Delta)^n f(iB) \mathbf{g}||_X \leq C_1^n \quad \text{for all} \quad n \in \mathbb{N}.\tag{3.51}
$$

This yields by Sobolev's embedding-theorem $\mathbf{F} \in C^{\infty}(\mathbb{R}^{3})$ and

$$
\|\partial^{\alpha} \mathbf{F}\|_{L^{\infty}} \leq C \|\partial^{\alpha} \mathbf{F}\|_{H^{2}(\mathbb{R}^{3})} = C \|(1 + \xi^{2}) \xi^{\alpha} \hat{\mathbf{F}}\|_{L^{2}(\mathbb{R}^{3})}
$$

\n
$$
\leq C \|(1 + \xi^{2})^{n+1} \hat{\mathbf{F}}\|_{L^{2}(\mathbb{R}^{3})} = C \|(1 - \Delta)^{n+1} \mathbf{F}\|_{L^{2}(\mathbb{R}^{3})}
$$

\n
$$
\leq C_{1}^{n+1}
$$
\n(3.52)

for all $n \in \mathbb{N}$ and $|\alpha| \le 2n$ with $C_1 \in (0, \infty)$ as in (3.51), which yields the analycity of F. Since $F(x) = 0$ for all $x \in G$, this analycity implies $F = 0$ on all of \mathbb{R}^3 and hence (3.45)

In the sequel let $\omega_0(w)$ denote the ω -limit-set of the solution $T(\cdot)$ w with respect to the weak topology of X, i.e., the set of all $g \in X$, such that there exists a sequence $t_n \xrightarrow{n \to \infty} \infty$ with $T(t_n) \le \cdots \le \infty$ in X weakly, that means with $\langle T(t_n) \mathbf{w}, \mathbf{f} \rangle_X \xrightarrow{n \to \infty} \langle \mathbf{g}, \mathbf{f} \rangle_X$ for all $\mathbf{f} \in X$.

Since the $T(\cdot) \mathbf{w} \in L^{\infty}((0, \infty), X)$ by Lemma 1 the weak ω -limit-set $\omega_0(\mathbf{w})$ in nonempty for all $\mathbf{w} \in X$.

THEOREM 2. Let $\mathbf{w} \in X$. Then $\omega_0(\mathbf{w}) \subset \mathcal{N}$.

Proof. Let $\mathbf{u}(t) \stackrel{\text{def}}{=} T(t)$ w for $t \in \mathbb{R}$. Suppose $\mathbf{g} \in X$ and $t_n \xrightarrow{n \to \infty} \infty$ with $T(t_n)$ w $\xrightarrow{n \to \infty} g$ in X weakly. Let $t \in \mathbb{R}$. By (2.27) one has

$$
\mathbf{u}(t_n + t) = \exp(tB)\,\mathbf{u}(t_n) + \int_{t_n}^{t_n + t} \exp((t_n + t - \tau) \, B) [\,\mathbf{G}(\tau) - F(\tau, \mathbf{u}(\tau))\,]\,d\tau
$$

for all sufficiently large $n \in \mathbb{N}$, such that $t_n + t \geq 0$. (In order to apply Theorem 1 it is necessary also to consider $t \le 0$.) With $G \in L^1((0, \infty), X)$ it follows from Lemma 1, (3.29) that

$$
\|\mathbf{u}(t_n+t)-\exp(tB)\mathbf{u}(t_n)\|_X
$$

$$
\leq \int_{[t_n, t_n + t]} (||G(\tau)||_X + ||F(\tau, \mathbf{u}(\tau))||_X) d\tau
$$

$$
\leq \int_{[t_n, t_n + t]} ||G(\tau)||_X d\tau + |t|^{1/2}
$$

$$
\times \left(\int_{[t_n, t_n + t]} ||F(\tau, \mathbf{u}(\tau))||_X^2 d\tau \right)^{1/2} \xrightarrow{n \to \infty} 0
$$

and hence

$$
\mathbf{u}(t_n + t) \xrightarrow{n \to \infty} \exp(tB) \mathbf{g} \qquad \text{in } X \text{ weakly for all} \quad t \in \mathbb{R}. \tag{3.53}
$$

Suppose $a, b \in \mathbb{R}$ with $a < b$ and define $f \stackrel{\text{def}}{=} \int_a^b \exp(tB) g dt$ and $f^{(n)} \stackrel{\text{def}}{=}$ $\int_a^b \mathbf{u}(t_n+t) dt$ for $n \in \mathbb{N}$ sufficiently large, such that $t_n + a \ge 0$. Then (3.53) yields by the dominated convergence-theorem

$$
\langle \mathbf{f}^{(n)}, \mathbf{h} \rangle_X = \int_a^b \langle \mathbf{u}(t_n + t), \mathbf{h} \rangle_X dt
$$

$$
\xrightarrow{\mathbf{n} \to \infty} \int_a^b \langle \exp(tB) \mathbf{g}, \mathbf{h} \rangle_X dt
$$

$$
= \langle \mathbf{f}, \mathbf{h} \rangle_X
$$

for all $h \in X$, i.e., $f^{(n)} \xrightarrow{n \to \infty} f$ weakly. In particular

$$
\underline{\mathbf{f}^{(n)}}_1 \xrightarrow{n \to \infty} \underline{\mathbf{f}}_1 \qquad \text{in} \quad L^2(G) \subset L^1_\gamma(K) \quad \text{weakly for all bounded} \quad K \subset G. \tag{3.54}
$$

