Asymptotic Behaviour of Solutions to a Class of Semilinear Hyperbolic Systems in Arbitrary Domains

Frank Jochmann

Institut für angewandte Mathematik, Humboldt Universität Berlin, Unter den Linden 6, 10099 Berlin; and Weierstrass-Institut für angewandte Analysis und Stochastik, im Forschungsverbund Berlin e.v., Mohrenstr. 39, 10117 Berlin

Received December 1, 1998; revised March 29, 1999; accepted April 1, 1999

/iew metadata, citation and similar papers at <u>core.ac.uk</u>

The subject of this paper is the long time asymptotic behavior of solutions of semilinear hyperbolic systems of the form

$$\partial_t \mathbf{E} = E^{(1)} \cdot \left[\left(\sum_{k=1}^3 H_k^* \partial_k \mathbf{F} \right) - \mathbf{S}(t, x, \mathbf{E}, \mathbf{F}) \right] + \mathbf{G}^{(1)}, \tag{1.1}$$

$$\partial_t \mathbf{F} = E^{(2)} \cdot \sum_{k=1}^3 H_k \partial_k \mathbf{E} + \mathbf{G}^{(2)}, \qquad (1.2)$$

with the initial-condition

$$\mathbf{E}(0, x) = \mathbf{E}_0(x), \qquad \mathbf{F}(0, x) = \mathbf{F}_0(x).$$
 (1.3)

Here $\mathbf{E} \in C([0, \infty), L^2(\Omega, \mathbb{R}^M))$ and $\mathbf{F} \in C([0, \infty), L^2(\Omega, \mathbb{R}^N))$ are the unknown functions depending on the time $t \ge 0$ and the space-variable $x \in \Omega$. $\mathbf{G}^{(1)} \in L^1((0, \infty), L^2(\Omega, \mathbb{R}^M))$ and $\mathbf{G}^{(2)} \in L^1((0, \infty), L^2(\Omega, \mathbb{R}^N))$ are prescribed functions.

The domain $\Omega \subset \mathbb{R}^3$ is arbitrary. $H_k \in \mathbb{R}^{N \times M}$ are constant matrices, $E^{(1)} \in L^{\infty}(\Omega, \mathbb{R}^{M \times M})$ and $E^{(2)} \in L^{\infty}(\Omega, \mathbb{R}^{N \times N})$ are positive symmetric variable matrices, which depend on the space-variable $x \in \Omega$ and satisfy $E^{(1)} = 1$ and $E^{(2)} = 1$ on $\Omega_0 = {}^{\text{def}} \Omega \setminus G$ with some subset $G \subset \Omega$.

The generally nonlinear function S: $[0, \infty) \times \Omega \times \mathbb{R}^{M+N} \to \mathbb{R}^M$ satisfies

$$\mathbf{S}(t, x, \mathbf{y}, \mathbf{z}) = 0 \quad \text{for all} \quad x \in \Omega_0 = \Omega \setminus G \quad \text{and} \\ \mathbf{S}(t, x, 0) = 0 \quad \text{for all} \quad x \in \Omega, \ t \in (0, \infty).$$

0022-0396/00 \$35.00

In particular the damping-term S(t, x, E, F) is only present on a certain subset $G \subset \Omega$. The following dissipativity-assumption is imposed.

$$\begin{split} \mathbf{y}\mathbf{S}(t, x, \mathbf{y}, \mathbf{z}) &\geq \gamma(x) \min\{|\mathbf{y}|^{p}, |\mathbf{y}|\} & \text{for all } t \geq 0, \\ \mathbf{y} \in \mathbb{R}^{M}, & \mathbf{z} \in \mathbb{R}^{N}, \quad x \in G. \end{split}$$

Here $p \in [2, \infty)$ and $\gamma \in L^{\infty}(G)$ is a positive function on *G*, which does not necessarily have a uniform positive lower bound on *G*.

This means that $\mathbf{S}(t, x, \mathbf{y}, \mathbf{z})$ is allowed to be bounded as $|y| \to \infty$ and $|\mathbf{S}(t, x, \mathbf{y}, \mathbf{z})|$ behaves like $|y|^{p-1}$ for small |y|. In particular a linear damping-term $\mathbf{S}(t, x, \mathbf{E}, \mathbf{F}) = \sigma(t, x) \mathbf{E}$ with $\sigma \in L^{\infty}([0, \infty) \times G), \ \sigma \ge 0$ is possible.

A domain $D(B) \subset L^2(\Omega, \mathbb{R}^{M+N})$ containing $C_0^{\infty}(\Omega, \mathbb{R}^{M+N})$ is chosen, such that the operator

$$B(\mathbf{E}, \mathbf{F}) \stackrel{\text{def}}{=} \left(E^{(1)} \left[\sum_{k=1}^{3} H_{k}^{*} \partial_{k} \mathbf{F} \right], E^{(2)} \left[\sum_{k=1}^{3} H_{k} \partial_{k} \mathbf{E} \right] \right)$$

is skew-adjoint on D(B), i.e., $B^* = -B$ with respect to a weighted scalarproduct. The choice of D(B) depends on the boundary conditions on $\partial \Omega$ supplementing (1.1)–(1.2).

A physically important example for this system are Maxwell's equations describing the propagation of the electromagnetic field

$$\varepsilon \partial_t \mathbf{E} = \operatorname{curl} \mathbf{H} - \mathbf{S}(t, x, \mathbf{E}, \mathbf{H}) - \mathbf{j}$$
 and $\mu \partial_t \mathbf{H} = -\operatorname{curl} \mathbf{E},$ (1.4)

supplemented by the initial-boundary conditions

$$\vec{n} \wedge \mathbf{E} = 0$$
 on $(0, \infty) \times \Gamma_1$, $\vec{n} \wedge \mathbf{H} = 0$ on $(0, \infty) \times \Gamma_2$, (1.5)

$$\mathbf{E}(0, x) = \mathbf{E}_0(x), \qquad \mathbf{H}(0, x) = \mathbf{H}_0(x).$$
 (1.6)

In (1.5) $\Gamma_1 \subset \partial \Omega$ and $\Gamma_2 \stackrel{\text{def}}{=} \partial \Omega \setminus \Gamma_1$. **E**, **H** denote the electric and magnetic field respectively which depend on the time $t \ge 0$ and the space-variable $x \in \Omega$, whereas $\mathbf{j} \in L^1((0, \infty), L^2(\Omega, \mathbb{R}^3))$ is a prescribed external current. The term $\mathbf{S}(t, x, \mathbf{E}, \mathbf{H})$ describes a possibly nonlinear resistor. The dielectric and magnetic susceptibilities $\varepsilon, \mu \in L^\infty(\Omega)$ are assumed to be uniformly positive.

For (1.4), (1.5) the operator *B* is defined in the space $X = {}^{def} L^2(\Omega, \mathbb{C}^6)$ by

$$B(\mathbf{E}, \mathbf{F}) \stackrel{\text{def}}{=} (\varepsilon^{-1} \operatorname{curl} \mathbf{F}, -\mu^{-1} \operatorname{curl} \mathbf{E}) \quad \text{for} \quad (\mathbf{E}, \mathbf{F}) \in D(B) \stackrel{\text{def}}{=} W_E \times W_H.$$

Here W_H is the closure of $C_0^{\infty}(\mathbb{R}^3 \setminus \overline{\Gamma_2}, \mathbb{C}^3)$ in $H_{curl}(\Omega)$, where $H_{curl}(\Omega)$, is the space of all $\mathbf{E} \in L^2(\Omega, \mathbb{C}^3)$ with curl $\mathbf{E} \in L^2(\Omega)$.

 W_E denotes the set of all $\mathbf{E} \in H_{curl}(\Omega)$, such that

$$\int_{\Omega} \mathbf{E} \operatorname{curl} \mathbf{F} - \mathbf{F} \operatorname{curl} \mathbf{E} \, dx = 0 \qquad \text{for all} \quad \mathbf{F} \in W_H,$$

which includes a weak formulation of the boundary-condition $\vec{n} \wedge \mathbf{E} = 0$ on Γ_1 , see [8] and [9].

Another example for (1.1)-(1.2) is the first-order system corresponding to the initial-boundary-value-problem of the scalar wave-equation with nonlinear damping, for which the long-time behaviour in the case of a bounded domain has been investigated in [3, 4–6, 10, 14, and 17].

$$\partial_t^2 \varphi = \operatorname{div}(E\nabla\varphi) - S(x, \partial_t \varphi) \tag{1.7}$$

supplemented by the initial-boundary-onditions

$$\varphi = 0$$
 on $(0, \infty) \times \partial \Omega$ (1.8)

$$\varphi(0, x) = f_0(x)$$
 and $\partial_t \varphi(0, x) = f_1(x)$ (1.9)

for initial-data $f_0 \in \overset{0}{H}{}^1(\Omega)$ and $f_1 \in L^2(\Omega)$. Here $E \in L^{\infty}(\Omega, \mathbb{R}^{3 \times 3})$ is a symmetric matrix-valued function satisfying E = 1 on $\Omega_0 = \Omega \setminus G$.

Note that $\mathbf{u} = {}^{\text{def}}(\partial_t \varphi, E\nabla \varphi) \in C([0, \infty), L^2(\Omega, \mathbb{R}^4))$ solves the system

$$\partial_t \mathbf{u} = (\operatorname{div}(\mathbf{u}_2, ..., \mathbf{u}_4) - S(t, x, \mathbf{u}_1), E\nabla \mathbf{u}_1)$$
(1.10)

which is of the form (1.1)–(1.3).

The aim of this paper is to show that the solution (\mathbf{E}, \mathbf{F}) of (1.1)–(1.3) satisfies

$$(\mathbf{E}(t), \mathbf{F}(t)) \xrightarrow{\mathbf{t} \to \infty} 0 \qquad \text{in } L^2(\Omega) \text{ weakly}$$
(1.11)

if and only if the initial-data $(\mathbf{E}_0, \mathbf{F}_0) \in L^2(\Omega)$ obey

$$\int_{\Omega} \left(E^{(1)-1} \widetilde{\mathbf{E}}_0 \mathbf{e} + E^{(2)-1} \widetilde{\mathbf{F}}_0 \mathbf{f} \right) dx = 0 \quad \text{for all} \quad (\mathbf{e}, \mathbf{f}) \in \mathcal{N}. \quad (1.12)$$

Here

$$\widetilde{\mathbf{E}}_0 \stackrel{\text{def}}{=} \mathbf{E}_0 + \int_0^\infty \mathbf{G}^{(1)} dt \quad \text{and} \quad \widetilde{\mathbf{F}}_0 \stackrel{\text{def}}{=} \mathbf{F}_0 + \int_0^\infty \mathbf{G}^{(2)} dt$$

and $\mathcal{N} \subset L^2(\Omega, \mathbb{R}^{M+N})$ denotes the set of all $(\mathbf{E}, \mathbf{F}) \in \ker B$ with $\mathbf{E} = 0$ on G.

Furthermore it is shown that for arbitrary initial-states $(\mathbf{E}_0, \mathbf{F}_0) \in L^2(\Omega)$ the solution (\mathbf{E}, \mathbf{F}) of (1.1)–(1.3) converges weakly in $L^2(\Omega)$ to some element of \mathcal{N} as $t \to \infty$.

It follows easily from the assumptions on **S** that \mathcal{N} is the set of stationary states of the system (1.1)–(1.3) provided that $\mathbf{G} = 0$.

In the case of Maxwell's equations (1.4)–(1.6) the condition (1.12) on $(E_0,\,F_0)$ implies

div
$$\left(\varepsilon \mathbf{E}_0 - \int_0^\infty \mathbf{j} \, dt\right) = 0$$
 on Ω_0 and div $(\mu \mathbf{H}_0) = 0$ on Ω
(1.13)

since \mathcal{N} contains all elements of the form $(\nabla \varphi, \nabla \psi)$ with $\varphi \in C_0^{\infty}(\Omega_0)$ and $\psi \in C_0^{\infty}(\Omega)$.

