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1. INTRODUCTION

The subject of this paper is the long time asymptotic behavior of
solutions of semilinear hyperbolic systems of the form

�t E=E (1) } _\ :
3

k=1

H k*�k F+&S(t, x, E, F)&+G(1), (1.1)

�t F=E (2) } :
3

k=1

Hk �k E+G(2), (1.2)

with the initial-condition

E(0, x)=E0(x), F(0, x)=F0(x). (1.3)

Here E # C([0, �), L2(0, RM)) and F # C([0, �), L2(0, RN)) are the
unknown functions depending on the time t�0 and the space-variable
x # 0. G(1) # L1((0, �), L2(0, RM)) and G(2) # L1((0, �), L2(0, RN)) are
prescribed functions.

The domain 0/R3 is arbitrary. Hk # RN_M are constant matrices,
E (1) # L�(0, RM_M) and E (2) # L�(0, RN_N) are positive symmetric
variable matrices, which depend on the space-variable x # 0 and satisfy
E (1)=1 and E (2)=1 on 00=def 0"G with some subset G/0.

The generally nonlinear function S : [0, �)_0_RM+N � RM satisfies

S(t, x, y, z)=0 for all x # 00=0"G and

S(t, x, 0)=0 for all x # 0, t # (0, �).
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In particular the damping-term S(t, x, E, F) is only present on a certain
subset G/0. The following dissipativity-assumption is imposed.

yS(t, x, y, z)�#(x) min[ |y| p, |y|] for all t�0,

y # RM, z # RN, x # G.

Here p # [2, �) and # # L�(G) is a positive function on G, which does not
necessarily have a uniform positive lower bound on G.

This means that S(t, x, y, z) is allowed to be bounded as | y| � � and
|S(t, x, y, z)| behaves like | y| p&1 for small | y|. In particular a linear
damping-term S(t, x, E, F)=_(t, x) E with _ # L�([0, �)_G), _�0 is
possible.

A domain D(B)/L2(0, RM+N) containing C �
0 (0, RM+N) is chosen,

such that the operartor

B(E, F) =
def \E (1) _ :

3

k=1

Hk*�k F& , E (2) _ :
3

k=1

Hk �k E&+
is skew-adjoint on D(B), i.e., B*=&B with respect to a weighted scalar-
product. The choice of D(B) depends on the boundary conditions on �0
supplementing (1.1)�(1.2).

A physically important example for this system are Maxwell's equations
describing the propagation of the electromagnetic field

=�t E=curl H&S(t, x, E, H)&j and +�tH=&curl E, (1.4)

supplemented by the initial-boundary conditions

n� 7 E=0 on (0, �)_11 , n� 7H=0 on (0, �)_12 , (1.5)

E(0, x)=E0(x), H(0, x)=H0(x). (1.6)

In (1.5) 11 /�0 and 12 =
def

�0"11 . E, H denote the electric and magnetic
field respectively which depend on the time t�0 and the space-variable
x # 0, whereas j # L1((0, �), L2(0, R3)) is a prescribed external current.
The term S(t, x, E, H) describes a possibly nonlinear resistor. The dielectric
and magnetic susceptibilities =, + # L�(0) are assumed to be uniformly
positive.

For (1.4), (1.5) the operator B is defined in the space X=def L2(0, C6) by

B(E, F) =
def

(=&1 curl F, &+&1 curl E) for (E, F) # D(B) =
def WE_WH .

Here WH is the closure of C �
0 (R3"12 , C3) in Hcurl (0), where Hcurl (0), is

the space of all E # L2(0, C3) with curl E # L2(0).
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WE denotes the set of all E # Hcurl (0), such that

|
0

E curl F&F curl E dx=0 for all F # WH ,

which includes a weak formulation of the boundary-condition n� 7 E=0 on
11 , see [8] and [9].

Another example for (1.1)�(1.2) is the first-order system corresponding
to the initial-boundary-value-problem of the scalar wave-equation with
nonlinear damping, for which the long-time behaviour in the case of a
bounded domain has been investigated in [3, 4�6, 10, 14, and 17].

�2
t .=div(E{.)&S(x, �t.) (1.7)

supplemented by the initial-boundary-onditions

.=0 on (0, �)_�0 (1.8)

.(0, x)= f0(x) and �t.(0, x)= f1(x) (1.9)

for initial-data f0 # H
0

1(0) and f1 # L2(0). Here E # L�(0, R3_3) is a
symmetric matrix-valued function satisfying E=1 on 00=0"G.

Note that u=def (�t., E{.) # C([0, �), L2(0, R4)) solves the system

�t u=(div(u2 , ..., u4)&S(t, x, u1), E{u1) (1.10)

which is of the form (1.1)�(1.3).
The aim of this paper is to show that the solution (E, F) of (1.1)�(1.3)

satisfies

(E(t), F(t)) ww�t � � 0 in L2(0) weakly (1.11)

if and only if the initial-data (E0 , F0) # L2(0) obey

|
0

(E (1)&1E� 0 e+E (2)&1 F� 0 f) dx=0 for all (e, f ) # N. (1.12)

Here

E� 0 =
def

E0+|
�

0
G(1) dt and F� 0 =

def
F0+|

�

0
G(2) dt

and N/L2(0, RM+N) denotes the set of all (E, F) # ker B with E=0 on G.
Furthermore it is shown that for arbitrary initial-states (E0 , F0) # L2(0)

the solution (E, F) of (1.1)�(1.3) converges weakly in L2(0) to some
element of N as t � �.

441SEMILINEAR HYPERBOLIC SYSTEMS IN ARBITRARY DOMAINS



It follows easily from the assumptions on S that N is the set of stationary
states of the system (1.1)�(1.3) provided that G=0.

In the case of Maxwell's equations (1.4)�(1.6) the condition (1.12) on
(E0 , F0) implies

div \=E0&|
�

0
j dt+=0 on 00 and div(+H0)=0 on 0

(1.13)

since N contains all elements of the form ({., {�) with . # C �
0 (00) and

� # C �
0 (0).

If S is independent of t and monotone with respect to E strong
Lr

-convergence is shown, i.e.,

&E(t)&Lr(K )+&F(t)&L2(K ) ww�t � � 0 for all 1�r<2, and compact sets

K/0 (1.14)

if the initial-data (E0 , F0) # L2(0) obey condition (1.12).
Finally (1.11) is used to prove that the solution the wave-equation

(1.7)�(1.8) in an arbitrary domain 0/R3 decays with respect to the
energy-norm on each bounded subdomain of 0. For all R # (0, �),

f0 # H
0

1(0) and f1 # L2(0) it is shown that

(&{.(t)&L2(0 & BR)+&�t .(t)&L2(0 & BR)) ww�t � � 0.