On the other hand it follows from Lemma 1(iii) that

$$
\|\underline{\mathbf{f}^{(n)}}_1\|_{L^1_\gamma(K)} \le (b-a)^{1/p^*} \left(\int_{a+t_n}^{b+t_n} \|\underline{\mathbf{u}}(t)\|_{L^1_\gamma(K)}^p dt \right)^{1/p} \xrightarrow{n \to \infty} 0 \quad (3.55)
$$

for all $t \in \mathbb{R}$. Now (3.54) and (3.55) yield

$$
\int_{a}^{b} \underbrace{\left(\exp(tB)\,\mathbf{g}\right)}_{1} dt = 0 \qquad \text{on } K \text{ for all bounded } \quad K \subset G
$$

and all
$$
a, b \in \mathbb{R}
$$
, $a < b$.

This implies that **g** obeys condition (3.33) of Theorem 1. Hence $\mathbf{g} \in \mathcal{N}$.

Let P be the orthogonal-projector on $\mathcal N$ in X.

LEMMA 3. Suppose
$$
\mathbf{w} \in X
$$
. Then $||PT(t) \mathbf{w} - P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt)||_X \xrightarrow{t \to \infty} 0$.

Proof. Suppose $w \in X$ and $a \in \mathcal{N}$, that means $a \in \text{ker } B$ and $a_1 = 0$ on G. Ï Then (2.27) yields

$$
\langle PT(t) \mathbf{w}, \mathbf{a} \rangle_X = \langle T(t) \mathbf{w}, \mathbf{a} \rangle_X
$$

= $\langle \exp(tB) \mathbf{w} + \int_0^t \exp((t-s) B) (\mathbf{G}(s))$
 $-F(s, T(s) \mathbf{w})) ds, \mathbf{a} \rangle_X$
= $\langle \mathbf{w}, \exp(-tB) \mathbf{a} \rangle_X$
 $+ \int_0^t \langle \mathbf{G}(s) - F(s, T(s) \mathbf{w}), \exp((s-t) B) \mathbf{a} \rangle_X ds$
= $\langle \mathbf{w}, \mathbf{a} \rangle_X + \int_0^t \langle \mathbf{G}(s) - F(s, T(s) \mathbf{w}), \mathbf{a} \rangle_X ds$
= $\langle \mathbf{w}, \mathbf{a} \rangle_X + \int_0^t \langle \mathbf{G}(s), \mathbf{a} \rangle_X ds$
= $\langle P(\mathbf{w} + \int_0^t \mathbf{G}(s) ds), \mathbf{a} \rangle_X$.

Hence

$$
PT(t) \mathbf{w} = P\left(\mathbf{w} + \int_0^t \mathbf{G}(s) \, ds\right). \tag{3.56}
$$

With $G \in L^1(0, \infty, X)$ the assertion follows.

Now, the main theorem concerning weak convergence can be proved.

THEOREM 3. Suppose $w \in X$. Then $T(t)$ **w** $\xrightarrow{t \to \infty} P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt)$ in X weakly.

Proof. By Lemma 3 one has for all $g \in \omega_0(w)$

$$
P\mathbf{g} = P\left(\mathbf{w} + \int_0^\infty \mathbf{G}(s) \, ds\right).
$$

On the other hand Theorem 2 yields $g \in \mathcal{N}$ and hence

$$
\mathbf{g} = P\mathbf{g} = P\left(\mathbf{w} + \int_0^\infty \mathbf{G}(s) \, ds\right) \qquad \text{for all} \quad \mathbf{g} \in \omega_0(\mathbf{w}).\tag{3.57}
$$

Now it follows from (3.57) that

$$
\omega_0(\mathbf{w}) \subset \left\{ P\left(\mathbf{w} + \int_0^\infty \mathbf{G}(s) \, ds \right) \right\}.
$$
 (3.58)

Since the orbit $\{T(t) \le t \ge 0\}$ is precompact in the weak topology by Lemma $1(i)$, this completes the proof.

In particular it follows from the previous theorem that $T(t) \mathbf{w} \xrightarrow{t \to \infty} 0$ in X weakly if and only if $\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt \in X^0 = \mathcal{N}^\perp$, which is condition 1.12.

4. STRONG $L^{\mathcal{Q}}$ -CONVERGENCE OF SOLUTIONS

The aim of the following considerations is find sufficient conditions for strong convergence. Assume that in addition $S(t, x, y, z)$ is independent of t, i.e., $S(t, x, y, z) = S_0(x, y, z)$ and

$$
(\mathbf{S}_0(x, \mathbf{y}, \mathbf{z}) - \mathbf{S}_0(x, \tilde{\mathbf{y}}, \tilde{\mathbf{z}})) (\mathbf{y} - \tilde{\mathbf{y}}) \ge 0
$$
\n(4.59)

for all $t\geqslant0$, $\mathbf{v}\in\mathbb{R}^M$, $\mathbf{z}\in\mathbb{R}^N$ and $x\in G$ with some function $\mathbf{S}_0: \Omega\times\mathbb{R}^{M+N}\to\mathbb{R}^M$.