If S is independent of t and monotone with respect to E strong L^r -convergence is shown, i.e.,

$$\|\mathbf{E}(t)\|_{L^{\prime}(K)} + \|\mathbf{F}(t)\|_{L^{2}(K)} \xrightarrow{t \to \infty} 0 \quad \text{for all} \quad 1 \le r < 2, \text{ and compact sets}$$
$$K \subset \Omega \tag{1.14}$$

if the initial-data $(\mathbf{E}_0, \mathbf{F}_0) \in L^2(\Omega)$ obey condition (1.12).

Finally (1.11) is used to prove that the solution the wave-equation (1.7)–(1.8) in an arbitrary domain $\Omega \subset \mathbb{R}^3$ decays with respect to the energy-norm on each bounded subdomain of Ω . For all $R \in (0, \infty)$, $f_0 \in H^1(\Omega)$ and $f_1 \in L^2(\Omega)$ it is shown that

$$(\|\nabla \varphi(t)\|_{L^2(\Omega \cap B_R)} + \|\partial_t \varphi(t)\|_{L^2(\Omega \cap B_R)}) \xrightarrow{t \to \infty} 0.$$

The proof of (1.11) is based on a suitable modification of the approach in [4] for the case that the operator *B* does not necessarily have purely discrete spectrum. The basic idea is to show that for each $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and $\mathbf{g} \in \omega_0(\mathbf{E}_0, \mathbf{F}_0)$ the function $f(iB) \mathbf{g}$ is real-analytic and vanishes on *G*, where $\omega_0(\mathbf{E}_0, \mathbf{F}_0)$ denotes the ω -limit-set with respect to the weak topology of the orbit belonging to the initial-state $(\mathbf{E}_0, \mathbf{F}_0)$. This implies $f(iB) \mathbf{g} = 0$ for all $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and hence $\mathbf{g} \in \ker B$. (Here the operator f(iB) can be defined by the spectral-theorem, since *iB* is self-adjoint in $L^2(\Omega, \mathbb{C}^{M+N})$.)

In [14] it is shown that the solution of the scalar wave-equation in a bounded domain tends to zero weakly in the energy-space if S(x, y) = a(x) g(y) obeys ker $g \subset (-\infty, 0]$ or ker $g \subset [0, \infty)$. The assumptions on the nonlinear damping-term have been further weakened in [5] where strong convergence is obtained in the case that Ω is a bounded one-dimensional interval. In [17] also decay-rates for the energy-norm are obtained, which depend on the behaviour of the damping term for y near zero.

In [4, 6, 14] the following unique-continuation-principle is used. Let $\Omega \subset \mathbb{R}^N$ be bounded and $u \in C([0, \infty), \overset{0}{H^1}(\Omega)) \cap C^1([0, \infty), L^2(\Omega))$ be a solution of the wave-equation $\partial_t^2 u = \Delta u$ on $[0, \infty) \times \Omega$ with the property

that u(t, x) = 0 on $[0, \infty) \times E$ for some subset $E \subset \Omega$ with positive measure. Then u = 0 on all of $[0, \infty) \times \Omega$.

In this paper the following modification for not necessarily bounded domains is proved, see Theorem 1. Let $(\mathbf{e}, \mathbf{f}) \in C(\mathbb{R}, L^2(\Omega, \mathbb{R}^{M+N}))$ solve $\partial_t(\mathbf{e}, \mathbf{f}) = B(\mathbf{e}, \mathbf{f})$ with the property that $\mathbf{e}(t, x) = 0$ for all $t \in \mathbb{R}$ and $x \in G$. Then $(\mathbf{e}(0), \mathbf{f}(0)) \in \ker B$.

2. NOTATION, ASSUMPTIONS

For an arbitrary open set $K \subset \mathbb{R}^3$ the space of all infinitely differentiable functions with compact support contained in K is denoted by $C_0^{\infty}(K)$.

Let $\Omega \subset \mathbb{R}^3$ be a (connected) domain and let $\Omega_0 \subset \Omega$ be an open subset, such that $G \stackrel{\text{def}}{=} \Omega \setminus \Omega_0$ has nonempty interior. The variable matrices $E^{(1)} \in L^{\infty}(\Omega, \mathbb{R}^{(M \times M)})$ and $E^{(2)} \in L^{\infty}(\Omega, \mathbb{R}^{(N \times N)})$ assumed to be symmetric and uniformly positive in the sense that

$$y^{\perp} \cdot E^{(1)}(x) \ y \ge c_0 \ |y|^2$$
 and $z^{\perp} \cdot E^{(2)}(x) \ z \ge c_0 \ |z|^2$ (2.15)

for all $x \in \Omega$, $y \in \mathbb{R}^M$ and $z \in \mathbb{R}^N$ with some $c_0 \in (0, \infty)$ independent of x, y, z.

Next,

$$E^{(1)}(x) = 1$$
 and $E^{(2)}(x) = 1$ for all $x \in \Omega_0$. (2.16)

The assumptions on S: $[0, \infty) \times \Omega \times \mathbb{R}^{M+N} \to \mathbb{R}^M$ are the following.

$$\mathbf{S}(t, x, \mathbf{y}, \mathbf{z}) = 0$$
 if $x \in \Omega_0 = \Omega \setminus G$, (2.17)

 $\mathbf{S}(\cdot, \cdot, \mathbf{y}, \mathbf{z})$ measurable for fixed $\mathbf{y} \in \mathbb{R}^M$, $\mathbf{z} \in \mathbb{R}^N$ (2.18)

and Lipschitz-continuous, i.e., there exists $L \in (0, \infty)$, such that

$$|\mathbf{S}(t, x, \mathbf{y}, \mathbf{z}) - \mathbf{S}(t, x, \tilde{\mathbf{y}}, \tilde{\mathbf{z}})| \leq L(|\mathbf{y} - \tilde{\mathbf{y}}| + |\mathbf{z} - \tilde{\mathbf{z}}|)$$
(2.19)

for all $\mathbf{y}, \, \tilde{\mathbf{y}} \in \mathbb{R}^M, \, \mathbf{z}, \, \tilde{\mathbf{z}} \in \mathbb{R}^N$ and $x \in \Omega$.

$$|\mathbf{S}(t, x, \mathbf{y}, \mathbf{z})|^2 \leq C_0 \mathbf{y} \cdot \mathbf{S}(t, x, \mathbf{y}, \mathbf{z})$$
(2.20)

for all $t \ge 0$, $x \in G$, $\mathbf{y} \in \mathbb{R}^M$, $\mathbf{z} \in \mathbb{R}^N$, with some $C_0 \in (0, \infty)$. Moreover,

$$\mathbf{yS}(t, x, \mathbf{y}, \mathbf{z}) \ge \gamma(x) \min\{|\mathbf{y}|^{p}, |\mathbf{y}|\}$$
(2.21)

for all $t \ge 0$, $\mathbf{y} \in \mathbb{R}^M$, $\mathbf{z} \in \mathbb{R}^N$, $x \in G$.

Here $\gamma \in L^{\infty}(G)$ with $\gamma > 0$ and $p \in [2, \infty)$. The function γ does not necessarily have a uniform positive lower bound on *G*. It follows from the two latter assumptions that $\mathbf{S}(t, x, \mathbf{y}, \mathbf{z}) = 0$ if and only if $\mathbf{y} = 0$ for all $x \in G$.

In the sequel $L^q_{\gamma}(K)$ denotes for a measurable subset $K \subset G$ the weighted L^q -space endowed with the norm

$$\|u\|_{L^q_{\gamma}(K)} \stackrel{\text{def}}{=} \left(\int_K |u|^q \, \gamma \, dx\right)^{1/q}$$

where $q \in [1, \infty)$ and γ as in (2.21).

The matrices $H_j \in \mathbb{R}^{N \times M}$ obey the following algebraic condition, which is fulfilled in the examples (1.4)–(1.6) and (1.7)–(1.9).

$$\left(\sum_{k=1}^{3} \xi_{k} H_{k}\right) \left(\sum_{k=1}^{3} \xi_{k} H_{k}^{*}\right) \left(\sum_{k=1}^{3} \xi_{k} H_{k}\right) = |\xi|^{2} \left(\sum_{k=1}^{3} \xi_{k} H_{k}\right) \quad \text{for all} \quad \xi \in \mathbb{R}^{3}$$

$$(2.22)$$

Let $W_0 \subset L^2(\Omega, \mathbb{C}^M)$ be the space of all $\mathbf{e} \in L^2(\Omega, \mathbb{C}^M)$ with $\sum_{k=1}^3 \partial_k(H_k \mathbf{e}) \in L^2(\Omega)$ in the sense of distributions endowed with the norm

$$\|\mathbf{e}\|_{W_0}^2 \stackrel{\text{def}}{=} \|\mathbf{e}\|_{L^2}^2 + \left\|\sum_{k=1}^3 \partial_k(H_k \mathbf{e})\right\|_{L^2}^2$$

Furthermore, let D(A) with $C_0^{\infty}(\Omega, \mathbb{C}^M) \subset D(A)$ be closed subspace of W_0 with respect to the above norm and

$$A \mathbf{e} \stackrel{\text{def}}{=} \sum_{k=1}^{3} \partial_{k}(H_{k} \mathbf{e}) \quad \text{for} \quad \mathbf{e} \in D(A).$$
(2.23)

Then the adjoint operator A^* obeys $C_0^{\infty}(\Omega, \mathbb{C}^N) \subset D(A^*)$ and

$$A^*\mathbf{F} = -\sum_{k=1}^{3} \partial_k (H_k^*\mathbf{F}) \quad \text{for all} \quad \mathbf{F} \in D(A^*).$$
(2.24)

For a vector $\mathbf{w} \in \mathbb{C}^{M+N}$ we denote by $\underline{\mathbf{w}}_1$ the first M and by $\underline{\mathbf{w}}_2$ the last N components of \mathbf{w} .

Now, the following operators are defined. Let $D(B_0) \stackrel{\text{def}}{=} D(A) \times D(A^*)$ and

$$B_0 \mathbf{w} \stackrel{\text{def}}{=} (-A^* \underline{\mathbf{w}}_2, A \underline{\mathbf{w}}_1) \quad \text{for} \quad \mathbf{w} \in D(B_0) = D(A) \times D(A^*).$$

Next, $B \stackrel{\text{def}}{=} EB_0$ with $E \stackrel{\text{def}}{=} \text{diag} (E^{(1)}, E^{(2)})$, i.e., $D(B) \stackrel{\text{def}}{=} D(B_0)$ and

$$\boldsymbol{B}\mathbf{w} \stackrel{\text{def}}{=} \boldsymbol{E}\boldsymbol{B}_0 \mathbf{w} = (-\boldsymbol{E}^{(1)}\boldsymbol{A}^* \boldsymbol{\underline{w}}_2, \boldsymbol{E}^{(2)}\boldsymbol{A} \boldsymbol{\underline{w}}_1)$$
(2.25)

for $\mathbf{w} \in D(B)$. It turns out that B is a densely defined skew self-adjoint operator in the Hilbert-space $X \stackrel{\text{def}}{=} L^2(\Omega, \mathbb{C}^{M+N})$ endowed with the scalarproduct

$$\langle \mathbf{u}, \mathbf{v} \rangle_X \stackrel{\text{def}}{=} \int_{\Omega} E^{-1} \mathbf{u} \bar{\mathbf{v}} \, dx$$

This follows from the closedness of A, which implies that $A^{**} = \overline{A} = A$. (It is advantageous for following considerations to consider a complex space X. But whenever the term S(t, x, E, F) occurs in an equation, the functions E and F are of course assumed to be real-valued.)

Now, let \mathcal{N} be the set of all $\mathbf{a} \in \ker B$ with $\underline{\mathbf{a}}_1(x) = 0$ for all $x \in G$. Moreover, let $X^0 \stackrel{\text{def}}{=} \mathcal{N}^{\perp}$ be the space of all $\mathbf{w} \in X$ with $\langle \mathbf{u}, \mathbf{w} \rangle_X = 0$ for all $\mathbf{u} \in \mathcal{N}$.