The proof of (1.11) is based on a suitable modification of the approach in
[4] for the case that the operator B does not necessarily have purely dis-
crete spectrum. The basic idea is to show that for each f # C �

0 (R"[0]) and
g # |0(E0 , F0) the function f (iB) g is real-analytic and vanishes on G,
where |0(E0 , F0) denotes the |-limit-set with respect to the weak topology
of the orbit belonging to the initial-state (E0 , F0). This implies f (iB) g=0
for all f # C �

0 (R"[0]) and hence g # ker B. (Here the operator f (iB) can be
defined by the spectral-theorem, since iB is self-adjoint in L2(0, CM+N).)

In [14] it is shown that the solution of the scalar wave-equation in a
bounded domain tends to zero weakly in the energy-space if S(x, y)=
a(x) g( y) obeys ker g/(&�, 0] or ker g/[0, �). The assumptions on
the nonlinear damping-term have been further weakened in [5] where
strong convergence is obtained in the case that 0 is a bounded one-dimen-
sional interval. In [17] also decay-rates for the energy-norm are obtained,
which depend on the behaviour of the damping term for y near zero.

In [4, 6, 14] the following unique-continuation-principle is used. Let
0/RN be bounded and u # C([0, �), H

0
1(0)) & C1([0, �), L2(0)) be a

solution of the wave-equation �2
t u=2u on [0, �)_0 with the property
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that u(t, x)=0 on [0, �)_E for some subset E/0 with positive measure.
Then u=0 on all of [0, �)_0.

In this paper the following modification for not necessarily bounded
domains is proved, see Theorem 1. Let (e, f ) # C(R, L2(0, RM+N )) solve
�t(e, f )=B(e, f ) with the property that e(t, x)=0 for all t # R and x # G.
Then (e(0), f(0)) # ker B.

2. NOTATION, ASSUMPTIONS

For an arbitrary open set K/R3 the space of all infinitely differentiable
functions with compact support contained in K is denoted by C �

0 (K).
Let 0/R3 be a (connected) domain and let 00 /0 be an open subset,

such that G =
def 0"00 has nonempty interior. The variable matrices

E (1) # L�(0, R(M_M)) and E (2) # L�(0, R(N_N)) assumed to be symmetric
and uniformly positive in the sense that

y= } E (1)(x) y�c0 |y|2 and z= } E (2)(x) z�c0 |z|2 (2.15)

for all x # 0, y # RM and z # RN with some c0 # (0, �) independent of
x, y, z.

Next,

E (1)(x)=1 and E (2)(x)=1 for all x # 00 . (2.16)

The assumptions on S : [0, �)_0_RM+N � RM are the following.

S(t, x, y, z)=0 if x # 00=0"G, (2.17)

S( } , } , y, z) measurable for fixed y # RM, z # RN (2.18)

and Lipschitz-continuous, i.e., there exists L # (0, �), such that

|S(t, x, y, z)&S(t, x, y~ , z~ ) |�L( |y&y~ |+|z&z~ | ) (2.19)

for all y, y~ # RM, z, z~ # RN and x # 0.

|S(t, x, y, z)|2�C0 y } S(t, x, y, z) (2.20)

for all t�0, x # G, y # RM, z # RN, with some C0 # (0, �). Moreover,

yS(t, x, y, z)�#(x) min[ |y| p, |y|] (2.21)

for all t�0, y # RM, z # RN, x # G.
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Here # # L�(G) with #>0 and p # [2, �). The function # does not
necessarily have a uniform positive lower bound on G. It follows from the
two latter assumptions that S(t, x, y, z)=0 if and only if y=0 for all x # G.

In the sequel Lq
#(K ) denotes for a measurable subset K/G the weighted

Lq-space endowed with the norm

&u&L#
q(K ) =

def \|K
|u| q # dx+

1�q

where q # [1, �) and # as in (2.21).
The matrices Hj # RN_M obey the following algebraic condition, which is

fulfilled in the examples (1.4)�(1.6) and (1.7)�(1.9).

\ :
3

k=1

!k Hk+\ :
3

k=1

!k H k*+\ :
3

k=1

!k Hk+=|!| 2 \ :
3

k=1

!kHk+ for all ! # R3

(2.22)

Let W0 /L2(0, CM) be the space of all e # L2(0, CM) with �3
k=1

�k(Hke) # L2(0) in the sense of distributions endowed with the norm

&e&2
W0

=
def

&e&2
L2+" :

3

k=1

�k(Hk e)"
2

L2
.

Furthermore, let D(A) with C �
0 (0, CM)/D(A) be closed subspace of W0

with respect to the above norm and

Ae =
def

:
3

k=1

�k(Hke) for e # D(A). (2.23)

Then the adjoint operator A* obeys C �
0 (0, CN)/D(A*) and

A*F=& :
3

k=1

�k(H k*F) for all F # D(A*). (2.24)

For a vector w # CM+N we denote by w
� 1 the first M and by w

� 2 the last
N components of w.

Now, the following operators are defined.
Let D(B0) =

def D(A)_D(A*) and

B0w =
def

(&A*w
� 2 , Aw

� 1) for w # D(B0)=D(A)_D(A*).

Next, B =
def EB0 with E =

def
diag (E (1), E (2)), i.e., D(B) =

def D(B0) and

Bw =
def EB0w=(&E (1)A*w

� 2 , E (2)Aw
� 1) (2.25)
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for w # D(B). It turns out that B is a densely defined skew self-adjoint
operator in the Hilbert-space X =

def L2(0, CM+N) endowed with the scalar-
product

(u, v) X =
def |

0
E&1uv� dx

This follows from the closedness of A, which implies that A**=A� =A. (It
is advantageous for following considerations to consider a complex space
X. But whenever the term S(t, x, E, F) occurs in an equation, the functions
E and F are of course assumed to be real-valued.)

Now, let N be the set of all a # ker B with a
� 1(x)=0 for all x # G.

Moreover, let X 0 =
def

N= be the space of all w # X with (u, w) X=0 for
all u # N.