The main purpose of this assumption is to ensure that $T(t)$ $w \in D(B)$, $\partial_t(T(t) \mathbf{w}) \in L^2(\Omega)$ and $BT(\cdot) \mathbf{w} \in L^{\infty}((0, \infty), X)$, i.e., $||BT(t) \mathbf{w}||_X$ is bounded as $t \to \infty$ if $w \in D(B)$ as shown in the following lemma. (For example in the linear case $S(t, x, y, z) = \sigma(t, x) y$ the condition that S is independent of t can be replaced by the weaker assumption

$$
\partial_t \sigma \in L^{\infty}((0, \infty) \times G)
$$
 and $|\partial_t \sigma(t, x)| \leq C_1 \sigma(t, x)$

for all $t \geq 0$ and $x \in G$ with some constant C_1 independent of t, x .)

LEMMA 4. Suppose in addition that $G \in W^{1, 1}((0, \infty), X)$ and $w \in D(B)$. Then one has

$$
T(\cdot) \mathbf{w} \in W^{1,\infty}((0,\infty), X) \cap L^{\infty}((0,\infty), D(B))
$$
 (4.60)

Proof. It follows from the assumption that there is a nonlinear operator $F_0: X \to X$ with $F(t, \mathbf{w}) = F_0(\mathbf{w})$ and

$$
\langle F_0(\mathbf{w}) - F_0(\tilde{\mathbf{w}}), \mathbf{w} - \tilde{\mathbf{w}} \rangle_X \ge 0
$$
 for all $\mathbf{w}, \tilde{\mathbf{w}} \in X$

Suppose $\mathbf{w} \in D(B)$ and set $\mathbf{u}(t) \stackrel{\text{def}}{=} T(t) \mathbf{w}$. It follows from a standard regularity-result that $\mathbf{u} \in C^1([0, \infty), X) \cap L^{\infty}_{loc}((0, \infty), D(B))$ is a strong solution of

$$
\mathbf{u}'(t) = B\mathbf{u}(t) + \mathbf{G}(t) - F_0(\mathbf{u}(t)).
$$
\n(4.61)

In analogy to Lemma 1 an energy-estimate for \mathbf{u}' can be obtained using the monotonicity of F_0 :

$$
1/2\frac{d}{dt}\|\partial_t \mathbf{u}(t)\|_{X}^2 \leq \langle \partial_t \mathbf{G}(t), \partial_t \mathbf{u}(t) \rangle_{X} \leq \|\partial_t \mathbf{G}(t)\|_{X} \|\partial_t \mathbf{u}(t)\|_{X}
$$

With $\partial_t G \in L^1((0, \infty), X)$ this yields $\mathbf{u} \in W^{1, \infty}((0, \infty), X)$.

By (4.61) one obtains also $u(t) \in D(B^*) = D(B)$ and $Bu(\cdot) \in$ $L^{\infty}((0, \infty), X)$.

LEMMA 5. $X^0 \cap D(B^n)$ is dense in $X^0 \cap D(B^m)$ for all $m, n \in \mathbb{N}$ with $m < n$.

Proof. Let $w \in X^0 \cap D(B^m)$ and define $w_{\tau} \stackrel{\text{def}}{=} \tau^n(\tau - B)^{-n} w \in D(B^n)$ for $\tau > 0$. Then

$$
\|B^{k}(\mathbf{w}_{\tau} - \mathbf{w})\|_{X} = \|B^{k}\mathbf{w} - [\tau(\tau - B)^{-1}]^{n} B^{k}\mathbf{w}\|_{X} \xrightarrow{\tau \to \infty} 0
$$

for all $k \in \{0, 1, ..., m\}.$ (4.62)

Suppose $\mathbf{a} \in \mathcal{N}$. Then

$$
\langle \mathbf{w}_{\tau}, \mathbf{a} \rangle_{X} = \langle \mathbf{w}, \tau^{n}(\tau + B)^{-n} \mathbf{a} \rangle_{X} = \langle \mathbf{w}, \mathbf{a} \rangle_{X} = 0.
$$

Hence $w_{\tau} \in X^0$. By (4.62) the proof is complete.

The next lemma concerns regularity-properties of elements of $X^0 \cap D(B)$.

LEMMA 6. (i) Let $K \subset \Omega_0$ be a bounded open set with $\bar{K} \subset \Omega_0$. Then $\mathbf{w} \in H^1(K)$ and

$$
\|\mathbf{w}\|_{H^1(K)} \leqslant C_K \|\mathbf{w}\|_{D(B)} \qquad \text{for all} \quad \mathbf{w} \in X^0 \cap D(B).
$$

with some constant $C_K \in (0, \infty)$ depending only on K.

(ii) Suppose in addition $E^{(2)}=1$ on all of Ω .

Let $U \subseteq \Omega$ be a bounded open set with $\overline{U} \subseteq \Omega$. Then $\mathbf{F} \in H^1(U)$ and

$$
\|\mathbf{F}\|_{H^1(U)} \leqslant C_U \|\mathbf{w}\|_{D(B)} \qquad \text{for all} \quad \mathbf{w} = (\mathbf{E}, \mathbf{F}) \in X^0 \cap D(B).
$$

with some constant $C_U \in (0, \infty)$ depending only on U.