For $\mathbf{G} = (\mathbf{G}^{(1)}, \mathbf{G}^{(2)}) \in L^1((0, \infty), L^2(\Omega, \mathbb{R}^{M+N}))$ and $\mathbf{w} \in L^2(\Omega, \mathbb{R}^{M+N})$ a function $\mathbf{u} \in C([0, \infty), X)$ is called a weak soution to the problem (1.1)-(1.3), if

$$\frac{d}{dt} \langle \mathbf{u}(t), \mathbf{a} \rangle_{X} = -\langle \mathbf{u}(t), B \mathbf{a} \rangle_{X} + \langle \mathbf{G}(t) - F(t, \mathbf{u}(t)), \mathbf{a} \rangle_{X}$$

for all $\mathbf{a} \in D(B)$ (2.26)

and **u** fulfilles the initial-condition.

Here $F: (0, \infty) \times X \to X$ is defined by

$$F(t, \mathbf{u}) \stackrel{\text{def}}{=} (E^{(1)}\mathbf{S}(t, \cdot, \mathbf{u}(\cdot)), 0).$$

(2.26) is equivalent to the variation of constant formula

$$\mathbf{u}(t) = \exp(tB) \mathbf{w} + \int_0^t \exp((t-s) B) [\mathbf{G}(s) - F(s, \mathbf{u}(s))] ds \qquad (2.27)$$

where $(\exp(tB))_{t \in \mathbb{R}}$ is the unitary group generated by *B*. Since $F(t, \cdot)$ is assumed to be Lipschitz-continuous in X by assumption (2.19), it follows from a standard result that this integal-equation has a unique solution $\mathbf{u} \in C([0, \infty), X)$, (see [11, chap. 7]).

(2.27) yields the energy-estimate

$$\frac{1}{2} \frac{d}{dt} \| \mathbf{u}(t) \|_{X}^{2} = \langle \mathbf{G}(t) - F(t, \mathbf{u}(t)), \mathbf{u}(t) \rangle_{X}$$
$$= \langle \mathbf{G}(t), \mathbf{u}(t) \rangle_{X} - \int_{G} \mathbf{S}(t, x, \mathbf{u}(t)) \cdot \underline{\mathbf{u}(t)}_{1} dx$$
$$\leq \langle \mathbf{G}(t), \mathbf{u}(t) \rangle_{X}.$$
(2.28)

In the sequel $T(\cdot) \mathbf{w} \in C([0, \infty), X)$ denotes the unique solution to (1.1)–(1.3) in the sense of (2.26).

3. WEAK CONVERGENCE FOR $T \rightarrow \infty$

In the following lemma it is shown in particular that $T(\cdot) \mathbf{w} \in L^{\infty}((0, \infty), X)$, i.e., $||T(t)\mathbf{w}||_X$ is bounded as $t \to \infty$.

LEMMA 1. Suppose $\mathbf{w} \in X$ and $\mathbf{u}(t) \stackrel{\text{def}}{=} T(t) \mathbf{w}$. Then

$$\|\mathbf{u}(t)\|_{X} \leq \|\mathbf{w}\|_{X} + \|\mathbf{G}\|_{L^{1}((0, \infty), X)},$$

$$\int_{0}^{\infty} \langle \mathbf{u}(t), F(t, \mathbf{u}(t)) \rangle_{X} dt \leq (\|\mathbf{w}\|_{X} + \|\mathbf{G}\|_{L^{1}((0, \infty), X)})^{2}$$
(3.29)

and

$$\int_0^\infty \|F(t, \mathbf{u}(t))\|_X^2 dt \leq C_0 (\|\mathbf{w}\|_X + \|\mathbf{G}\|_{L^1((0, \infty), X)})^2$$

with some $C_0 \in (0, \infty)$ independent of w. Moreover,

$$\underline{\mathbf{u}}_1 \in L^p((0, \infty), L_{\gamma}^{-1}(K)) \quad \text{for all bounded measurable subsets} \quad K \subset G.$$
(3.30)

Proof. Let $\mathbf{u}(t) = (\mathbf{E}(t), \mathbf{F}(t)) \stackrel{\text{def}}{=} T(t)$ w. By the assumptions (2.20) on S one has

$$||F(t, \mathbf{f})||_X^2 \leq C_0 \langle F(t, \mathbf{f}), \mathbf{f} \rangle_X$$
 for all $\mathbf{f} \in X$

with some $C_0 > 0$ independent of **f**. Therefore, the energy-estimate (2.28) yields

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \| \mathbf{u}(t) \|_X^2 &\leqslant \langle \mathbf{G}(t) - F(t, \mathbf{u}(t)), \mathbf{u}(t) \rangle_X \\ &\leqslant \| \mathbf{G}(t) \|_X \| \mathbf{u}(t) \|_X - \langle F(t, \mathbf{u}(t)), \mathbf{u}(t) \rangle_X \\ &\leqslant \| \mathbf{G}(t) \|_X \| \mathbf{u}(t) \|_X - C_0^{-1} \| F(t, \mathbf{u}(t)) \|_X^2. \end{aligned}$$

This implies (3.29) by Gronwall's lemma.

To prove (3.30) let $\mathbf{f} \in X$ and define $\mathbf{a}, \mathbf{b} \in L^2(G, \mathbb{R}^M)$ by $\mathbf{a}(x) \stackrel{\text{def}}{=} \mathbf{f}_1(x)$ if $|\mathbf{f}_1(x)| \leq 1$ and $\mathbf{a}(x) \stackrel{\text{def}}{=} 0$ if $|\mathbf{f}_1(x)| > 1$. Moreover, $\mathbf{b}(x) \stackrel{\text{def}}{=} \mathbf{f}_1(x)$ if $|\mathbf{f}_1(x)| > 1$ and $\mathbf{b}(x) \stackrel{\text{def}}{=} 0$ if $|\mathbf{f}_1(x)| \leq 1$.

Then it follows from assumption (2.21) that

$$\mathbf{a}(x) \mathbf{S}(t, x, \mathbf{a}(x), \underline{\mathbf{f}}_2(x)) \ge \gamma(x) |\mathbf{a}(x)|^p \quad \text{and} \\ \mathbf{b}(x) \mathbf{S}(t, x, \mathbf{b}(x), \underline{\mathbf{f}}_2(x)) \ge \gamma(x) |\mathbf{b}(x)|$$

for all $x \in G$. Hölder's inequality yields

$$\|\mathbf{f}_{1}\|_{L_{\gamma}^{1}(K)} \leq \|\mathbf{a}\|_{L_{\gamma}^{1}(K)} + \|\mathbf{b}\|_{L_{\gamma}^{1}(K)} \\\leq C_{K,1} \|\mathbf{a}\|_{L_{\gamma}^{p}(K)} + \|\mathbf{b}\|_{L_{\gamma}^{1}(K)} \\= C_{K,1} \left(\int_{G} |\mathbf{a}(x)|^{p} \gamma \, dx\right)^{1/p} + \int_{G} |\mathbf{b}(x)| \gamma \, dx \\\leq C_{K,1} \left(\int_{G} \mathbf{a}(x) \, \mathbf{S}(t, x, \mathbf{a}(x), \mathbf{f}_{2}(x)) \, dx\right)^{1/p} \\+ \int_{G} \mathbf{b}(x) \, \mathbf{S}(t, x, \mathbf{b}(x), \mathbf{f}_{2}(x)) \, dx \\\leq C_{K,1} \left(\int_{G} \mathbf{f}(x) \, \mathbf{S}(t, x, \mathbf{f}(x)) \, dx\right)^{1/p} \\+ \int_{G} \mathbf{f}(x) \, \mathbf{S}(t, x, \mathbf{f}(x)) \, dx \\\leq C_{K,1} (\langle \mathbf{f}, F(t, \mathbf{f}) \rangle_{X})^{1/p} + \langle \mathbf{f}, F(t, \mathbf{f}) \rangle_{X} \\\leq C_{K,2} (1 + \|\mathbf{f}\|_{X}^{2-2/p}) (\langle \mathbf{f}, F(t, \mathbf{f}) \rangle_{X})^{1/p}$$
(3.31)

Finally, the assertion (3.30) follows from (3.29) and (3.31).

Next some lemmata concerning the operator B are given.

LEMMA 2. (i) $\Delta \mathbf{w} = B_0^2 \mathbf{w}$ on Ω for all $\mathbf{w} \in (\operatorname{rang} B_0) \cap D(B_0^2)$, in particular $-\Delta \mathbf{e} = A^*A\mathbf{e}$ and $-\Delta \mathbf{f} = AA^*\mathbf{f}$ on Ω for all $\mathbf{e} \in (\operatorname{rang} A^*) \cap D(A)$ and $\mathbf{f} \in (\operatorname{rang} A) \cap D(A^*)$ with $A \mathbf{e} \in D(A^*)$ and $A^*\mathbf{f} \in D(A)$.

(ii) $\Delta \mathbf{w} = B^2 \mathbf{w}$ on $\Omega_0 = \Omega \setminus G$ for all $\mathbf{w} \in X^0 \cap D(B^2)$.

Proof. Let $\mathbf{u} \in C_0^{\infty}(\Omega, \mathbb{C}^{M+N}) \subset D(B_0^n)$ for all $n \in \mathbb{N}$. Then it follows from the algebraic condition (2.22) using Fourier-transform that

$$\begin{aligned} \mathscr{F}(\underline{B_0^3 \mathbf{u}})_1(\xi) &= -i\left(\sum_{j=1}^3 \xi_j H_j^*\right) \left(\sum_{k=1}^3 \xi_k H_k\right) \left(\sum_{l=1}^3 \xi_l H_l^*\right) \mathscr{F}(\underline{\mathbf{u}}_2)(\xi) \\ &= -i \, |\xi|^2 \left(\sum_{l=1}^3 \xi_l H_l^*\right) \mathscr{F}(\underline{\mathbf{u}}_2)(\xi) \end{aligned}$$

Analogously,

$$\mathscr{F}_{\underline{(B_0^3\mathbf{u})}_2}(\xi) = -i \, |\xi|^2 \left(\sum_{l=1}^3 \xi_l H_l\right) \mathscr{F}(\underline{\mathbf{u}}_1)(\xi)$$

and hence

$$B_0^3 \mathbf{u} = B_0 \,\varDelta \,\mathbf{u} \qquad \text{for all} \quad \mathbf{u} \in C_0^\infty(\Omega, \,\mathbb{C}^{M+N}). \tag{3.32}$$

Now, assume $\mathbf{w} \in (\text{rang } B_0) \cap D(B_0^2)$, i.e., $\mathbf{w} = B_0 \mathbf{v}$ with some $\mathbf{v} \in D(B_0^3)$. Then

$$\int_{\Omega} (B_0^2 \mathbf{w}) \mathbf{u} \, dx = \langle B_0^3 \mathbf{v}, \, \bar{\mathbf{u}} \rangle_{L^2} = -\langle \mathbf{v}, \, B_0^3 \bar{\mathbf{u}} \rangle_{L^2}$$
$$= -\langle \mathbf{v}, \, B_0 \, \varDelta \, \bar{\mathbf{u}} \rangle_{L^2} = \langle \mathbf{w}, \, \varDelta \, \bar{\mathbf{u}} \rangle_{L^2} = \int_{\Omega} \mathbf{w} \, \varDelta \, \mathbf{u} \, dx$$

for all $\mathbf{u} \in C_0^{\infty}(\Omega)$, which means $B_0^2 \mathbf{w} = \Delta \mathbf{w}$ in the sense of distributions. To prove (ii) let $\mathbf{w} \in X^0 \cap D(B^2)$. Suppose $\mathbf{u} \in C_0^{\infty}(\Omega_0, \mathbb{C}^{M+N})$, and define $\tilde{\mathbf{u}} \stackrel{\text{def}}{=} (B_0^2 - \Delta) \mathbf{u} \in C_0^{\infty}(\Omega_0, \mathbb{C}^{M+N}) \subset D(B_0^n)$. Then (3.32) yields $B_0 \tilde{\mathbf{u}} = 0$ and hence $\tilde{\mathbf{u}} \in \mathcal{N}$. In particular $0 = \langle \mathbf{w}, \tilde{\mathbf{u}} \rangle_X$, because $\mathbf{w} \in X^0$. Since E = 1 on Ω_0 , it follows $B\mathbf{u} = B_0 \mathbf{u} \in D(B)$ and $\tilde{\mathbf{u}} = (B^2 - \Delta) \mathbf{u}$. Now,

$$0 = \langle \mathbf{w}, \tilde{\mathbf{u}} \rangle_X = \langle \mathbf{w}, B^2 \mathbf{u} \rangle_X - \langle \mathbf{w}, \Delta \mathbf{u} \rangle_X = \langle B^2 \mathbf{w}, \mathbf{u} \rangle_X - \langle \mathbf{w}, \Delta \mathbf{u} \rangle_X$$
$$= \int_{\Omega} \left([B^2 \mathbf{w}] \, \bar{\mathbf{u}} - \mathbf{w} \, \Delta \bar{\mathbf{u}} \right) \, dx$$

Since $\mathbf{u} \in C_0^{\infty}(\Omega_0, \mathbb{C}^{M+N})$ is arbitrary, the assertion follows.