For G=(G(1), G(2)) # L1((0, �), L2(0, RM+N)) and w # L2(0, RM+N) a
function u # C([0, �), X ) is called a weak soution to the problem
(1.1)�(1.3), if

d
dt

(u(t), a) X=&(u(t), Ba) X+(G(t)&F(t, u(t)), a)X

for all a # D(B) (2.26)

and u fulfilles the initial-condition.
Here F : (0, �)_X � X is defined by

F(t, u) =
def

(E (1)S(t, } , u( } )), 0).

(2.26) is equivalent to the variation of constant formula

u(t)=exp(tB) w+|
t

0
exp((t&s) B)[G(s)&F(s, u(s))] ds (2.27)

where (exp(tB))t # R is the unitary group generated by B. Since F(t, } ) is
assumed to be Lipschitz-continuous in X by assumption (2.19), it follows
from a standard result that this integal-equation has a unique solution
u # C([0, �), X ), (see [11, chap. 7]).

(2.27) yields the energy-estimate

1
2

d
dt

&u(t)&2
X=(G(t)&F(t, u(t)), u(t)) X

=(G(t), u(t)) X&|
G

S(t, x, u(t)) } u(t) 1 dx

�(G(t), u(t)) X . (2.28)
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In the sequel T( } ) w # C([0, �), X ) denotes the unique solution to
(1.1)�(1.3) in the sense of (2.26).

3. WEAK CONVERGENCE FOR T � �

In the following lemma it is shown in particular that T( } ) w #
L�((0, �), X ), i.e., &T(t) w&X is bounded as t � �.

Lemma 1. Suppose w # X and u(t) =
def T(t) w. Then

&u(t)&X�&w&X+&G&L1((0, �), X ) ,
(3.29)

|
�

0
(u(t), F(t, u(t))) X dt�(&w&X+&G&L1((0, �), X ))

2

and

|
�

0
&F(t, u(t))&2

X dt�C0(&w&X+&G&L1((0, �), X ))
2

with some C0 # (0, �) independent of w. Moreover,

u
� 1 # L p((0, �), L#

1(K)) for all bounded measurable subsets K/G.

(3.30)

Proof. Let u(t)=(E(t), F(t)) =
def T(t) w. By the assumptions (2.20) on S

one has

&F(t, f )&2
X�C0(F(t, f ), f) X for all f # X

with some C0>0 independent of f. Therefore, the energy-estimate (2.28)
yields

1
2

d
dt

&u(t)&2
X�(G(t)&F(t, u(t)), u(t)) X

�&G(t)&X &u(t)&X&(F(t, u(t)), u(t)) X

�&G(t)&X &u(t)&X&C &1
0 &F(t, u(t))&2

X .

This implies (3.29) by Gronwall's lemma.
To prove (3.30) let f # X and define a, b # L2(G, RM) by a(x) =

def
f
� 1

(x) if
|f
� 1

(x)|�1 and a(x) =
def

0 if |f
� 1

(x)|>1. Moreover, b(x) =
def

f
� 1

(x) if |f
� 1

(x)|>1
and b(x) =

def
0 if |f

� 1
(x)|�1.
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Then it follows from assumption (2.21) that

a(x) S(t, x, a(x), f
� 2

(x))�#(x) |a(x)| p and

b(x) S(t, x, b(x), f
� 2

(x))�#(x) |b(x)|

for all x # G. Ho� lder's inequality yields

&f
� 1

&L#
1(K )�&a&L#

1(K )+&b&L#
1(K)

�CK, 1&a&L#
p(K )+&b&L#

1(K )

=CK, 1 \|G
|a(x)| p # dx+

1�p

+|
G

|b(x)| # dx

�CK, 1 \|G
a(x) S(t, x, a(x), f

� 2
(x)) dx+

1�p

+|
G

b(x) S(t, x, b(x), f
� 2(x)) dx

�CK, 1 \|G
f(x) S(t, x, f(x)) dx+

1�p

+|
G

f(x) S(t, x, f(x)) dx

=CK, 1(( f, F(t, f )) X)1�p+( f, F(t, f )) X

�CK, 2(1+&f&2&2�p
X )(( f, F(t, f )) X)1�p (3.31)

Finally, the assertion (3.30) follows from (3.29) and (3.31). K

Next some lemmata concerning the operator B are given.

Lemma 2. (i) 2w=B2
0w on 0 for all w # (rang B0) & D(B2

0), in
particular &2e=A*Ae and &2 f=AA* f on 0 for all e # (rang A*) &

D(A) and f # (rang A) & D(A*) with Ae # D(A*) and A* f # D(A).

(ii) 2w=B2w on 00=0"G for all w # X 0 & D(B2).

Proof. Let u # C �
0 (0, CM+N)/D(Bn

0) for all n # N. Then it follows
from the algebraic condition (2.22) using Fourier-transform that

F(B3
0u) 1(!)=&i \ :

3

j=1

!j H j*+\ :
3

k=1

!kHk+\ :
3

l=1

!l H l*+ F(u
� 2)(!)

=&i |!|2 \ :
3

l=1

!lH l*+ F(u
� 2)(!)
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Analogously,

F(B3
0u) 2 (!)=&i |!|2 \ :

3

l=1

!lHl+ F(u
� 1)(!)

and hence

B3
0u=B0 2u for all u # C �

0 (0, CM+N). (3.32)

Now, assume w # (rang B0) & D(B2
0), i.e., w=B0 v with some v # D(B3

0).
Then

|
0

(B2
0w) u dx=(B3

0v, u� ) L2=&(v, B3
0u� ) L2

=&(v, B0 2u� ) L2=(w, 2u� ) L2=|
0

w 2u dx

for all u # C �
0 (0), which means B2

0w=2w in the sense of distributions.
To prove (ii) let w # X 0 & D(B2). Suppose u # C �

0 (00 , CM+N), and define
u~ =

def
(B2

0&2) u # C �
0 (00 , CM+N)/D(Bn

0). Then (3.32) yields B0 u~ =0 and
hence u~ # N. In particular 0=(w, u~ ) X , because w # X 0. Since E=1 on 00 ,
it follows Bu=B0u # D(B) and u~ =(B2&2) u. Now,

0=(w, u~ ) X=(w, B2u) X&(w, 2u) X=(B2 w, u) X&(w, 2u) X

=|
0

([B2w] u� &w 2u� ) dx

Since u # C �
0 (00 , CM+N) is arbitrary, the assertion follows. K

Remark 1. Due to the facts that generally E ( j){1 and a
� 1=0 on G for

all a # N we have 2w
� 1 {(B2w) 1 on G for all w # X 0 & D(B2) in general.