Proof. (i) Let $K \subseteq \Omega_0$ be a bounded open set with $\bar{K} \subseteq \Omega_0$. Choose $\chi \in C_0^{\infty}(\Omega_0)$ with $\chi = 1$ on K. Suppose $\mathbf{w} \in X^0 \cap D(B^2)$. Then Lemma 2(ii) yields $\mathbf{w} \in H_{loc}^2(\Omega_0)$ and

$$
\sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 |\nabla \mathbf{w}_k|^2 dx
$$
\n
\n
$$
= \sum_{k=1}^{M+N} \int_{\Omega_0} \text{div}(\chi^2 \nabla \mathbf{w}_k) \overline{\mathbf{w}}_k dx
$$
\n
\n
$$
\leq C_{K,1} \sum_{k=1}^{M+N} \int_{\Omega_0} |\chi \nabla \mathbf{w}_k| |\mathbf{w}_k| dx + \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 d\mathbf{w}_k \overline{\mathbf{w}}_k dx
$$
\n
\n
$$
\leq C_{K,2} ||\mathbf{w}||_X^2 + 1/3 \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 |\nabla \mathbf{w}_k|^2 dx + \langle \chi^2(B^2 \mathbf{w}), \mathbf{w} \rangle_X
$$
\n
\n
$$
\leq C_{K,3} ||\mathbf{w}||_{D(B)}^2 + 1/3 \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 |\nabla \mathbf{w}_k|^2 dx + \langle \chi^2(B \mathbf{w}), B \mathbf{w} \rangle_X
$$
\n
\n
$$
\leq C_{K,4} (||B \mathbf{w}||_X^2 + ||\mathbf{w}||_X^2) + 2/3 \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 |\nabla \mathbf{w}_k|^2 dx
$$

by assumption (2.16). Hence

$$
\|\mathbf{w}\|_{H^1(K)}^2 \le \|\mathbf{w}\|_{X}^2 + \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 \|\nabla \mathbf{w}_k\|^2 dx \le 3C_{K,4}(\|B\mathbf{w}\|_{X}^2 + \|\mathbf{w}\|_{X}^2)
$$

By Lemma 5 the estimate holds for all $\mathbf{w} \in X^0 \cap D(B)$.

To prove (ii) consider first $f \in D(A^*) \cap (\ker A^*)^{\perp}$ with $A^* f \in D(A)$.

Since $(\ker A^*)^{\perp} = \overline{\operatorname{rang} A}$ Lemma 2(i) yields $\Delta \mathbf{f} = -AA^* \mathbf{f}$. From a similar cut-off argument as in the proof of the first part it follows that

$$
\|\mathbf{f}\|_{H^1(U)}^2 \leqslant C_{U,4}(\|A^*\mathbf{f}\|_{L^2}^2 + \|\mathbf{f}\|_{L^2}^2) \tag{4.63}
$$

Since the set of all $f \in D(A^*) \cap (\ker A^*)^{\perp}$ with $A^*f \in D(A)$ is dense in $D(A^*) \cap (\text{ker } A^*)^{\perp}$, (4.63) holds for all $f \in D(A^*) \cap (\text{ker } A^*)^{\perp}$.

Now let $(E, F) \in X^0 \cap D(B)$.

Since $(0, \mathbf{g}) \in \mathcal{N}$ for all $\mathbf{g} \in (\ker A)^*$, it follows from the assumption $E^{(2)}=1$ on Ω that

$$
\langle \mathbf{F}, \mathbf{g} \rangle_{L^2(\Omega)} = \langle (\mathbf{E}, \mathbf{F}), (0, \mathbf{g}) \rangle_X = 0
$$
 for all $\mathbf{g} \in (\text{ker } A)^*$,

in particular $\mathbf{F} \in D(A^*) \cap (\ker A^*)^{\perp}$. Finally, the assertion follows from (4.63) .

Remark 4. As described in Remark 1 the H_{loc}^1 -regularty of \mathbf{w}_1 for ŗ $\mathbf{w} \in X^0 \cap D(B)$ does generally not hold on the set $G = \Omega \backslash \Omega_0$ even if $E^{(j)} = 1$ on Q .

LEMMA 7. Suppose
$$
E^{(2)} = 1
$$
 on Ω .
\nThen $(\mathbf{e}(t), \mathbf{f}(t)) \stackrel{\text{def}}{=} T(t) \mathbf{w} - P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt)$ obeys
\n
$$
(\|\mathbf{e}(t)\|_{L^2(K)} + \|\mathbf{f}(t)\|_{L^2(U)}) \xrightarrow{t \to \infty} 0.
$$

for all compact sets $K \subset \Omega_0$ and $U \subset \Omega$ and $w \in X$.