Remark 1. Due to the facts that generally $E^{(j)} \neq 1$ and $\underline{a}_1 = 0$ on G for all $\mathbf{a} \in \mathcal{N}$ we have $\Delta \mathbf{w}_1 \neq (B^2 \mathbf{w})_1$ on G for all $\mathbf{w} \in X^0 \cap D(B^2)$ in general.

For example is the case of Maxwell's Eqs. (1.4)–(1.6) all $\mathbf{w} \in X^0 \cap D(B^2)$ obey $(B^2\mathbf{w})_1 = -\varepsilon^{-1}\operatorname{curl}(\mu^{-1}\operatorname{curl}\mathbf{w}_1)$. The condition $\mathbf{w} \in X^0$ implies $\operatorname{div}(\varepsilon \mathbf{w}_1) = 0$ on Ω_0 and $\operatorname{div}(\mu \mathbf{w}_2) = 0$ on Ω , as mentioned in the introduction, but it does not provide any information on the divergence of \mathbf{w}_1 on the set G, since $\mathbf{a}_1 = 0$ on G for all $\mathbf{a} \in \mathcal{N}$.

The next theorem is the generalization of the unique-continuationprinciple in [4] and [6] as mentioned in the introduction.

THEOREM 1. Let $\mathbf{g} \in X$ with the property

$$(\exp(tB)\mathbf{g})_1 = 0$$
 on G for all $t \in \mathbb{R}$. (3.33)

Then $\mathbf{g} \in \mathcal{N} \subset \ker B$.

Proof. Since *iB* is self-adjoint in X, $f(iB) = \int_{\mathbb{R}} f(\lambda) dE_{\lambda}$ can be defined by the spectral-theorem for a Borel-measurable function $f: \mathbb{R} \to \mathbb{C}$. Here $(E_{\lambda})_{\lambda \in \mathbb{R}}$ denotes the family of spectral-projectors of *iB*. If $f \in C_0^{\infty}(\mathbb{R})$, then bounded operator f(iB) has the representation

$$f(iB) \mathbf{u} = (2\pi)^{-1/2} \int_{\mathbb{R}} \hat{f}(t) \exp(-tB) \mathbf{u} \, dt \qquad \text{for all} \quad \mathbf{u} \in X.$$
(3.34)

Here \hat{f} denotes the Fourier-transform of f. To see this let $\mathbf{u}, \mathbf{v} \in X$. Then

$$\langle f(iB) \mathbf{u}, \mathbf{v} \rangle_{X} = \int_{\mathbb{R}} f(\lambda) \, d\langle E_{\lambda} \mathbf{u}, \mathbf{v} \rangle_{X}$$
$$= (2\pi)^{-1/2} \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(t) \exp(it\lambda) \, dt \, d\langle E_{\lambda} \mathbf{u}, \mathbf{v} \rangle_{X}$$
$$= (2\pi)^{-1/2} \int_{\mathbb{R}} \hat{f}(t) \langle \exp(-tB) \mathbf{u}, \mathbf{v} \rangle_{X} \, dt$$

Suppose $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$. Then (3.33) and (3.34) yield

$$(f(iB) \mathbf{g})_1 = 0 \qquad \text{on } G. \tag{3.35}$$

Moreover,

$$\widetilde{f}(iB) \mathbf{g} = iBf(iB) \mathbf{g} = i(-E^{(1)}A^* \underline{(f(iB) \mathbf{g})}_2, E^{(2)}A \underline{(f(iB) \mathbf{g})}_1) \quad \text{on } \Omega,$$
(3.36)

where $\tilde{f}(\lambda) = \lambda f(\lambda)$. In particular (3.35) and (3.36) yield by replacing f by $g(\lambda) \stackrel{\text{def}}{=} \lambda^{-1} f(\lambda) \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ that

$$(\underline{f(iB)} \mathbf{g})_2 = iE^{(2)}A (\underline{g(iB)} \mathbf{g})_1 = 0 \quad \text{on } G$$

and hence by (3.35)

$$f(iB) \mathbf{g} = 0 \qquad \text{on } G \tag{3.37}$$

Since E(x) = 1 on $\Omega \setminus G$, (3.35)–(3.37) yield

$$B_0 f(iB) \mathbf{g} = B(f(iB) \mathbf{g}) = -i\tilde{f}(iB) \mathbf{g} \quad \text{for all} \quad f \in C_0^{\infty}(\mathbb{R} \setminus \{0\}) \quad (3.38)$$

with $\tilde{f}(\lambda) = \lambda f(\lambda)$.

In particular it follows by induction

$$f(iB) \mathbf{g} \in (\operatorname{rang} B_0) \cap D(B_0^n)$$
 with $B_0^n f(iB) \mathbf{g} = B^n(f(iB) \mathbf{g})$ (3.39)

for all $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and $n \in \mathbb{N}$.

The aim of the following considerations is to show that f(iB) g is real analytic on Ω . This will be achieved by means of a local integral representation.

Let $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and choose $\chi \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ with $\chi(\lambda) = 1$ on supp *f*. Define

$$\mathbf{F}(t) \stackrel{\text{def}}{=} \exp(-tB) \,\chi(iB) \,\mathbf{g} = (2\pi)^{-1/2} \int_{\mathbb{R}} \hat{\chi}(\xi) \,\exp((-t-\xi) \,B) \,\mathbf{g} \,d\xi.$$

Then (3.39) and Lemma 2(i) yield

$$\partial_t^2 \mathbf{F}(t) = B^2 \mathbf{F}(t) = B_0^2 \mathbf{F}(t) = \Delta \mathbf{F}, \qquad (3.40)$$

in particular

$$\partial_t^j \Delta^k \mathbf{F} = (-1)^j B^{j+2k} \mathbf{F}(\cdot) \in L^{\infty}(\mathbb{R}, L^2(\Omega))$$

for all $i \in \mathbb{N}$ and $k \in \mathbb{N}$.

which implies $\mathbf{F} \in C^{\infty}(\mathbb{R} \times \Omega)$ and

 $\partial_t^j \partial^{\alpha} \mathbf{F} \in L^{\infty}(\mathbb{R} \times \mathscr{K}) \quad \text{for all compact} \quad \mathscr{K} \subset \Omega, \quad j \in \mathbb{N}_0 \quad \text{and} \quad \alpha \in \mathbb{N}_0^3.$ (3.41)

Suppose $x_0 \in \Omega$ and choose R > 0 with $B_{2R}(x_0) \subset \Omega$. Let

$$K(x,\xi) \stackrel{\text{def}}{=} (4\pi |x|)^{-1} \hat{f}(\xi - |x|) \quad \text{for} \quad \xi \in \mathbb{R} \quad \text{and} \quad x \in \mathbb{R}^3$$

Then (3.41) yields for all $x \in B_{R/2}(x_0)$

$$\begin{split} \lim_{r \to 0} & \int_{\mathbb{R}} \int_{\partial B_{r}(x)} \vec{n}(y) [K(x-y,\xi) \nabla_{y} \mathbf{F}_{j}(\xi, y) \\ & - \mathbf{F}_{j}(\xi, y) \nabla_{y} K(x-y,\xi)] dS(y) d\xi \\ &= (4\pi)^{-1} \lim_{r \to 0} \left(r^{-3} \int_{\mathbb{R}} \hat{f}(\xi-r) \int_{\partial B_{r}(x)} \left[\vec{n}(y)(x-y) \right] \mathbf{F}_{j}(\xi, y) dS(y) d\xi \right) \\ &= \int_{\mathbb{R}} \hat{f}(\xi) \mathbf{F}_{j}(\xi, x) d\xi \\ &= \int_{\mathbb{R}} \hat{f}(\xi) (\exp(-\xi B) \chi(iB) \mathbf{g})_{j}(x) d\xi \\ &= (2\pi)^{1/2} (f(iB) \chi(iB) \mathbf{g})_{j}(x) \\ &= (2\pi)^{1/2} (f(iB) \mathbf{g})_{j}(x). \end{split}$$
(3.42)

For all $x \in B_{R/2}(x_0)$ and all $y \in B_{2R}(x_0)$ with $y \neq x$ one has by (3.40)

$$\begin{aligned} \operatorname{div}_{y} [K(x-y,\xi) \,\nabla_{y} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \,\nabla_{y} K(x-y,\xi)] \\ &= K(x-y,\xi) \,\Delta_{y} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \,\Delta_{y} K(x-y,\xi) \\ &= K(x-y,\xi) \,\partial_{\xi}^{2} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \,\partial_{\xi}^{2} K(x-y,\xi) \\ &= \partial_{\xi} [K(x-y,\xi) \,\partial_{\xi} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \,\partial_{\xi} K(x-y,\xi)] \end{aligned}$$

and hence

$$\begin{split} \int_{\mathbb{R}} \int_{\partial B_{R}(x_{0})} \vec{n}(y) [K(x-y,\xi) \nabla_{y} \mathbf{F}_{j}(\xi, y) - \mathbf{F}_{j}(\xi, y) \nabla_{y} K(x-y,\xi)] \, dS(y) \, d\xi \\ &- \int_{\mathbb{R}} \int_{\partial B_{r}(x)} \vec{n}(y) [K(x-y,\xi) \nabla_{y} \mathbf{F}_{j}(\xi, y) \\ &- \mathbf{F}_{j}(\xi, y) \nabla_{y} K(x-y,\xi)] \, dS(y) \, d\xi \\ &= \int_{\mathbb{R}} \int_{B_{R}(x_{0}) \setminus B_{r}(x)} \operatorname{div}_{y} [K(x-y,\xi) \nabla_{y} \mathbf{F}_{j}(\xi, y) \\ &- \mathbf{F}_{j}(\xi, y) \nabla_{y} K(x-y,\xi)] \, dy \, d\xi \\ &= \int_{B_{R}(x_{0}) \setminus B_{r}(x)} \int_{\mathbb{R}} \partial_{\xi} [K(x-y,\xi) \partial_{\xi} \mathbf{F}_{j}(\xi, y) \\ &- \mathbf{F}_{j}(\xi, y) \partial_{\xi} K(x-y,\xi)] \, d\xi \, dy = 0, \end{split}$$
(3.43)

since $K(x - y, \xi) \xrightarrow{|\xi| \to \infty} 0$ and $\partial_{\xi} K(x - y, \xi) \xrightarrow{|\xi| \to \infty} 0$, whereas **F** and $\partial_{\xi} \mathbf{F}$ remain bounded as $|\xi| \to \infty$ by (3.41) for fixed $y \neq x$. Now, (3.42) and (3.43) yield for all $x \in B_{R/2}(x_0)$

$$(2\pi)^{1/2} (f(iB) \mathbf{g})_j(x) = \int_{\mathbb{R}} \int_{\partial B_R(x_0)} \vec{n}(y) [K(x-y,\xi) \nabla_y \mathbf{F}_j(\xi, y) - \mathbf{F}_j(\xi, y) \nabla_y K(x-y,\xi)] dS(y) d\xi$$
(3.44)

Since $f \in C_0^{\infty}(\mathbb{R})$, there exists a constant $C_1 \in (0, \infty)$ with

$$(1+\xi^2) |\hat{f}^{(k)}(\xi)| \leq C_1^k$$
 for all $\xi \in \mathbb{R}$ and $k \in \mathbb{N}$.