For example is the case of Maxwell's Eqs. (1.4)�(1.6) all w # X 0 & D(B2)
obey (B2w) 1=&=&1 curl(+&1 curl w

� 1). The condition w # X 0 implies
div(=w

� 1)=0 on 00 and div(+w
� 2)=0 on 0, as mentioned in the introduc-

tion, but it does not provide any information on the divergence of w
� 1 on

the set G, since a
� 1=0 on G for all a # N.

The next theorem is the generalization of the unique-continuation-
principle in [4] and [6] as mentioned in the introduction.

Theorem 1. Let g # X with the property

(exp(tB) g)1=0 on G for all t # R. (3.33)

Then g # N/ker B.
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Proof. Since iB is self-adjoint in X, f (iB)=�R f (*) dE* can be defined
by the spectral-theorem for a Borel-measurable function f : R � C. Here
(E*)* # R denotes the family of spectral-projectors of iB. If f # C �

0 (R), then
bounded operator f (iB) has the representation

f (iB) u=(2?)&1�2 |
R

f� (t) exp(&tB) u dt for all u # X. (3.34)

Here f� denotes the Fourier-transform of f. To see this let u, v # X. Then

( f (iB) u, v) X=|
R

f (*) d(E* u, v) X

=(2?)&1�2 |
R
|

R

f� (t) exp(it*) dt d(E*u, v) X

=(2?)&1�2 |
R

f� (t)(exp(&tB) u, v) X dt

Suppose f # C �
0 (R"[0]). Then (3.33) and (3.34) yield

( f (iB) g)1=0 on G. (3.35)

Moreover,

f� (iB) g=iBf (iB) g=i(&E (1)A* ( f (iB) g) 2 , E (2)A ( f (iB) g) 1) on 0,

(3.36)

where f� (*)=*f (*). In particular (3.35) and (3.36) yield by replacing f by
g(*)=def *&1f (*) # C �

0 (R"[0]) that

( f (iB) g) 2=iE (2)A (g(iB) g) 1=0 on G

and hence by (3.35)

f (iB) g=0 on G (3.37)

Since E(x)=1 on 0"G, (3.35)�(3.37) yield

B0 f (iB) g=B( f (iB) g)=&if� (iB) g for all f # C �
0 (R"[0]) (3.38)

with f� (*)=*f (*).
In particular it follows by induction

f (iB) g # (rang B0) & D(Bn
0) with Bn

0 f (iB) g=Bn( f (iB) g) (3.39)

for all f # C �
0 (R"[0]) and n # N.
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The aim of the following considerations is to show that f (iB) g is real
analytic on 0. This will be achieved by means of a local integral representation.

Let f # C �
0 (R"[0]) and choose / # C �

0 (R"[0]) with /(*)=1 on supp f.
Define

F(t) =
def

exp(&tB) /(iB) g=(2?)&1�2 |
R

/̂(!) exp((&t&!) B) g d!.

Then (3.39) and Lemma 2(i) yield

�2
t F(t)=B2 F(t)=B2

0F(t)=2F, (3.40)

in particular

� j
t 2k F=(&1) j B j+2k F( } ) # L�(R, L2(0))

for all j # N and k # N,

which implies F # C�(R_0) and

� j
t �:F # L�(R_K) for all compact K/0, j # N0 and : # N3

0 .

(3.41)

Suppose x0 # 0 and choose R>0 with B2R(x0)/0. Let

K(x, !) =
def

(4? |x| )&1 f� (!&|x| ) for ! # R and x # R3

Then (3.41) yields for all x # BR�2(x0)

lim
r � 0 |

R
|

�Br (x)
n� ( y)[K(x& y, !) {yFj (!, y)

&Fj (!, y) {yK(x& y, !)] dS( y) d!

=(4?)&1 lim
r � 0 \r&3 |

R

f� (!&r) |
�Br (x)

[n� ( y)(x& y)] Fj (!, y) dS( y) d!+
=|

R

f� (!) Fj (!, x) d!

=|
R

f� (!)(exp(&!B) /(iB) g) j (x) d!

=(2?)1�2 ( f (iB) /(iB) g)j (x)

=(2?)1�2 ( f (iB) g) j (x). (3.42)
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For all x # BR�2(x0) and all y # B2R(x0) with y{x one has by (3.40)

divy[K(x& y, !) {y Fj (!, y)&Fj (!, y) {yK(x& y, !)]

=K(x& y, !) 2yFj (!, y)&Fj (!, y) 2y K(x& y, !)

=K(x& y, !) �!
2 Fj (!, y)&Fj (!, y) �!

2K(x& y, !)

=�![K(x& y, !) �! Fj (!, y)&Fj (!, y) �!K(x& y, !)]

and hence

|
R

|
�BR(x0)

n� ( y)[K(x& y, !) {y Fj (!, y)&Fj (!, y) {yK(x& y, !)] dS( y) d!

&|
R
|

�Br (x)
n� ( y)[K(x& y, !) {yFj (!, y)

&Fj (!, y) {y K(x& y, !)] dS( y) d!

=|
R
|

BR(x0)"Br (x)
divy[K(x& y, !) {yFj (!, y)

&Fj (!, y) {y K(x& y, !)] dy d!

=|
BR(x0)"Br (x)

|
R

�![K(x& y, !) �!Fj (!, y)

&Fj (!, y) �!K(x& y, !)] d! dy=0, (3.43)

since K(x& y, !) ww�
|!| � �

0 and �! K(x& y, !) ww�
|!| � �

0, whereas F and �!F
remain bounded as |!| � � by (3.41) for fixed y{x.

Now, (3.42) and (3.43) yield for all x # BR�2(x0)

(2?)1�2 ( f (iB) g) j (x)=|
R

|
�BR(x0)

n� ( y)[K(x& y, !) {yF j (!, y)

&Fj (!, y) {y K(x& y, !)] dS( y) d! (3.44)

Since f # C �
0 (R), there exists a constant C1 # (0, �) with

(1+!2) | f� (k)(!)|�C k
1 for all ! # R and k # N.
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Hence there exists a constant C2 # (0, �) with

|
R

|
�BR(x0) \}

d k

d{k K(x0+{'& y, !) }
+ } d k

d{k (n� ( y) {yK(x0+{'& y, !)) }+ dS( y) d!