Proof. First suppose in addition that $\mathbf{w} \in D(B)$ and $\mathbf{G} \in W^{1, 1}((0, \infty), X)$. Define $(\tilde{\mathbf{e}}(t), \tilde{\mathbf{f}}(t))\stackrel{\text{def}}{=} (1-P) T(t) \mathbf{w} \in \mathcal{N}^{\perp} = X^0$. Since $PT(t) \mathbf{w} \in \mathcal{N} \subset D(B)$, Lemma 4 yields

$$
(\tilde{\mathbf{e}}, \tilde{\mathbf{f}}) \in L^{\infty}((0, \infty), D(B) \cap X^0)
$$
\n(4.64)

Hence, it follows from Lemma 6 and Sobolev's imbedding theorem that

$$
\{\tilde{\mathbf{e}}(t): t \ge 0\} \text{ is precompact in } L^2(K)
$$

and
$$
\{\tilde{\mathbf{f}}(t): t \ge 0\} \text{ is precompact in } L^2(U).
$$

Therefore, Lemma 3 and Theorem 3 yield

$$
\|\tilde{\mathbf{e}}(t)\|_{L^2(K)} + \|\tilde{\mathbf{f}}(t)\|_{L^2(U)} \xrightarrow{t \to \infty} 0. \tag{4.65}
$$

Next it follows from Lemma 3 that

$$
\|\tilde{\mathbf{e}}(t) - \mathbf{e}(t)\|_{L^2(K)} + \|\tilde{\mathbf{f}}(t) - \mathbf{e}(t)\|_{L^2(U)}\n\leq \left\|PT(t)\mathbf{w} - P\left(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt\right)\right\|_X \xrightarrow{t \to \infty} 0.
$$
\n(4.66)

Now, the assertion follows from (4.65) and (4.66) under the additional hypothesis $\mathbf{w} \in D(B)$ and $\mathbf{G} \in W^{1, 1}((0, \infty), X)$.

In order to prove the theorem in the general case assume that $\mathbf{w}, \tilde{\mathbf{w}} \in X$ and $G, \tilde{G} \in L^1((0, \infty), X)$. Let \tilde{u} be the corresponding solution to $(1.1)-(1.3)$ with w, G replaced by \tilde{w} and \tilde{G} respectively. Then one obtains from (4.59) and a similar estimate as in (2.28)

$$
\frac{d}{dt} ||T(t) \mathbf{w} - \tilde{\mathbf{u}}(t)||_{\mathcal{X}}^2 = 2\langle \mathbf{G}(t) - \tilde{\mathbf{G}}(t) - F_0(T(t) \mathbf{w})
$$

$$
+ F_0(\tilde{\mathbf{u}}(t)), T(t) \mathbf{w} - \tilde{\mathbf{u}}(t) \rangle_{\mathcal{X}}
$$

$$
\leq ||\mathbf{G}(t) - \tilde{\mathbf{G}}(t)||_{\mathcal{X}} ||T(t) \mathbf{w} - \tilde{\mathbf{u}}(t)||_{\mathcal{X}}
$$

and therefore

$$
\|T(t) \mathbf{w} - \tilde{\mathbf{u}}(t)\|_{X} \leqslant \| \mathbf{w} - \tilde{\mathbf{w}}\|_{X} + \| \mathbf{G} - \tilde{\mathbf{G}}\|_{L^{1}((0,\infty),\,X)}.
$$

Since $W^{1,1}((0, \infty), X)$ is dense in $L^1((0, \infty), X)$, it follows from the latter estimate that the assertion holds for all $w \in X$ and $G \in L^1((0, \infty), X)$.

In the next lemma the strong L_{loc}^r -convergence of \mathbf{u}_1 on the set G is ֚ proved, which in general does not follow from Lemma 6, see Remark 4.

LEMMA 8. Suppose $\mathbf{w} \in X$, $R > 0$ and $r \in [1, 2)$. Then $(\mathbf{e}(t), \mathbf{f}(t)) \stackrel{\text{def}}{=}$ $T(t) \mathbf{w} - P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt)$ obeys

$$
\|\mathbf{e}(t)\|_{L^r(G\cap B_R)}\xrightarrow{t\to\infty}0.
$$

Proof. By the same density-argument as in the proof of the previous lemma it suffices to consider $\mathbf{w} \in D(B)$ and $\mathbf{G} \in W^{1,1}((0,\infty), X)$.

Let $G^{(R)} \stackrel{\text{def}}{=} G \cap B_R$ and $M \stackrel{\text{def}}{=} ||(e, f)||_{L^{\infty}((0, \infty), L^2(\Omega))}$.

Suppose $\delta > 0$. With $\gamma > 0$ as in (2.21) one has $G = \bigcup_{n \in \mathbb{N}}$ $\{x \in G : \gamma(x) > 1/n\}$. Therefore there exists a subset $G_{\delta}^{(R)} \subset G^{(R)}$, such that

$$
M \left| G^{(R)} \backslash G^{(R)}_{\delta} \right|^{(1/r - 1/2)} \leq \delta/2, \tag{4.67}
$$

and

$$
\gamma(x) \geq c_{\delta} \qquad \text{for all} \quad x \in G_{\delta}^{(R)} \tag{4.68}
$$

with some positive constant $c_{\delta} > 0$. In (4.67) $|G^{(R)} \setminus G^{(R)}_{\delta}|$ denotes the Lebesgue-measure of this set.