Hence there exists a constant $C_2 \in (0, \infty)$ with

$$\begin{split} \int_{\mathbb{R}} \int_{\partial B_{R}(x_{0})} \left(\left| \frac{d^{k}}{d\tau^{k}} K(x_{0} + \tau\eta - y, \xi) \right| \\ &+ \left| \frac{d^{k}}{d\tau^{k}} (\vec{n}(y) \nabla_{y} K(x_{0} + \tau\eta - y, \xi)) \right| \right) dS(y) d\xi \\ &\leqslant C_{2}^{k} k! |\eta|^{k} \end{split}$$

for all $\eta \in \mathbb{R}^3$ with $|\eta| \leq R/2$, $\tau \in (-1, 1)$ and $k \in \mathbb{N}$. Now it follows from (3.41) and (3.44) and the previous estimate that there exists a constant $C_3 \in (0, \infty)$ with

$$\left|\frac{d^k}{d\tau^k}(f(iB)\mathbf{g})(x_0+\tau\eta)\right| \leq (C_3|\eta|)^k k!$$

for all $\eta \in \mathbb{R}^3$ with $|\eta| \leq R/2$, $\tau \in (-1, 1)$ and $k \in \mathbb{N}$, which yields the analycity of f(iB) g.

Next this analycity yields by (3.37) and the assumptions that G has nonempty interior and Ω is connected that

$$f(iB) \mathbf{g} = 0 \qquad \text{for all} \quad f \in C_0^{\infty}(\mathbb{R} \setminus \{0\}). \tag{3.45}$$

Choose a sequence $f_n \in C_0^{\infty}(\mathbb{R} \setminus \{0\}), n \in \mathbb{N}$ with $|f_n(\lambda)| \leq 1$ and $f_n(\lambda) \xrightarrow{n \to \infty} 1$ for all $\lambda \in \mathbb{R} \setminus \{0\}$.

By the spectral-theorem (3.45) implies

$$0 = \langle f_n(iB) \mathbf{g}, \mathbf{g} \rangle_X \xrightarrow{\mathbf{n} \to \infty} \langle (1 - P_{ker B}) \mathbf{g}, \mathbf{g} \rangle_X$$

and hence $\mathbf{g} = P_{ker B} \mathbf{g} \in \ker B$. Together with (3.33) this yields $\mathbf{g} \in \mathcal{N}$, which completes the proof.

Remark 2. In [7], Chap. VIII the following result can be found (Theorem 8.6.8), which is a consequence of Holmgren's uniqueness-theorem:

Let $X_1, X_2 \subset \mathbb{R}^N$ open and convex with $X_1 \subset X_2$. Let *L* be a differential operator with constant coefficients. Then the following conditions are equivalent:

(i) All $u \in \mathcal{D}'(X_2)$ with Lu = 0 on X_2 and u = 0 on X_1 are identically zero on all of X_2 .

(ii) Every hyperplane which is characteristic with respect to L and intersects X_2 also intersects X_1 .

This can be used in the proof of the previous theorem as follows. Let $\chi \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$ and define

$$\mathbf{F}(t) \stackrel{\text{def}}{=} \exp(-tB) \,\chi(iB) \,\mathbf{g} = (2\pi)^{-1/2} \int_{\mathbb{R}} \hat{\chi}(\xi) \,\exp((-t-\xi) \,B) \,\mathbf{g} \,d\xi.$$

As above it follows from (3.37), (3.39) and Lemma 2(i) that $\mathbf{F} \in C^{\infty}(\mathbb{R} \times \Omega)$ solves the scalar wave-equation (3.40) and vanishes on the subset $\mathbb{R} \times G$. In order to apply Theorem 8.6.8 in [7] define U as the set of all $x \in \Omega$, such that there exists a neigbourhood \mathcal{B} of x with $\mathbf{F} = 0$ on $\mathbb{R} \times \mathcal{B}$. The aim of the following considerations is to show $U = \Omega$, in particular **F** is identically zero.

By (3.37) and the assumption that G has nonempty interior there exists some $x_0 \in G$ with this property, in particular $U \neq \emptyset$. Since U is open and Ω is connected, it suffices to show that U is relatively closed in Ω . Suppose $x_1 \in \Omega \cap \overline{U}$ and choose R > 0 with $B_R(x_1) \subset \Omega$. Then one can find $y \in B_R(x_1) \cap U$ and r > 0 with $B_r(y) \subset B_R(x_1)$ and $\mathbf{F} = 0$ on $X_1 \stackrel{\text{def}}{=} \mathbb{R} \times B_r(y)$. Now every hyperplane, which is characteristic with respect to the wave-operator intersects X_1 . Therefore Theorem 8.6.8 in [7] asserts that $\mathbf{F} = 0$ on $X_2 \stackrel{\text{def}}{=} \mathbb{R} \times B_R(x_1)$, in particular $x_1 \in U$, which completes the proof of Theorem 1 with the aid of Theorem 8.6.8 in [7].

However the proof of Theorem 1 given in this paper is independent of Holmgren's theorem.

Remark 3. The proof of Theorem 1 can be simplyfied further under the additional assumption that

$$\overline{\Omega_0} \subset \Omega \tag{3.46}$$

Suppose that $\mathbf{g} \in X$ satisfies the assumption in Theorem 1. As above one has for all $f \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$

$$f(iB) \mathbf{g} = 0 \qquad \text{on } G \tag{3.47}$$

and f(iB) g satisfies (3.39).

Next it is shown that f(iB) g is real analytic on Ω . Lemma 2(i) and (3.39) yield

$$B^{2}f(iB) \mathbf{g} = B_{0}^{2}f(iB) \mathbf{g}(t) = \Delta f(iB) \mathbf{g}, \qquad (3.48)$$

By induction it follows

$$(1-\Delta)^n f(iB) \mathbf{g} = (1-B^2)^n f(iB) \mathbf{g} = \int_{\mathbb{R}} (1+\lambda^2)^k f(\lambda) \, dE_\lambda \mathbf{g} \in L^2(\Omega)$$
(3.49)

and hence

$$\|(1-\Delta)^{n} f(iB) \mathbf{g}\|_{X} = \|(1-B^{2})^{n} f(iB)\|_{X}$$

$$\leq \sup_{\lambda \in \mathbb{R}} \left((1+\lambda^{2})^{n} |f(\lambda)| \right) \|\mathbf{g}\|_{X} \leq C_{1}^{n} \qquad (3.50)$$

for all $n \in \mathbb{N}$ with some constant $C_1 \in (0, \infty)$ independent of *n*.

Let $\mathbf{F} \in L^2(\mathbb{R}^3)$ be the extension of $f(iB) \mathbf{g}$ by zero defined by $\mathbf{F}(x) \stackrel{\text{def}}{=} (f(iB) \mathbf{g})(x)$ if $x \in \Omega$ and $\mathbf{F}(x) = 0$ if $x \in \mathbb{R}^3 \setminus \Omega$. Since $\mathbf{F}(x) = 0$ for all $x \in G = \Omega \setminus \Omega_0$ by (3.47) the support of \mathbf{F} is contained in the closed subset $\overline{\Omega_0} \subset \Omega$ by assumption (3.46). Now, it follows easily from (3.48)–(3.50) that $(1 - \Delta)^n \mathbf{F} \in L^2(\mathbb{R}^3)$ and

$$\|(1-\varDelta)^n \mathbf{F}\|_{L^2(\mathbb{R}^3)} \leq \|(1-\varDelta)^n f(iB) \mathbf{g}\|_X \leq C_1^n \quad \text{for all} \quad n \in \mathbb{N}.$$
(3.51)

This yields by Sobolev's embedding-theorem $\mathbf{F} \in C^{\infty}(\mathbb{R}^3)$ and

$$\|\partial^{\alpha}\mathbf{F}\|_{L^{\infty}} \leq C \|\partial^{\alpha}\mathbf{F}\|_{H^{2}(\mathbb{R}^{3})} = C \|(1+\xi^{2})\xi^{\alpha}\hat{\mathbf{F}}\|_{L^{2}(\mathbb{R}^{3})}$$
$$\leq C \|(1+\xi^{2})^{n+1}\hat{\mathbf{F}}\|_{L^{2}(\mathbb{R}^{3})} = C \|(1-\varDelta)^{n+1}\mathbf{F}\|_{L^{2}(\mathbb{R}^{3})}$$
$$\leq C_{1}^{n+1}$$
(3.52)

for all $n \in \mathbb{N}$ and $|\alpha| \leq 2n$ with $C_1 \in (0, \infty)$ as in (3.51), which yields the analycity of **F**. Since $\mathbf{F}(x) = 0$ for all $x \in G$, this analycity implies $\mathbf{F} = 0$ on all of \mathbb{R}^3 and hence (3.45)

In the sequel let $\omega_0(\mathbf{w})$ denote the ω -limit-set of the solution $T(\cdot)$ w with respect to the weak topology of X, i.e., the set of all $\mathbf{g} \in X$, such that there exists a sequence $t_n \xrightarrow{n \to \infty} \infty$ with $T(t_n) \mathbf{w} \xrightarrow{n \to \infty} \mathbf{g}$ in X weakly, that means with $\langle T(t_n) \mathbf{w}, \mathbf{f} \rangle_X \xrightarrow{n \to \infty} \langle \mathbf{g}, \mathbf{f} \rangle_X$ for all $\mathbf{f} \in X$.

Since the $T(\cdot) \mathbf{w} \in L^{\infty}((0, \infty), X)$ by Lemma 1 the weak ω -limit-set $\omega_0(\mathbf{w})$ in nonempty for all $\mathbf{w} \in X$.

THEOREM 2. Let $\mathbf{w} \in X$. Then $\omega_0(\mathbf{w}) \subset \mathcal{N}$.

Proof. Let $\mathbf{u}(t) \stackrel{\text{def}}{=} T(t)$ w for $t \in \mathbb{R}$. Suppose $\mathbf{g} \in X$ and $t_n \xrightarrow{\mathbf{n} \to \infty} \infty$ with $T(t_n) \mathbf{w} \xrightarrow{\mathbf{n} \to \infty} \mathbf{g}$ in X weakly. Let $t \in \mathbb{R}$. By (2.27) one has

$$\mathbf{u}(t_n+t) = \exp(tB) \, \mathbf{u}(t_n) + \int_{t_n}^{t_n+t} \exp((t_n+t-\tau) \, B) [\mathbf{G}(\tau) - F(\tau, \mathbf{u}(\tau))] \, d\tau$$

for all sufficiently large $n \in \mathbb{N}$, such that $t_n + t \ge 0$. (In order to apply Theorem 1 it is necessary also to consider $t \le 0$.) With $\mathbf{G} \in L^1((0, \infty), X)$ it follows from Lemma 1, (3.29) that

$$\|\mathbf{u}(t_n+t) - \exp(tB) \mathbf{u}(t_n)\|_X$$

$$\leq \int_{[t_n, t_n + t]} \left(\|\mathbf{G}(\tau)\|_X + \|F(\tau, \mathbf{u}(\tau))\|_X \right) d\tau$$
$$\leq \int_{[t_n, t_n + t]} \|\mathbf{G}(\tau)\|_X d\tau + |t|^{1/2}$$
$$\times \left(\int_{[t_n, t_n + t]} \|F(\tau, \mathbf{u}(\tau))\|_X^2 d\tau \right)^{1/2} \xrightarrow{\mathbf{n} \to \infty} 0$$

and hence

$$\mathbf{u}(t_n+t) \xrightarrow{\mathbf{n} \to \infty} \exp(tB) \mathbf{g}$$
 in X weakly for all $t \in \mathbb{R}$. (3.53)