�C k
2 k ! |'|k

for all ' # R3 with |'|�R�2, { # (&1, 1) and k # N. Now it follows from
(3.41) and (3.44) and the previous estimate that there exists a constant
C3 # (0, �) with

} d k

d{k ( f (iB) g)(x0+{') }�(C3 |'| )k k !

for all ' # R3 with |'|�R�2, { # (&1, 1) and k # N, which yields the
analycity of f (iB) g.

Next this analycity yields by (3.37) and the assumptions that G has
nonempty interior and 0 is connected that

f (iB) g=0 for all f # C �
0 (R"[0]). (3.45)

Choose a sequence fn # C �
0 (R"[0]), n # N with | fn(*)|�1 and fn(*) ww�

n � �
1

for all * # R"[0].
By the spectral-theorem (3.45) implies

0=( fn(iB) g, g) X ww�
n � � ( (1&Pker B) g, g) X

and hence g=Pker Bg # ker B. Together with (3.33) this yields g # N, which
completes the proof. K

Remark 2. In [7], Chap. VIII the following result can be found
(Theorem 8.6.8), which is a consequence of Holmgren's uniqueness-theorem:

Let X1 , X2 /RN open and convex with X1 /X2 . Let L be a differential
operator with constant coefficients. Then the following conditions are
equivalent:

(i) All u # D$(X2) with Lu=0 on X2 and u=0 on X1 are identically
zero on all of X2 .

(ii) Every hyperplane which is characteristic with respect to L and
intersects X2 also intersects X1 .
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This can be used in the proof of the previous theorem as follows. Let
/ # C �

0 (R"[0]) and define

F(t) =
def

exp(&tB) /(iB) g=(2?)&1�2 |
R

/̂(!) exp((&t&!) B) g d!.

As above it follows from (3.37), (3.39) and Lemma 2(i) that F # C�(R_0)
solves the scalar wave-equation (3.40) and vanishes on the subset R_G. In
order to apply Theorem 8.6.8 in [7] define U as the set of all x # 0, such
that there exists a neigbourhood B of x with F=0 on R_B. The aim of
the following considerations is to show U=0, in particular F is identically
zero.

By (3.37) and the assumption that G has nonempty interior there exists
some x0 # G with this property, in particular U{<. Since U is open
and 0 is connected, it suffices to show that U is relatively closed in 0.
Suppose x1 # 0 & U� and choose R>0 with BR(x1)/0. Then one can
find y # BR(x1) & U and r>0 with Br( y)/BR(x1) and F=0 on X1 =

def

R_Br( y). Now every hyperplane, which is characteristic with respect to
the wave-operator intersects X1 . Therefore Theorem 8.6.8 in [7] asserts
that F=0 on X2 =

def
R_BR(x1), in particular x1 # U, which completes the

proof of Theorem 1 with the aid of Theorem 8.6.8 in [7].
However the proof of Theorem 1 given in this paper is independent of

Holmgren's theorem.

Remark 3. The proof of Theorem 1 can be simplyfied further under the
additional assumption that

00 /0 (3.46)

Suppose that g # X satifies the assumption in Theorem 1. As above one has
for all f # C �

0 (R"[0])

f (iB) g=0 on G (3.47)

and f (iB) g satisfies (3.39).
Next it is shown that f (iB) g is real analytic on 0. Lemma 2(i) and

(3.39) yield

B2f (iB) g=B2
0 f (iB) g(t)=2f (iB) g, (3.48)

By induction it follows

(1&2)n f (iB) g=(1&B2)n f (iB) g=|
R

(1+*2)k f (*) dE*g # L2(0)

(3.49)
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and hence

&(1&2)n f (iB) g&X=&(1&B2)n f (iB)&X

�sup
* # R

((1+*2)n | f (*)| ) &g&X�C n
1 (3.50)

for all n # N with some constant C1 # (0, �) independent of n.
Let F # L2(R3) be the extension of f (iB) g by zero defined by

F(x) =
def

( f (iB) g)(x) if x # 0 and F(x)=0 if x # R3"0. Since F(x)=0 for all
x # G=0"00 by (3.47) the support of F is contained in the closed subset
00 /0 by assumption (3.46). Now, it follows easily from (3.48)�(3.50) that
(1&2)n F # L2(R3) and

&(1&2)n F&L2(R3)�&(1&2)n f (iB) g&X�C n
1 for all n # N. (3.51)

This yields by Sobolev's embedding-theorem F # C�(R3) and

&�:F&L��C &�:F&H2(R3)=C &(1+!2) !: F� &L2(R3)

�C &(1+!2)n+1 F� &L2(R3)=C &(1&2)n+1 F&L2(R3)

�C n+1
1 (3.52)

for all n # N and |:|�2n with C1 # (0, �) as in (3.51), which yields the
analycity of F. Since F(x)=0 for all x # G, this analycity implies F=0 on
all of R3 and hence (3.45)

In the sequel let |0(w) denote the |-limit-set of the solution T( } ) w with
respect to the weak topology of X, i.e., the set of all g # X, such that there
exists a sequence tn ww�

n � � � with T(tn) w ww�
n � �

g in X weakly, that
means with (T(tn) w, f) X ww�

n � � (g, f) X for all f # X.
Since the T( } ) w # L�((0, �), X ) by Lemma 1 the weak |-limit-set

|0(w) in nonempty for all w # X.

Theorem 2. Let w # X. Then |0(w)/N.

Proof. Let u(t) =
def T(t) w for t # R. Suppose g # X and tn ww�

n � � � with
T(tn) w ww�

n � � g in X weakly. Let t # R. By (2.27) one has

u(tn+t)=exp(tB) u(tn)+|
tn+t

tn

exp((tn+t&{) B)[G({)&F({, u({))] d{

for all sufficiently large n # N, such that tn+t�0. (In order to apply
Theorem 1 it is necessary also to consider t�0.) With G # L1((0, �), X ) it
follows from Lemma 1, (3.29) that
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&u(tn+t)&exp(tB) u(tn)&X

�|
[tn , tn+t]

(&G({)&X+&F({, u({))&X) d{

�|
[tn , tn+t]

&G({)&X d{+|t| 1�2

_\|[tn , tn+t]
&F({, u({))&2

X d{+
1�2

ww�
n � �

0

and hence

u(tn+t) ww�
n � �

exp(tB) g in X weakly for all t # R. (3.53)

Suppose a, b # R with a<b and define f =
def �b

a exp(tB) g dt and f (n) =
def

�b
a u(tn+t) dt for n # N sufficiently large, such that tn+a�0. Then (3.53)

yields by the dominated convergence-theorem

( f (n), h) X=|
b

a
(u(tn+t), h) X dt

ww�
n � � |

b

a
(exp(tB) g, h) X dt

=( f, h) X

for all h # X, i.e., f (n) ww�
n � �

f weakly. In particular

f (n)
1 ww�

n � �
f
� 1

in L2(G)/L1
#(K ) weakly for all bounded K/G.