Since $(P(w + \int_0^\infty G(t) dt))_1 = 0$ on G, one obtains from (4.68) and Lemma 1 that

$$
\mathbf{e} \in L^p((0,\infty), L^1_\gamma(G_\delta^{(R)})) \subset L^p((0,\infty), L^1(G_\delta^{(R)})).
$$
 (4.69)

Lemma 4 yields

$$
\mathbf{e} \in W^{1,\infty}((0,\infty), L^2(\Omega)) \subset W^{1,\infty}((0,\infty), L^1(G_{\delta}^{(R)})).
$$
 (4.70)

By (4.69) and (4.70) the function $t \to ||e(t)||_{L^1(G_\delta^{(R)})}^p$ is uniformly continuous and integrable over $(0, \infty)$ and hence

$$
\|\mathbf{e}(t)\|_{L^1(G_{\delta}^{(R)})}\xrightarrow{t\to\infty}0.
$$

Since $r \in (1, 2)$, this yields

$$
\begin{aligned} \|\mathbf{e}(t)\|_{L^{r}(G_{\delta}^{(R)})} &\leq \|\mathbf{e}(t)\|_{L^{2}(G_{\delta}^{(R)})}^{q}\|\mathbf{e}(t)\|_{L^{1}(G_{\delta}^{(R)})}^{1-\theta} \\ &\leq M^{\theta} \|\mathbf{e}(t)\|_{L^{1}(G_{\delta}^{(R)})}^{1-\theta} \xrightarrow{t \to \infty} 0. \end{aligned} \tag{4.71}
$$

where $1/r = \theta/2 + 1 - \theta$. Next it follows from (4.67) that

$$
\|\mathbf{e}(t)\|_{L^{r}(G^{(R)}\setminus G_{\delta}^{(R)})} \leq \|\mathbf{e}(t)\|_{L^{2}(\Omega)} |G^{(R)}\setminus G_{\delta}^{(R)}|^{(1/r-1/2)}
$$

$$
\leq M |G^{(R)}\setminus G_{\delta}^{(R)}|^{(1/r-1-2)} \leq \delta/2.
$$
 (4.72)

Finally, the assertion follows from (4.71) and (4.72), since $\delta > 0$ is arbitrary. \blacksquare

Now the main theorem concerning strong L^q -convergence can be proved.

THEOREM 4. Suppose $E^{(2)} = 1$ on Ω . Then it follows for all $q \in [1, 2)$, $\mathbf{w} = (\mathbf{E}_0, \mathbf{F}_0) \in X$ and all compact $U \subset \Omega$ that

$$
(\Vert \mathbf{e}(t) \Vert_{L^q(U)} + \Vert \mathbf{f}(t) \Vert_{L^2(U)}) \xrightarrow{t \to \infty} 0.
$$

where $(\mathbf{e}(t), \mathbf{f}(t)) \stackrel{\text{def}}{=} T(t) \mathbf{w} - P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt).$

Proof. Define $M \stackrel{\text{def}}{=} ||(\mathbf{e}, \mathbf{f})||_{L^{\infty}((0, \infty), L^2(\Omega))}$.

Suppose $\delta > 0$. Choose a compact set $K \subset U \cap \Omega_0$ with $M \mid (U \cap \Omega_0) \setminus$ $|K|^{(1/q-1/2)} \leq \delta$. Then Hölder's inequality yields

$$
\begin{aligned} \|e(t)\|_{L^{q}(U)} &\leq \|e(t)\|_{L^{q}(U\cap G)} + \|e(t)\|_{L^{q}(K)} \\ &+ \|e(t)\|_{L^{2}(U)} \|(U\cap \Omega_0)\backslash K|^{(1/q-1/2)} \\ &\leq \|e(t)\|_{L^{q}(U\cap G)} + \|e(t)\|_{L^{q}(K)} + \delta. \end{aligned}
$$

Now, Lemma 7 and Lemma 8 yield $\limsup_{t\to\infty} ||w(t)||_{L^q(U)} \leq \delta$, which completes the proof. \blacksquare

In the case of Maxwell's Eqs. (1.4)–(1.6) the assumption $E^{(2)}=1$ on Ω can be omitted using the compactness-result in [8, 12, 15].

Under the general assumptions considered so far it cannot be expected that the assertion of the previons theorem holds for $q=2$ or sets U which may overlap the boundary $\partial \Omega$. However, for the system corresponding to the scalar wave-equation the result can be improved in this direction. Consider

$$
\partial_t^2 \varphi = \text{div}(E \nabla \varphi) - S(x, \partial_t \varphi) \tag{4.73}
$$

supplemented by the initial-boundary-onditions

$$
\varphi = 0 \qquad \text{on} \quad (0, \infty) \times \partial \Omega \tag{4.74}
$$

$$
\varphi(0, x) = f_0(x)
$$
 and $\partial_t \varphi(0, x) = f_1(x)$. (4.75)

Here the nonlinear function $S: \Omega \times \mathbb{R} \to \mathbb{R}$ obeys the assumptions $(2.1)-(2.7)$. According to (4.59) it is assumed that S is independent of t and monotone with respect to $y \in \mathbb{R}^3$. For a domain $\Omega_1 \subset \Omega$ let $H^1(\Omega_1)$ be the usual first order Sobolev space and $\mathring{H}^1(\Omega_1)$ denotes the closure of $C_0^{\infty}(\Omega_1)$ in $H^1(\Omega_1)$.