Suppose $a, b \in \mathbb{R}$ with a < b and define $\mathbf{f} \stackrel{\text{def}}{=} \int_a^b \exp(tB) \mathbf{g} dt$ and $\mathbf{f}^{(n)} \stackrel{\text{def}}{=} \int_a^b \mathbf{u}(t_n + t) dt$ for $n \in \mathbb{N}$ sufficiently large, such that $t_n + a \ge 0$. Then (3.53) yields by the dominated convergence-theorem

$$\langle \mathbf{f}^{(n)}, \mathbf{h} \rangle_X = \int_a^b \langle \mathbf{u}(t_n + t), \mathbf{h} \rangle_X dt$$
$$\xrightarrow{\mathbf{n} \to \infty} \int_a^b \langle \exp(tB) \mathbf{g}, \mathbf{h} \rangle_X dt$$
$$= \langle \mathbf{f}, \mathbf{h} \rangle_X$$

for all $\mathbf{h} \in X$, i.e., $\mathbf{f}^{(n)} \xrightarrow{\mathbf{n} \to \infty} \mathbf{f}$ weakly. In particular

$$\underbrace{\mathbf{f}^{(n)}}_{1} \xrightarrow{\mathbf{n} \to \infty} \mathbf{f}_{1} \quad \text{in} \quad L^{2}(G) \subset L^{1}_{\gamma}(K) \quad \text{weakly for all bounded} \quad K \subset G.$$
(3.54)

On the other hand it follows from Lemma 1(iii) that

$$\|\underline{\mathbf{f}}^{(n)}_{1}\|_{L^{1}_{\gamma}(K)} \leq (b-a)^{1/p^{*}} \left(\int_{a+t_{n}}^{b+t_{n}} \|\underline{\mathbf{u}}(t)_{1}\|_{L^{1}_{\gamma}(K)}^{p} dt \right)^{1/p} \xrightarrow{\mathbf{n} \to \infty} 0 \quad (3.55)$$

for all $t \in \mathbb{R}$. Now (3.54) and (3.55) yield

$$\int_{a}^{b} (\exp(tB) \mathbf{g})_{1} dt = 0 \quad \text{on } K \text{ for all bounded} \quad K \subset G$$

and all
$$a, b \in \mathbb{R}$$
, $a < b$.

This implies that **g** obeys condition (3.33) of Theorem 1. Hence $\mathbf{g} \in \mathcal{N}$.

Let P be the orthogonal-projector on \mathcal{N} in X.

LEMMA 3. Suppose $\mathbf{w} \in X$. Then $\|PT(t) \mathbf{w} - P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt)\|_X \xrightarrow{t \to \infty} 0$.

Proof. Suppose $\mathbf{w} \in X$ and $\mathbf{a} \in \mathcal{N}$, that means $\mathbf{a} \in \ker B$ and $\underline{\mathbf{a}}_1 = 0$ on G. Then (2.27) yields

$$\langle PT(t) \mathbf{w}, \mathbf{a} \rangle_{X} = \langle T(t) \mathbf{w}, \mathbf{a} \rangle_{X}$$

$$= \left\langle \exp(tB) \mathbf{w} + \int_{0}^{t} \exp((t-s) B)(\mathbf{G}(s) - F(s, T(s) \mathbf{w})) ds, \mathbf{a} \right\rangle_{X}$$

$$= \langle \mathbf{w}, \exp(-tB) \mathbf{a} \rangle_{X}$$

$$+ \int_{0}^{t} \langle \mathbf{G}(s) - F(s, T(s) \mathbf{w}), \exp((s-t) B) \mathbf{a} \rangle_{X} ds$$

$$= \langle \mathbf{w}, \mathbf{a} \rangle_{X} + \int_{0}^{t} \langle \mathbf{G}(s) - F(s, T(s) \mathbf{w}), \mathbf{a} \rangle_{X} ds$$

$$= \langle \mathbf{w}, \mathbf{a} \rangle_{X} + \int_{0}^{t} \langle \mathbf{G}(s), \mathbf{a} \rangle_{X} ds$$

$$= \left\langle \mathbf{w}, \mathbf{a} \rangle_{X} + \int_{0}^{t} \langle \mathbf{G}(s), \mathbf{a} \rangle_{X} ds$$

$$= \left\langle P(\mathbf{w} + \int_{0}^{t} \mathbf{G}(s) ds), \mathbf{a} \right\rangle_{X}.$$

Hence

$$PT(t) \mathbf{w} = P\left(\mathbf{w} + \int_0^t \mathbf{G}(s) \, ds\right). \tag{3.56}$$

With $\mathbf{G} \in L^1(0, \infty, X)$ the assertion follows.

Now, the main theorem concerning weak convergence can be proved.

THEOREM 3. Suppose $\mathbf{w} \in X$. Then $T(t) \mathbf{w} \xrightarrow{t \to \infty} P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt)$ in X weakly.

Proof. By Lemma 3 one has for all $\mathbf{g} \in \omega_0(\mathbf{w})$

$$P\mathbf{g} = P\left(\mathbf{w} + \int_0^\infty \mathbf{G}(s) \, ds\right).$$

On the other hand Theorem 2 yields $\mathbf{g} \in \mathcal{N}$ and hence

$$\mathbf{g} = P\mathbf{g} = P\left(\mathbf{w} + \int_0^\infty \mathbf{G}(s) \, ds\right) \quad \text{for all} \quad \mathbf{g} \in \omega_0(\mathbf{w}).$$
 (3.57)

Now it follows from (3.57) that

$$\omega_0(\mathbf{w}) \subset \left\{ P\left(\mathbf{w} + \int_0^\infty \mathbf{G}(s) \, ds \right) \right\}. \tag{3.58}$$

Since the orbit $\{T(t) \mathbf{w}: t \ge 0\}$ is precompact in the weak topology by Lemma 1(i), this completes the proof.

In particular it follows from the previous theorem that $T(t) \mathbf{w} \xrightarrow{t \to \infty} 0$ in *X* weakly if and only if $\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt \in X^0 = \mathcal{N}^{\perp}$, which is condition 1.12.

4. STRONG L^{Q} -CONVERGENCE OF SOLUTIONS

The aim of the following considerations is find sufficient conditions for strong convergence. Assume that in addition S(t, x, y, z) is independent of *t*, i.e., $S(t, x, y, z) = S_0(x, y, z)$ and

$$(\mathbf{S}_0(x, \mathbf{y}, \mathbf{z}) - \mathbf{S}_0(x, \tilde{\mathbf{y}}, \tilde{\mathbf{z}}))(\mathbf{y} - \tilde{\mathbf{y}}) \ge 0$$
(4.59)

for all $t \ge 0$, $\mathbf{y} \in \mathbb{R}^M$, $\mathbf{z} \in \mathbb{R}^N$ and $x \in G$ with some function $\mathbf{S}_0: \Omega \times \mathbb{R}^{M+N} \to \mathbb{R}^M$.

The main purpose of this assumption is to ensure that $T(t) \mathbf{w} \in D(B)$, $\partial_t(T(t) \mathbf{w}) \in L^2(\Omega)$ and $BT(\cdot) \mathbf{w} \in L^{\infty}((0, \infty), X)$, i.e., $||BT(t) \mathbf{w}||_X$ is bounded as $t \to \infty$ if $\mathbf{w} \in D(B)$ as shown in the following lemma. (For example in the linear case $\mathbf{S}(t, x, \mathbf{y}, \mathbf{z}) = \sigma(t, x) \mathbf{y}$ the condition that \mathbf{S} is independent of t can be replaced by the weaker assumption

$$\partial_t \sigma \in L^{\infty}((0, \infty) \times G)$$
 and $|\partial_t \sigma(t, x)| \leq C_1 \sigma(t, x)$

for all $t \ge 0$ and $x \in G$ with some constant C_1 independent of t, x.)

LEMMA 4. Suppose in addition that $\mathbf{G} \in W^{1, 1}((0, \infty), X)$ and $\mathbf{w} \in D(B)$. Then one has

$$T(\cdot) \mathbf{w} \in W^{1, \infty}((0, \infty), X) \cap L^{\infty}((0, \infty), D(B))$$

$$(4.60)$$

Proof. It follows from the assumption that there is a nonlinear operator $F_0: X \to X$ with $F(t, \mathbf{w}) = F_0(\mathbf{w})$ and

$$\langle F_0(\mathbf{w}) - F_0(\tilde{\mathbf{w}}), \mathbf{w} - \tilde{\mathbf{w}} \rangle_X \ge 0$$
 for all $\mathbf{w}, \tilde{\mathbf{w}} \in X$

Suppose $\mathbf{w} \in D(B)$ and set $\mathbf{u}(t) \stackrel{\text{def}}{=} T(t) \mathbf{w}$. It follows from a standard regularity-result that $\mathbf{u} \in C^1([0, \infty), X) \cap L^{\infty}_{loc}((0, \infty), D(B))$ is a strong solution of

$$\mathbf{u}'(t) = B\mathbf{u}(t) + \mathbf{G}(t) - F_0(\mathbf{u}(t)). \tag{4.61}$$

In analogy to Lemma 1 an energy-estimate for \mathbf{u}' can be obtained using the monotonicity of F_0 :

$$1/2 \frac{d}{dt} \|\partial_t \mathbf{u}(t)\|_X^2 \leq \langle \partial_t \mathbf{G}(t), \partial_t \mathbf{u}(t) \rangle_X \leq \|\partial_t \mathbf{G}(t)\|_X \|\partial_t \mathbf{u}(t)\|_X$$

With $\partial_t \mathbf{G} \in L^1((0, \infty), X)$ this yields $\mathbf{u} \in W^{1, \infty}((0, \infty), X)$.

By (4.61) one obtains also $\mathbf{u}(t) \in D(B^*) = D(B)$ and $B\mathbf{u}(\cdot) \in L^{\infty}((0, \infty), X)$.

LEMMA 5. $X^0 \cap D(B^n)$ is dense in $X^0 \cap D(B^m)$ for all $m, n \in \mathbb{N}$ with m < n.

Proof. Let $\mathbf{w} \in X^0 \cap D(B^m)$ and define $\mathbf{w}_{\tau} \stackrel{\text{def}}{=} \tau^n (\tau - B)^{-n} \mathbf{w} \in D(B^n)$ for $\tau > 0$. Then

$$\|B^{k}(\mathbf{w}_{\tau} - \mathbf{w})\|_{X} = \|B^{k}\mathbf{w} - [\tau(\tau - B)^{-1}]^{n} B^{k}\mathbf{w}\|_{X} \xrightarrow{\tau \to \infty} 0$$

for all $k \in \{0, 1, ..., m\}.$ (4.62)

Suppose $\mathbf{a} \in \mathcal{N}$. Then

$$\langle \mathbf{w}_{\tau}, \mathbf{a} \rangle_{X} = \langle \mathbf{w}, \tau^{n}(\tau + B)^{-n} \mathbf{a} \rangle_{X} = \langle \mathbf{w}, \mathbf{a} \rangle_{X} = 0.$$

Hence $\mathbf{w}_{\tau} \in X^{0}$. By (4.62) the proof is complete.

The next lemma concerns regularity-properties of elements of $X^0 \cap D(B)$.

LEMMA 6. (i) Let $K \subset \Omega_0$ be a bounded open set with $\overline{K} \subset \Omega_0$. Then $\mathbf{w} \in H^1(K)$ and

$$\|\mathbf{w}\|_{H^1(K)} \leq C_K \|\mathbf{w}\|_{D(B)}$$
 for all $\mathbf{w} \in X^0 \cap D(B)$.

with some constant $C_K \in (0, \infty)$ depending only on K.

(ii) Suppose in addition $E^{(2)} = 1$ on all of Ω .

Let $U \subset \Omega$ be a bounded open set with $\overline{U} \subset \Omega$. Then $\mathbf{F} \in H^1(U)$ and

$$\|\mathbf{F}\|_{H^1(U)} \leq C_U \|\mathbf{w}\|_{D(B)} \quad for \ all \quad \mathbf{w} = (\mathbf{E}, \mathbf{F}) \in X^0 \cap D(B).$$

with some constant $C_U \in (0, \infty)$ depending only on U.