(3.54)

On the other hand it follows from Lemma 1(iii) that

&f (n)
1&L#

1(K )�(b&a)1�p* \|
b+tn

a+tn

&u(t) 1& p
L#

1(K ) dt+
1�p

ww�
n � �

0 (3.55)

for all t # R. Now (3.54) and (3.55) yield

|
b

a
(exp(tB) g) 1 dt=0 on K for all bounded K/G

and all a, b # R, a<b.

This implies that g obeys condition (3.33) of Theorem 1. Hence g # N. K
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Let P be the orthogonal-projector on N in X.

Lemma 3. Suppose w # X. Then &PT(t) w&P(w+��
0 G(t) dt)&X ww�

t � �
0.

Proof. Suppose w # X and a # N, that means a # ker B and a
� 1=0 on G.

Then (2.27) yields

(PT(t) w, a)X=(T(t) w, a) X

=�exp(tB) w+|
t

0
exp((t&s) B)(G(s)

&F(s, T(s) w)) ds, a�X

=(w, exp(&tB) a) X

+|
t

0
(G(s)&F(s, T(s) w), exp((s&t) B) a) X ds

=(w, a)X+|
t

0
(G(s)&F(s, T(s) w), a) X ds

=(w, a)X+|
t

0
(G(s), a) X ds

=�P(w+|
t

0
G(s) ds), a�X

.

Hence

PT(t) w=P \w+|
t

0
G(s) ds+ . (3.56)

With G # L1(0, �, X ) the assertion follows. K

Now, the main theorem concerning weak convergence can be proved.

Theorem 3. Suppose w # X.
Then T(t) w ww�

t � � P(w+��
0 G(t) dt) in X weakly.

Proof. By Lemma 3 one has for all g # |0(w)

Pg=P \w+|
�

0
G(s) ds+ .
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On the other hand Theorem 2 yields g # N and hence

g=Pg=P \w+|
�

0
G(s) ds+ for all g # |0(w). (3.57)

Now it follows from (3.57) that

|0(w)/{P \w+|
�

0
G(s) ds+= . (3.58)

Since the orbit [T(t) w : t�0] is precompact in the weak topology by
Lemma 1(i), this completes the proof. K

In particular it follows from the previous theorem that T(t) w ww�
t � �

0 in
X weakly if and only if w+��

0 G(t) dt # X 0=N=, which is condition 1.12.

4. STRONG LQ-CONVERGENCE OF SOLUTIONS

The aim of the following considerations is find sufficient conditions for
strong convergence. Assume that in addition S(t, x, y, z) is independent of
t, i.e., S(t, x, y, z)=S0(x, y, z) and

(S0(x, y, z)&S0(x, y~ , z~ ))(y&y~ )�0 (4.59)

for all t�0, y # RM, z # RN and x # G with some function S0 : 0_RM+N � RM.
The main purpose of this assumption is to ensure that T(t) w # D(B),

�t(T(t) w) # L2(0) and BT( } ) w # L�((0, �), X ), i.e., &BT(t) w&X is bounded
as t � � if w # D(B) as shown in the following lemma. (For example in the
linear case S(t, x, y, z)=_(t, x) y the condition that S is independent of t
can be replaced by the weaker assumption

�t_ # L�((0, �)_G) and |�t_(t, x)|�C1_(t, x)

for all t�0 and x # G with some constant C1 independent of t, x.)

Lemma 4. Suppose in addition that G # W1, 1((0, �), X ) and w # D(B).
Then one has

T( } ) w # W1, �((0, �), X ) & L�((0, �), D(B)) (4.60)

Proof. It follows from the assumption that there is a nonlinear operator
F0 : X � X with F(t, w)=F0(w) and

(F0(w)&F0(w~ ), w&w~ ) X�0 for all w, w~ # X
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Suppose w # D(B) and set u(t) =
def T(t) w. It follows from a standard

regularity-result that u # C1([0, �), X ) & L�
loc((0, �), D(B)) is a strong

solution of

u$(t)=Bu(t)+G(t)&F0(u(t)). (4.61)

In analogy to Lemma 1 an energy-estimate for u$ can be obtained using the
monotonicity of F0 :

1�2
d
dt

&�tu(t)&2
X�(�tG(t), �tu(t)) X�&�tG(t)&X &�t u(t)&X

With �t G # L1((0, �), X ) this yields u # W 1, �((0, �), X ).
By (4.61) one obtains also u(t) # D(B*)=D(B) and Bu( } ) #

L�((0, �), X ). K

Lemma 5. X 0 & D(Bn) is dense in X 0 & D(Bm) for all m, n # N with
m<n.

Proof. Let w # X 0 & D(Bm) and define w{ =
def {n({&B)&n w # D(Bn) for

{>0. Then

&Bk(w{&w)&X=&Bk w&[{({&B)&1]n Bkw&X ww�
{ � �

0

for all k # [0, 1, .., m]. (4.62)

Suppose a # N. Then

(w{ , a) X=(w, {n({+B)&n a) X=(w, a) X=0.

Hence w{ # X 0. By (4.62) the proof is complete. K

The next lemma concerns regularity-properties of elements of X 0 & D(B).

Lemma 6. (i) Let K/00 be a bounded open set with K� /00 .
Then w # H1(K ) and

&w&H1(K )�CK &w&D(B) for all w # X 0 & D(B).

with some constant CK # (0, �) depending only on K.

(ii) Suppose in addition E (2)=1 on all of 0.