Next, $D(\mathscr{A}) \subset \mathbb{H}^1(\Omega)$ is defined as the set of all $f \in \mathbb{H}^1(\Omega)$, such that

$$
\mathscr{A}f \stackrel{\text{def}}{=} -\text{div}(E\nabla f) \in L^2(\Omega).
$$

It is well known that for $f_0 \in \mathring{H}^1(\Omega)$ and $f_1 \in L^2(\Omega)$ problem (4.73)–(4.75) admits a unique solution $\varphi \in C([0, \infty), H^1(\Omega))$ with $\partial_t \varphi \in C([0, \infty),$ $L^2(\Omega)$). The usual energy-estimate yields

$$
\partial_t \varphi \in L^{\infty}((0,\infty) L^2(\Omega)), \nabla \varphi \in L^{\infty}((0,\infty), L^2(\Omega)).
$$
 (4.76)

If in addition $f_1 \in \mathring{H}^1(\Omega)$ and $f_0 \in D(\mathscr{A})$ then $\varphi \in C([0, \infty), D(\mathscr{A}))$ and $\partial_t \varphi \in C([0, \infty), H^1(\Omega))$ with

$$
\partial_t \nabla \varphi, \partial_t^2 \varphi \in L^\infty((0, \infty) L^2(\Omega)),
$$

div $(E \nabla \varphi) = \mathscr{A} \varphi(\cdot) \in L^\infty((0, \infty), L^2(\Omega)).$ (4.77)

In order to consider problem $(4.73)-(4.75)$ is the setting of Section 2 the following operators are introduced. Let $D(A) \stackrel{\text{def}}{=} H^1(\Omega, \mathbb{C}), A\varphi \stackrel{\text{def}}{=} \nabla \varphi$. $D(A^*)$ is the space of all vector-fields $\mathbf{a} \in L^2(\Omega, \mathbb{C}^3)$ with $A^* \mathbf{a} = -\text{div } \mathbf{a} \in \mathbb{C}$ $L^2(\Omega)$. Next, $D(B) \stackrel{\text{def}}{=} D(A) \times D(A^*)$ and

$$
B(\mathbf{w}_1, \dots, \mathbf{w}_4) \stackrel{\text{def}}{=} (-A^*(\mathbf{w}_2, \dots, \mathbf{w}_4), EA\mathbf{w}_1) = (\text{div}(\mathbf{w}_2, \dots, \mathbf{w}_4), E\nabla \mathbf{w}_1)
$$

for $\mathbf{w} \in D(B)$.

Suppose $\varphi \in C([0, \infty), \stackrel{0}{H}^1(\Omega))$ is for $f_0 \in \stackrel{0}{H}^1(\Omega)$ and $f_1 \in L^2(\Omega)$ a solution of problem (4.73)–(4.75). Then $\mathbf{u} \stackrel{\text{def}}{=} (\partial_t \varphi, E \nabla \varphi) \in C([0, \infty)),$ $L^2(\Omega, \mathbb{R}^4)$ is a weak solution of (2.26), i.e.,

$$
\frac{d}{dt}\langle \mathbf{u}(t), \mathbf{a}\rangle_{X} = -\langle \mathbf{u}(t), B\mathbf{a}\rangle_{X} - \langle F_{0}(\mathbf{u}(t)), \mathbf{a}\rangle_{X} \quad \text{for all} \quad \mathbf{a} \in D(B)
$$

where $F_0: L^2(\Omega, \mathbb{R}^4) \to L^2(\Omega, \mathbb{R}^4)$ is defined by

$$
F_0(\mathbf{u}) \stackrel{\text{def}}{=} (S(\cdot, \mathbf{u}_1(\cdot)), 0).
$$

If $f_0 \in D(\mathcal{A})$ and $f_1 \in \mathring{H}^1(\Omega)$ then $\mathbf{u}(0) \in D(B)$ and hence by Lemma 4 $\mathbf{u} \in L^{\infty}((0, \infty), D(B)),$ whence again (4.77).

Next it is shown that

 $\nabla \varphi(t) \xrightarrow{t \to \infty} 0$ and $\partial_t \varphi(t) \xrightarrow{t \to \infty} 0$ in $L^2(\Omega)$ weakly. (4.78)

for all $f_0 \in \mathring{H}^1(\Omega)$ and $f_1 \in L^2(\Omega)$. For this purpose let $\mathbf{w} \stackrel{\text{def}}{=} (f_1, E \nabla f_0) \in$ $L^2(\Omega, \mathbb{R}^4)$. Then $(\partial_t \varphi(t), E \nabla \varphi(t)) = \mathbf{u}(t) = T(t)$ w solves (2.26). In order to apply Theorem 3 it suffices to show

$$
\mathbf{w} \in X^0 \tag{4.79}
$$

Suppose $\mathbf{a} \in \mathcal{N}$. Then $\mathbf{a}_1 \in \mathring{H}^1(\Omega)$, with $\nabla \mathbf{a}_1 = 0$, which implies $\mathbf{a}_1 = 0$. Moreover, div(\mathbf{a}_2 , ..., \mathbf{a}_4) = 0 by the definition of A, B. Hence

$$
\langle \mathbf{w}, \mathbf{a} \rangle_X = \int_{\Omega} [E^{-1}(\mathbf{w}_2, ..., \mathbf{w}_4)](\mathbf{a}_2, ..., \mathbf{a}_4) dx = \int_{\Omega} (\mathbf{a}_2, ..., \mathbf{a}_4) \nabla f_0 dx = 0
$$

since $f_0 \in \mathring{H}^1(\Omega)$. Thus, (4.79) and (4.78) are proved. In the following theorem local strong convergence in the energy-norm is shown.