Proof. (i) Let $K \subset \Omega_0$ be a bounded open set with $\overline{K} \subset \Omega_0$. Choose $\chi \in C_0^{\infty}(\Omega_0)$ with $\chi = 1$ on K. Suppose $\mathbf{w} \in X^0 \cap D(B^2)$. Then Lemma 2(ii) yields $\mathbf{w} \in H^2_{loc}(\Omega_0)$ and

$$\begin{split} \sum_{k=1}^{M+N} & \int_{\Omega_0} \chi^2 |\nabla \mathbf{w}_k|^2 \, dx \\ &= \sum_{k=1}^{M+N} \int_{\Omega_0} \operatorname{div}(\chi^2 \, \nabla \mathbf{w}_k) \, \bar{\mathbf{w}}_k \, dx \\ &\leqslant C_{K,1} \sum_{k=1}^{M+N} \int_{\Omega_0} |\chi \, \nabla \mathbf{w}_k| \, |\mathbf{w}_k| \, dx + \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 \, \Delta \, \mathbf{w}_k \bar{\mathbf{w}}_k \, dx \\ &\leqslant C_{K,2} \, \|\mathbf{w}\|_X^2 + 1/3 \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 \, |\nabla \mathbf{w}_k|^2 \, dx + \langle \chi^2(B^2 \mathbf{w}), \mathbf{w} \rangle_X \\ &\leqslant C_{K,3} \, \|\mathbf{w}\|_{D(B)}^2 + 1/3 \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 \, |\nabla \mathbf{w}_k|^2 \, dx + \langle \chi^2(B \mathbf{w}), B \mathbf{w} \rangle_X \\ &\leqslant C_{K,4} (\|B \mathbf{w}\|_X^2 + \|\mathbf{w}\|_X^2) + 2/3 \sum_{k=1}^{M+N} \int_{\Omega_0} \chi^2 \, |\nabla \mathbf{w}_k|^2 \, dx \end{split}$$

by assumption (2.16). Hence

$$\|\mathbf{w}\|_{H^{1}(K)}^{2} \leq \|\mathbf{w}\|_{X}^{2} + \sum_{k=1}^{M+N} \int_{\Omega_{0}} \chi^{2} |\nabla \mathbf{w}_{k}|^{2} dx \leq 3C_{K,4}(\|B\mathbf{w}\|_{X}^{2} + \|\mathbf{w}\|_{X}^{2})$$

By Lemma 5 the estimate holds for all $\mathbf{w} \in X^0 \cap D(B)$.

To prove (ii) consider first $\mathbf{f} \in D(A^*) \cap (\ker A^*)^{\perp}$ with $A^* \mathbf{f} \in D(A)$.

Since $(\ker A^*)^{\perp} = \overline{\operatorname{rang} A}$ Lemma 2(i) yields $\Delta \mathbf{f} = -AA^*\mathbf{f}$. From a similar cut-off argument as in the proof of the first part it follows that

$$\|\mathbf{f}\|_{H^{1}(U)}^{2} \leqslant C_{U,4}(\|A^{*}\mathbf{f}\|_{L^{2}}^{2} + \|\mathbf{f}\|_{L^{2}}^{2})$$
(4.63)

Since the set of all $\mathbf{f} \in D(A^*) \cap (\ker A^*)^{\perp}$ with $A^*\mathbf{f} \in D(A)$ is dense in $D(A^*) \cap (\ker A^*)^{\perp}$, (4.63) holds for all $\mathbf{f} \in D(A^*) \cap (\ker A^*)^{\perp}$.

Now let $(\mathbf{E}, \mathbf{F}) \in X^0 \cap D(B)$.

Since $(0, \mathbf{g}) \in \mathcal{N}$ for all $\mathbf{g} \in (\ker A)^*$, it follows from the assumption $E^{(2)} = 1$ on Ω that

$$\langle \mathbf{F}, \mathbf{g} \rangle_{L^2(\Omega)} = \langle (\mathbf{E}, \mathbf{F}), (0, \mathbf{g}) \rangle_X = 0$$
 for all $\mathbf{g} \in (\ker A)^*$,

in particular $\mathbf{F} \in D(A^*) \cap (\ker A^*)^{\perp}$. Finally, the assertion follows from (4.63).

Remark 4. As described in Remark 1 the H^1_{loc} -regularty of \mathbf{w}_1 for $\mathbf{w} \in X^0 \cap D(B)$ does generally not hold on the set $G = \Omega \setminus \Omega_0$ even if $E^{(j)} = 1$ on Ω .

LEMMA 7. Suppose
$$E^{(2)} = 1$$
 on Ω .
Then $(\mathbf{e}(t), \mathbf{f}(t)) \stackrel{\text{def}}{=} T(t) \mathbf{w} - P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt)$ obeys
 $(\|\mathbf{e}(t)\|_{L^2(K)} + \|\mathbf{f}(t)\|_{L^2(U)}) \xrightarrow{\mathbf{t} \to \infty} 0.$

for all compact sets $K \subset \Omega_0$ and $U \subset \Omega$ and $\mathbf{w} \in X$.

Proof. First suppose in addition that $\mathbf{w} \in D(B)$ and $\mathbf{G} \in W^{1, 1}((0, \infty), X)$. Define $(\tilde{\mathbf{e}}(t), \tilde{\mathbf{f}}(t)) \stackrel{\text{def}}{=} (1-P) T(t) \mathbf{w} \in \mathcal{N}^{\perp} = X^0$. Since $PT(t) \mathbf{w} \in \mathcal{N} \subset D(B)$, Lemma 4 yields

$$(\tilde{\mathbf{e}}, \tilde{\mathbf{f}}) \in L^{\infty}((0, \infty), D(B) \cap X^0)$$

$$(4.64)$$

Hence, it follows from Lemma 6 and Sobolev's imbedding theorem that

$$\{\tilde{\mathbf{e}}(t): t \ge 0\}$$
 is precompact in $L^2(K)$
and $\{\tilde{\mathbf{f}}(t): t \ge 0\}$ is precompact in $L^2(U)$.

Therefore, Lemma 3 and Theorem 3 yield

$$\|\tilde{\mathbf{e}}(t)\|_{L^{2}(K)} + \|\tilde{\mathbf{f}}(t)\|_{L^{2}(U)} \xrightarrow{\mathbf{t} \to \infty} 0.$$
(4.65)

Next it follows from Lemma 3 that

$$\|\tilde{\mathbf{e}}(t) - \mathbf{e}(t)\|_{L^{2}(K)} + \|\tilde{\mathbf{f}}(t) - \mathbf{e}(t)\|_{L^{2}(U)}$$

$$\leq \left\| PT(t) \mathbf{w} - P\left(\mathbf{w} + \int_{0}^{\infty} \mathbf{G}(t) dt\right) \right\|_{X} \xrightarrow{t \to \infty} 0.$$
(4.66)

Now, the assertion follows from (4.65) and (4.66) under the additional hypothesis $\mathbf{w} \in D(B)$ and $\mathbf{G} \in W^{1, 1}((0, \infty), X)$.

In order to prove the theorem in the general case assume that $\mathbf{w}, \mathbf{\tilde{w}} \in X$ and $\mathbf{G}, \mathbf{\tilde{G}} \in L^1((0, \infty), X)$. Let $\mathbf{\tilde{u}}$ be the corresponding solution to (1.1)-(1.3) with \mathbf{w} , \mathbf{G} replaced by $\mathbf{\tilde{w}}$ and $\mathbf{\tilde{G}}$ respectively. Then one obtains from (4.59) and a similar estimate as in (2.28)

$$\begin{split} \frac{d}{dt} \|T(t) \mathbf{w} - \tilde{\mathbf{u}}(t)\|_{X}^{2} &= 2 \langle \mathbf{G}(t) - \tilde{\mathbf{G}}(t) - F_{0}(T(t) \mathbf{w}) \\ &+ F_{0}(\tilde{\mathbf{u}}(t)), \ T(t) \mathbf{w} - \tilde{\mathbf{u}}(t) \rangle_{X} \\ &\leq \|\mathbf{G}(t) - \tilde{\mathbf{G}}(t)\|_{X} \|T(t) \mathbf{w} - \tilde{\mathbf{u}}(t)\|_{X} \end{split}$$

and therefore

$$\|T(t) \mathbf{w} - \tilde{\mathbf{u}}(t)\|_{X} \leq \|\mathbf{w} - \tilde{\mathbf{w}}\|_{X} + \|\mathbf{G} - \tilde{\mathbf{G}}\|_{L^{1}((0, \infty), X)}$$

Since $W^{1,1}((0,\infty), X)$ is dense in $L^1((0,\infty), X)$, it follows from the latter estimate that the assertion holds for all $\mathbf{w} \in X$ and $\mathbf{G} \in L^1((0, \infty), X)$.

In the next lemma the strong L_{loc}^r -convergence of $\underline{\mathbf{u}}_1$ on the set G is proved, which in general does not follow from Lemma 6, see Remark 4.

LEMMA 8. Suppose $\mathbf{w} \in X$, R > 0 and $r \in [1, 2)$. Then $(\mathbf{e}(t), \mathbf{f}(t)) \stackrel{\text{def}}{=}$ $T(t) \mathbf{w} - P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt)$ obeys

$$\|\mathbf{e}(t)\|_{L^{r}(G \cap B_{R})} \xrightarrow{\mathbf{t} \to \infty} 0.$$

Proof. By the same density-argument as in the proof of the previous lemma it suffices to consider $\mathbf{w} \in D(B)$ and $\mathbf{G} \in W^{1, 1}((0, \infty), X)$. Let $G^{(R)} \stackrel{\text{def}}{=} G \cap B_R$ and $M \stackrel{\text{def}}{=} \|(\mathbf{e}, \mathbf{f})\|_{L^{\infty}((0, \infty), L^2(\Omega))}$.

Suppose $\delta > 0$. With $\gamma > 0$ as in (2.21) one has $G = \bigcup_{n \in \mathbb{N}}$ $\{x \in G: \gamma(x) > 1/n\}$. Therefore there exists a subset $G_{\delta}^{(R)} \subset G^{(R)}$, such that

$$M | G^{(R)} \setminus G_{\delta}^{(R)} |^{(1/r - 1/2)} \leq \delta/2, \tag{4.67}$$

and

$$\gamma(x) \ge c_{\delta}$$
 for all $x \in G_{\delta}^{(R)}$ (4.68)

with some positive constant $c_{\delta} > 0$. In (4.67) $|G^{(R)} \setminus G^{(R)}_{\delta}|$ denotes the Lebesgue-measure of this set.

Since $(P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt))_1 = 0$ on G, one obtains from (4.68) and Lemma 1 that

$$\mathbf{e} \in L^{p}((0, \infty), L^{1}_{\gamma}(G_{\delta}^{(R)})) \subset L^{p}((0, \infty), L^{1}(G_{\delta}^{(R)})).$$
(4.69)

Lemma 4 yields

$$\mathbf{e} \in W^{1,\,\infty}((0,\,\infty),\,L^2(\Omega)) \subset W^{1,\,\infty}((0,\,\infty),\,L^1(G_{\delta}^{(R)})). \tag{4.70}$$

By (4.69) and (4.70) the function $t \to \|\mathbf{e}(t)\|_{L^1(G_s^{(R)})}^p$ is uniformly continuous and integrable over $(0, \infty)$ and hence

$$\|\mathbf{e}(t)\|_{L^1(G^{(R)}_{\delta})} \xrightarrow{\mathbf{t} \to \infty} 0.$$

Since $r \in (1, 2)$, this yields

$$\|\mathbf{e}(t)\|_{L^{\prime}(G_{\delta}^{(R)})} \leq \|\mathbf{e}(t)\|_{L^{2}(G_{\delta}^{(R)})}^{\theta} \|\mathbf{e}(t)\|_{L^{1}(G_{\delta}^{(R)})}^{1-\theta} \leq M^{\theta} \|\mathbf{e}(t)\|_{L^{1}(G_{\delta}^{(R)})}^{1-\theta} \xrightarrow{\mathbf{t} \to \infty} 0.$$
(4.71)

where $1/r = \theta/2 + 1 - \theta$. Next it follows from (4.67) that

$$\|\mathbf{e}(t)\|_{L^{r}(G^{(R)}\backslash G^{(R)}_{\delta})} \leq \|\mathbf{e}(t)\|_{L^{2}(\Omega)} |G^{(R)}\backslash G^{(R)}_{\delta}|^{(1/r-1/2)} \leq M |G^{(R)}\backslash G^{(R)}_{\delta}|^{(1/r-1-2)} \leq \delta/2.$$
(4.72)

Finally, the assertion follows from (4.71) and (4.72), since $\delta > 0$ is arbitrary.