Let U/0 be a bounded open set with U� /0.
Then F # H1(U ) and

&F&H 1(U )�CU &w&D(B) for all w=(E, F) # X 0 & D(B).

with some constant CU # (0, �) depending only on U.
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Proof. (i) Let K/00 be a bounded open set with K� /00 . Choose
/ # C �

0 (00) with /=1 on K. Suppose w # X 0 & D(B2). Then Lemma 2(ii)
yields w # H 2

loc(00) and

:
M+N

k=1
|

00

/2 |{wk |2 dx

= :
M+N

k=1
|

00

div(/2 {wk) w� k dx

�CK, 1 :
M+N

k=1
|

00

|/ {wk | |wk | dx+ :
M+N

k=1
|

00

/2 2wkw� k dx

�CK, 2 &w&2
X+1�3 :

M+N

k=1
|

00

/2 |{wk | 2 dx+(/2(B2w), w) X

�CK, 3 &w&2
D(B)+1�3 :

M+N

k=1
|

00

/2 |{wk |2 dx+(/2(Bw), Bw) X

�CK, 4(&Bw&2
X+&w&2

X)+2�3 :
M+N

k=1
|

00

/2 |{wk | 2 dx

by assumption (2.16). Hence

&w&2
H 1(K)�&w&2

X+ :
M+N

k=1
|

00

/2 |{wk |2 dx�3CK, 4(&Bw&2
X+&w&2

X)

By Lemma 5 the estimate holds for all w # X 0 & D(B).
To prove (ii) consider first f # D(A*) & (ker A*)= with A* f # D(A).
Since (ker A*)==rang A Lemma 2(i) yields 2f=&AA* f. From a

similar cut-off argument as in the proof of the first part it follows that

&f&2
H 1(U )�CU, 4(&A* f&2

L2+&f&2
L2) (4.63)

Since the set of all f # D(A*) & (ker A*)= with A*f # D(A) is dense in
D(A*) & (ker A*)=, (4.63) holds for all f # D(A*) & (ker A*)=.

Now let (E, F) # X 0 & D(B).
Since (0, g) # N for all g # (ker A)*, it follows from the assumption

E (2)=1 on 0 that

(F, g) L2(0)=( (E, F), (0, g)) X=0 for all g # (ker A)*,

in particular F # D(A*) & (ker A*)=. Finally, the assertion follows from
(4.63). K
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Remark 4. As described in Remark 1 the H 1
loc-regularty of w

� 1 for
w # X 0 & D(B) does generally not hold on the set G=0"00 even if E ( j)=1
on 0.

Lemma 7. Suppose E (2)=1 on 0.
Then (e(t), f(t))=def T(t) w&P(w+��

0 G(t) dt) obeys

(&e(t)&L2(K )+&f(t)&L2(U )) ww�
t � �

0.

for all compact sets K/00 and U/0 and w # X.

Proof. First suppose in addition that w # D(B) and G # W1, 1((0, �), X ).
Define (e~ (t), f� (t))=def (1&P) T(t) w # N==X 0. Since PT(t) w # N/D(B),
Lemma 4 yields

(e~ , f� ) # L�((0, �), D(B) & X 0) (4.64)

Hence, it follows from Lemma 6 and Sobolev's imbedding theorem that

[e~ (t) : t�0] is precompact in L2(K )

and [f� (t) : t�0] is precompact in L2(U ).

Therefore, Lemma 3 and Theorem 3 yield

&e~ (t)&L2(K )+&f� (t)&L2(U ) ww�
t � �

0. (4.65)

Next it follows from Lemma 3 that

&e~ (t)&e(t)&L2(K )+&f� (t)&e(t)&L2(U )

�"PT(t) w&P \w+|
�

0
G(t) dt+"X

ww�
t � �

0. (4.66)

Now, the assertion follows from (4.65) and (4.66) under the additional
hypothesis w # D(B) and G # W1, 1((0, �), X ).

In order to prove the theorem in the general case assume that w, w~ # X
and G, G� # L1((0, �), X ). Let u~ be the corresponding solution to
(1.1)�(1.3) with w, G replaced by w~ and G� respectively. Then one obtains
from (4.59) and a similar estimate as in (2.28)

d
dt

&T(t) w&u~ (t)&2
X=2(G(t)&G� (t)&F0(T(t) w)

+F0(u~ (t)), T(t) w&u~ (t)) X

�&G(t)&G� (t)&X &T(t) w&u~ (t)&X
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and therefore

&T(t) w&u~ (t)&X�&w&w~ &X+&G&G� &L1((0, �), X ) .

Since W1, 1((0, �), X ) is dense in L1((0, �), X ), it follows from the latter
estimate that the assertion holds for all w # X and G # L1((0, �), X ). K

In the next lemma the strong Lr
loc-convergence of u

� 1 on the set G is
proved, which in general does not follow from Lemma 6, see Remark 4.

Lemma 8. Suppose w # X, R>0 and r # [1, 2). Then (e(t), f(t)) =
def

T(t) w&P(w+��
0 G(t) dt) obeys

&e(t)&Lr(G & BR) ww�
t � �

0.

Proof. By the same density-argument as in the proof of the previous
lemma it suffices to consider w # D(B) and G # W1, 1((0, �), X ).

Let G(R) =
def G & BR and M =

def
&(e, f )&L�((0, �), L2(0)) .

Suppose $>0. With #>0 as in (2.21) one has G=�n # N

[x # G : #(x)>1�n]. Therefore there exists a subset G(R)
$ /G(R), such that

M |G(R)"G (R)
$ | (1�r&1�2)�$�2, (4.67)

and

#(x)�c$ for all x # G (R)
$ (4.68)

with some positive constant c$>0. In (4.67) |G(R)"G (R)
$ | denotes the

Lebesgue-measure of this set.
Since (P(w+��

0 G(t) dt)) 1=0 on G, one obtains from (4.68) and
Lemma 1 that

e # L p((0, �), L1
#(G$

(R)))/L p((0, �), L1(G$
(R))). (4.69)

Lemma 4 yields

e # W1, �((0, �), L2(0))/W1, �((0, �), L1(G$
(R))). (4.70)

By (4.69) and (4.70) the function t � &e(t)& p
L1(G$

(R)) is uniformly continuous
and integrable over (0, �) and hence

&e(t)&L1(G$
(R)) ww�

t � �
0.

Since r # (1, 2), this yields

&e(t)&Lr(G$
(R))�&e(t)&%

L2(G$
(R)) &e(t)&1&%

L1(G$
(R))

�M% &e(t)&1&%
L1(G$

(R)) ww�
t � �

0. (4.71)
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where 1�r=%�2+1&%. Next it follows from (4.67) that

&e(t)&Lr(G(R)"G$
(R))�&e(t)&L2(0) |G(R)"G$

(R)| (1�r&1�2)

�M |G(R)"G$
(R)| (1�r&1&2)�$�2. (4.72)

Finally, the assertion follows from (4.71) and (4.72), since $>0 is
arbitrary. K

Now the main theorem concerning strong Lq-convergence can be proved.