THEOREM 5. For all
$$
R \in (0, \infty)
$$
, $f_0 \in \mathring{H}^1(\Omega)$ and $f_1 \in L^2(\Omega)$ one has
\n
$$
(\|\nabla \varphi(t)\|_{L^2(\Omega \cap B_R)} + \|\partial_t \varphi(t)\|_{L^2(\Omega \cap B_R)}) \xrightarrow{t \to \infty} 0.
$$

Proof. By a density-argument it suffices to consider $f_0 \in D(\mathcal{A})$ and $f_1 \in \overset{0}{H}^1(\Omega).$

Choose $\chi \in C_0^{\infty}(B_{2R})$ with $\chi(x) = 1$ on B_R and define $\Omega_R \stackrel{\text{def}}{=} \Omega \cap B_{2R}$ and $\varphi_R(t, x) \stackrel{\text{def}}{=} \chi(x) \varphi(t, x)$. It follows easily from (4.77) using Poincare's inequality that $\varphi_R \in L^{\infty}((0, \infty), \stackrel{0}{H}^1(\Omega \cap B_{2R}))$ and $\partial_t \varphi_R \in L^{\infty}((0, \infty),$ $H^1(\Omega \cap B_{2R})$. Since $\Omega \cap B_{2R}$, is bounded, the imbedding $H^1(\Omega \cap B_{2R}) \hookrightarrow$ $L^2(\Omega \cap B_{2R})$ is compact. Hence

$$
\{\varphi(t): t \ge 0\} \text{ is precompact in } L^2(\Omega \cap B_R) \tag{4.80}
$$

and
$$
\{\partial_t \varphi(t) : t \ge 0\}
$$
 is precompact in $L^2(\Omega \cap B_R)$. (4.81)

for all $R \in (0, \infty)$. Next, one obtains by (2.25) and the definition of $\mathscr A$ that

$$
c_0 \|\nabla(\varphi(t_1) - \varphi(t_2))\|_{L^2(B_R)}^2
$$

$$
\leqslant \int_{\Omega} \chi E \nabla(\varphi(t_1) - \varphi(t_2)) \nabla(\varphi(t_1) - \varphi(t_2)) dx
$$

$$
= -\int_{\Omega} (\varphi(t_1) - \varphi(t_2)) \operatorname{div}(\chi E \nabla [\varphi(t_1) - \varphi(t_2)]) dx
$$

\$\leq \|\varphi(t_1) - \varphi(t_2)\|_{L^2(B_{2R})} (\|\mathcal{A}(\varphi(t_1) - \varphi(t_2))\|_{L^2(\Omega)}
+ K_R \|\nabla(\varphi(t_1) - \varphi(t_2))\|_{L^2(\Omega)}) \quad \text{for all} \quad t_1, t_2 \geq 0.

which implies by (4.76), (4.77), and (4.80) also

$$
\{\nabla \varphi(t) : t \geq 0\} \text{ is precompact in } L^2(\Omega \cap B_R) \tag{4.82}
$$

Finally, the result follows from (4.78) , (4.81) , and (4.82) .

ACKNOWLEDGMENT

The author expresses gratitude to the referee for some helpful comments especially for pointing out that Holmgren's theorem can be used in the proof of Theorem 1.

REFERENCES

- 1. R. A. Adams, "Sobolev Spaces," Academic Press, 1975.
- 2. H. Barucq and B. Hanouzet, Asymptotic behavior of solutions to Maxwell's equations in bounded domains with absorbing Silver-Müller's condition on the exterior boundary, Asympt. Anal. 15 (1997), 25-40.
- 3. F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback, Ann. Inst. Henry Poincaré 11 (1994), 485-515.
- 4. C. M. Dafermos, Asymptotic behavior of solutions of evolution equations, in "Nonlinear" Evolution Equations," pp. 103-123, Academic Press, New York, 1978.
- 5. E. Feireisl, Strong decay for wave equations with nonlinear nonmonotone damping, Nonlinear Anal. 21 (1993), 49-64.
- 6. A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations 59 (1985), 145-154.
- 7. L. Hörmander, "The Analysis of Linear Partial Differential Operators I," Springer, New York, 1983.
- 8. F. Jochmann, A compactness result for vector fields with divergence and curl in $L^{q}(\Omega)$ involving mixed boundary conditions, Appl. Anal. 66 (1997), 198-203.
- 9. F. Jochmann, Existence of weak solutions of the drift-diffusion model for semiconductors coupled with Maxwell's equations, *J. Math. Anal. Appl.* 204 (1996), 655–676.
- 10. J. L. Lopez-Gomes, On the linear damped wave equation, J. Differential Equations 134 $(1997), 26-45.$
- 11. A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'' Springer, New York, 1983.
- 12. R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z. 187 (1984), 151-161.
- 13. M. Reed and B. Simon, "Mathematical Methods in Modern mathematical Physics II," Academic Press, San Diego, 1977.
- 14. M. Slemrod, Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear nonmonotone damping, Proc. Roy. Soc. Edinburgh Sect. A 113 $(1989), 87-97.$
- 15. C. Weber, A local compactness theorem for Maxwell's equations, Math. Methods Appl. Sci. 2 (1980), 12-25.
- 16. W. P. Ziemer, "Weakly Differentiable Functions," Springer-Verlag, New York, 1989.
- 17. E. Zuzazua, Stability and decay for a class of nonlinear hyperbolic problems, *Asymptot*. Anal. 1 (1988), 161-185.