Theorem 4. Suppose E (2)=1 on 0. Then it follows for all q # [1, 2),
w=(E0 , F0) # X and all compact U/0 that

(&e(t)&Lq(U )+&f(t)&L2(U )) ww�
t � �

0.

where (e(t), f(t)) =
def T(t) w&P(w+��

0 G(t) dt).

Proof. Define M =
def

&(e, f )&L�((0, �), L2(0)) .
Suppose $>0. Choose a compact set K/U & 00 with M |(U & 00)"

K| (1�q&1�2)�$. Then Ho� lder's inequality yields

&e(t)&Lq(U )�&e(t)&Lq(U & G)+&e(t)&Lq(K )

+&e(t)&L2(U ) |(U & 00)"K| (1�q&1�2)

�&e(t)&Lq(U & G)+&e(t)&Lq(K )+$.

Now, Lemma 7 and Lemma 8 yield lim supt � � &w(t)&Lq(U )�$, which
completes the proof. K

In the case of Maxwell's Eqs. (1.4)�(1.6) the assumption E (2)=1 on 0
can be omitted using the compactness-result in [8, 12, 15].

Under the general assumptions considered so far it cannot be expected
that the assertion of the previons theorem holds for q=2 or sets U which
may overlap the boundary �0. However, for the system corresponding to
the scalar wave-equation the result can be improved in this direction.
Consider

�2
t .=div(E{.)&S(x, �t.) (4.73)

supplemented by the initial-boundary-onditions

.=0 on (0, �)_�0 (4.74)

.(0, x)= f0(x) and �t .(0, x)= f1(x). (4.75)
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Here the nonlinear function S : 0_R � R obeys the assumptions
(2.1)�(2.7). According to (4.59) it is assumed that S is independent of t and
monotone with respect to y # R3. For a domain 01 /0 let H1(01) be the

usual first order Sobolev space and H
0

1(01) denotes the closure of C �
0 (01)

in H1(01).

Next, D(A)/H
0

1(0) is defined as the set of all f # H
0

1(0), such that

Af =
def

&div(E{f ) # L2(0).

It is well known that for f0 # H
0

1(0)) and f1 # L2(0)) problem (4.73)�(4.75)

admits a unique solution . # C([0, �), H
0

1(0)) with �t . # C([0, �),
L2(0)). The usual energy-estimate yields

�t . # L�((0, �) L2(0)), {. # L�((0, �), L2(0)). (4.76)

If in addition f1 # H
0

1(0)) and f0 # D(A) then . # C([0, �), D(A)) and

�t . # C([0, �), H
0

1(0)) with

�t{., �2
t . # L�((0, �) L2(0)),

(4.77)
div(E{.)=A.( } ) # L�((0, �), L2(0)).

In order to consider problem (4.73)�(4.75) is the setting of Section 2 the

following operators are introduced. Let D(A) =
def H

0
1(0, C), A. =

def
{..

D(A*) is the space of all vector-fields a # L2(0, C3) with A*a=&div a #
L2(0). Next, D(B) =

def D(A)_D(A*) and

B(w1 , ..., w4) =
def

(&A*(w2 , ..., w4), EAw1)=(div(w2 , ..., w4), E{w1)

for w # D(B).

Suppose . # C([0, �), H
0

1(0)) is for f0 # H
0

1(0)) and f1 # L2(0)) a
solution of problem (4.73)�(4.75). Then u =

def
(�t ., E{.) # C([0, �),

L2(0, R4)) is a weak solution of (2.26), i.e.,

d
dt

(u(t), a) X=&(u(t), Ba) X&(F0(u(t)), a) X for all a # D(B)

where F0 : L2(0, R4) � L2(0, R4) is defined by

F0(u) =
def

(S( } , u1( } )), 0).

If f0 # D(A) and f1 # H
0

1(0)) then u(0) # D(B) and hence by Lemma 4
u # L�((0, �), D(B)), whence again (4.77).
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Next it is shown that

{.(t) ww�
t � �

0 and �t .(t) ww�
t � �

0 in L2(0) weakly. (4.78)

for all f0 # H
0

1(0)) and f1 # L2(0). For this purpose let w =
def

( f1 , E{f0) #
L2(0, R4). Then (�t .(t), E{.(t))=u(t)=T(t) w solves (2.26). In order to
apply Theorem 3 it suffices to show

w # X 0 (4.79)

Suppose a # N. Then a1 # H
0

1(0), with {a1=0, which implies a1=0.
Moreover, div(a2 , ..., a4)=0 by the definition of A, B. Hence

(w, a) X=|
0

[E&1(w2 , ..., w4)](a2 , ..., a4) dx=|
0

(a2 , ..., a4) {f0 dx=0

since f0 # H
0

1(0). Thus, (4.79) and (4.78) are proved. In the following
theorem local strong convergence in the energy-norm is shown.

Theorem 5. For all R # (0, �), f0 # H
0

1(0)) and f1 # L2(0)) one has

(&{.(t)&L2(0 & BR)+&�t .(t)&L2(0 & BR)) ww�
t � �

0.

Proof. By a density-argument it suffices to consider f0 # D(A) and

f1 # H
0

1(0).
Choose / # C �

0 (B2R) with /(x)=1 on BR and define 0R =
def 0 & B2R and

.R(t, x) =
def /(x) .(t, x). It follows easily from (4.77) using Poincare's

inequality that .R # L�((0, �), H
0

1(0 & B2R)) and �t.R # L�((0, �),

H
0

1(0 & B2R)). Since 0 & B2R , is bounded, the imbedding H
0

1(0 & B2R)/�
L2(0 & B2R) is compact. Hence

[.(t) : t�0] is precompact in L2(0 & BR) (4.80)

and [�t.(t) : t�0] is precompact in L2(0 & BR). (4.81)

for all R # (0, �). Next, one obtains by (2.25) and the definition of A that

c0 &{(.(t1)&.(t2))&2
L2(BR)

�|
0

/E{(.(t1)&.(t2)) {(.(t1)&.(t2)) dx
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=&|
0

(.(t1)&.(t2)) div(/E{[.(t1)&.(t2)]) dx

�&.(t1)&.(t2)&L2(B2R) (&A(.(t1)&.(t2))&L2(0)

+KR &{(.(t1)&.(t2))&L2(0)) for all t1 , t2�0.

which implies by (4.76), (4.77), and (4.80) also

[{.(t) : t�0] is precompact in L2(0 & BR) (4.82)

Finally, the result follows from (4.78), (4.81), and (4.82). K
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