Now the main theorem concerning strong L^q -convergence can be proved.

THEOREM 4. Suppose $E^{(2)} = 1$ on Ω . Then it follows for all $q \in [1, 2)$, $\mathbf{w} = (\mathbf{E}_0, \mathbf{F}_0) \in X$ and all compact $U \subset \Omega$ that

$$(\|\mathbf{e}(t)\|_{L^{q}(U)} + \|\mathbf{f}(t)\|_{L^{2}(U)}) \xrightarrow{\mathbf{t} \to \infty} 0.$$

where $(\mathbf{e}(t), \mathbf{f}(t)) \stackrel{\text{def}}{=} T(t) \mathbf{w} - P(\mathbf{w} + \int_0^\infty \mathbf{G}(t) dt).$

Proof. Define $M \stackrel{\text{def}}{=} \|(\mathbf{e}, \mathbf{f})\|_{L^{\infty}((0, \infty), L^{2}(\Omega))}$. Suppose $\delta > 0$. Choose a compact set $K \subset U \cap \Omega_{0}$ with $M |(U \cap \Omega_{0}) \setminus$ $K|^{(1/q-1/2)} \leq \delta$. Then Hölder's inequality yields

$$\|\mathbf{e}(t)\|_{L^{q}(U)} \leq \|\mathbf{e}(t)\|_{L^{q}(U \cap G)} + \|\mathbf{e}(t)\|_{L^{q}(K)} + \|\mathbf{e}(t)\|_{L^{2}(U)} |(U \cap \Omega_{0}) \setminus K|^{(1/q - 1/2)} \leq \|\mathbf{e}(t)\|_{L^{q}(U \cap G)} + \|\mathbf{e}(t)\|_{L^{q}(K)} + \delta.$$

Now, Lemma 7 and Lemma 8 yield $\limsup_{t\to\infty} \|\mathbf{w}(t)\|_{L^q(U)} \leq \delta$, which completes the proof.

In the case of Maxwell's Eqs. (1.4)–(1.6) the assumption $E^{(2)} = 1$ on Ω can be omitted using the compactness-result in [8, 12, 15].

Under the general assumptions considered so far it cannot be expected that the assertion of the previons theorem holds for q = 2 or sets U which may overlap the boundary $\partial \Omega$. However, for the system corresponding to the scalar wave-equation the result can be improved in this direction. Consider

$$\partial_t^2 \varphi = \operatorname{div}(E\nabla\varphi) - S(x, \partial_t \varphi) \tag{4.73}$$

supplemented by the initial-boundary-onditions

$$\varphi = 0$$
 on $(0, \infty) \times \partial \Omega$ (4.74)

$$\varphi(0, x) = f_0(x)$$
 and $\partial_t \varphi(0, x) = f_1(x)$. (4.75)

Here the nonlinear function $S: \Omega \times \mathbb{R} \to \mathbb{R}$ obeys the assumptions (2.1)–(2.7). According to (4.59) it is assumed that *S* is independent of *t* and monotone with respect to $y \in \mathbb{R}^3$. For a domain $\Omega_1 \subset \Omega$ let $H^1(\Omega_1)$ be the usual first order Sobolev space and $H^1(\Omega_1)$ denotes the closure of $C_0^{\infty}(\Omega_1)$ in $H^1(\Omega_1)$.

Next, $D(\mathscr{A}) \subset \overset{0}{H}{}^{1}(\Omega)$ is defined as the set of all $f \in \overset{0}{H}{}^{1}(\Omega)$, such that

$$\mathscr{A}f \stackrel{\mathrm{def}}{=} -\operatorname{div}(E\nabla f) \in L^2(\Omega).$$

It is well known that for $f_0 \in \overset{0}{H}{}^1(\Omega)$ and $f_1 \in L^2(\Omega)$ problem (4.73)–(4.75) admits a unique solution $\varphi \in C([0, \infty), \overset{0}{H}{}^1(\Omega))$ with $\partial_t \varphi \in C([0, \infty), L^2(\Omega))$. The usual energy-estimate yields

$$\partial_t \varphi \in L^{\infty}((0, \infty) L^2(\Omega)), \nabla \varphi \in L^{\infty}((0, \infty), L^2(\Omega)).$$
(4.76)

If in addition $f_1 \in \overset{0}{H}{}^1(\Omega)$ and $f_0 \in D(\mathscr{A})$ then $\varphi \in C([0, \infty), D(\mathscr{A}))$ and $\partial_t \varphi \in C([0, \infty), \overset{0}{H}{}^1(\Omega))$ with

$$\begin{aligned} \partial_t \nabla \varphi, \, \partial_t^2 \varphi \in L^{\infty}((0, \, \infty) \, L^2(\Omega)), \\ \operatorname{div}(E \nabla \varphi) &= \mathscr{A} \varphi(\cdot) \in L^{\infty}((0, \, \infty), \, L^2(\Omega)). \end{aligned} \tag{4.77}$$

In order to consider problem (4.73)–(4.75) is the setting of Section 2 the following operators are introduced. Let $D(A) \stackrel{\text{def}}{=} \overset{0}{H}{}^{1}(\Omega, \mathbb{C}), A\varphi \stackrel{\text{def}}{=} \nabla \varphi$. $D(A^*)$ is the space of all vector-fields $\mathbf{a} \in L^2(\Omega, \mathbb{C}^3)$ with $A^*\mathbf{a} = -\operatorname{div} \mathbf{a} \in L^2(\Omega)$. Next, $D(B) \stackrel{\text{def}}{=} D(A) \times D(A^*)$ and

$$B(\mathbf{w}_1, ..., \mathbf{w}_4) \stackrel{\text{def}}{=} (-A^*(\mathbf{w}_2, ..., \mathbf{w}_4), EA\mathbf{w}_1) = (\operatorname{div}(\mathbf{w}_2, ..., \mathbf{w}_4), E\nabla\mathbf{w}_1)$$

for $\mathbf{w} \in D(B)$.

Suppose $\varphi \in C([0, \infty), \overset{0}{H}^{1}(\Omega))$ is for $f_{0} \in \overset{0}{H}^{1}(\Omega)$ and $f_{1} \in L^{2}(\Omega)$ a solution of problem (4.73)–(4.75). Then $\mathbf{u} \stackrel{\text{def}}{=} (\partial_{t}\varphi, E\nabla\varphi) \in C([0, \infty), L^{2}(\Omega, \mathbb{R}^{4}))$ is a weak solution of (2.26), i.e.,

$$\frac{d}{dt} \langle \mathbf{u}(t), \mathbf{a} \rangle_{X} = - \langle \mathbf{u}(t), B \mathbf{a} \rangle_{X} - \langle F_{0}(\mathbf{u}(t)), \mathbf{a} \rangle_{X} \quad \text{for all} \quad \mathbf{a} \in D(B)$$

where $F_0: L^2(\Omega, \mathbb{R}^4) \to L^2(\Omega, \mathbb{R}^4)$ is defined by

$$F_0(\mathbf{u}) \stackrel{\text{def}}{=} (S(\cdot, \mathbf{u}_1(\cdot)), 0).$$

If $f_0 \in D(\mathscr{A})$ and $f_1 \in \overset{0}{H}{}^1(\Omega)$) then $\mathbf{u}(0) \in D(B)$ and hence by Lemma 4 $\mathbf{u} \in L^{\infty}((0, \infty), D(B))$, whence again (4.77).

Next it is shown that

 $\nabla \varphi(t) \xrightarrow{t \to \infty} 0$ and $\partial_t \varphi(t) \xrightarrow{t \to \infty} 0$ in $L^2(\Omega)$ weakly. (4.78)

for all $f_0 \in \overset{0}{H}{}^1(\Omega)$) and $f_1 \in L^2(\Omega)$. For this purpose let $\mathbf{w} \stackrel{\text{def}}{=} (f_1, E \nabla f_0) \in L^2(\Omega, \mathbb{R}^4)$. Then $(\partial_t \varphi(t), E \nabla \varphi(t)) = \mathbf{u}(t) = T(t) \mathbf{w}$ solves (2.26). In order to apply Theorem 3 it suffices to show

$$\mathbf{w} \in X^0 \tag{4.79}$$

Suppose $\mathbf{a} \in \mathcal{N}$. Then $\mathbf{a}_1 \in \overset{0}{H}{}^1(\Omega)$, with $\nabla \mathbf{a}_1 = 0$, which implies $\mathbf{a}_1 = 0$. Moreover, div $(\mathbf{a}_2, ..., \mathbf{a}_4) = 0$ by the definition of A, B. Hence

$$\langle \mathbf{w}, \mathbf{a} \rangle_X = \int_{\Omega} [E^{-1}(\mathbf{w}_2, ..., \mathbf{w}_4)](\mathbf{a}_2, ..., \mathbf{a}_4) \, dx = \int_{\Omega} (\mathbf{a}_2, ..., \mathbf{a}_4) \, \nabla f_0 \, dx = 0$$

since $f_0 \in \overset{0}{H}{}^1(\Omega)$. Thus, (4.79) and (4.78) are proved. In the following theorem local strong convergence in the energy-norm is shown.

THEOREM 5. For all
$$R \in (0, \infty)$$
, $f_0 \in \overset{0}{H}{}^1(\Omega)$ and $f_1 \in L^2(\Omega)$ one has
 $(\|\nabla \varphi(t)\|_{L^2(\Omega \cap B_R)} + \|\partial_t \varphi(t)\|_{L^2(\Omega \cap B_R)}) \xrightarrow{t \to \infty} 0.$

Proof. By a density-argument it suffices to consider $f_0 \in D(\mathscr{A})$ and $f_1 \in \overset{0}{H}{}^1(\Omega)$.

Choose $\chi \in C_0^{\infty}(B_{2R})$ with $\chi(x) = 1$ on B_R and define $\Omega_R \stackrel{\text{def}}{=} \Omega \cap B_{2R}$ and $\varphi_R(t, x) \stackrel{\text{def}}{=} \chi(x) \varphi(t, x)$. It follows easily from (4.77) using Poincare's inequality that $\varphi_R \in L^{\infty}((0, \infty), \overset{0}{H}^1(\Omega \cap B_{2R}))$ and $\partial_t \varphi_R \in L^{\infty}((0, \infty), \overset{0}{H}^1(\Omega \cap B_{2R}))$. Since $\Omega \cap B_{2R}$, is bounded, the imbedding $\overset{0}{H}^1(\Omega \cap B_{2R}) \hookrightarrow L^2(\Omega \cap B_{2R})$ is compact. Hence

$$\{\varphi(t): t \ge 0\}$$
 is precompact in $L^2(\Omega \cap B_R)$ (4.80)

and
$$\{\partial_t \varphi(t) : t \ge 0\}$$
 is precompact in $L^2(\Omega \cap B_R)$. (4.81)

for all $R \in (0, \infty)$. Next, one obtains by (2.25) and the definition of \mathscr{A} that

$$\begin{split} c_0 \|\nabla(\varphi(t_1) - \varphi(t_2))\|_{L^2(B_R)}^2 \\ \leqslant & \int_{\Omega} \chi E \nabla(\varphi(t_1) - \varphi(t_2)) \, \nabla(\varphi(t_1) - \varphi(t_2)) \, dx \end{split}$$

$$\begin{split} &= -\int_{\Omega} \left(\varphi(t_1) - \varphi(t_2) \right) \operatorname{div}(\chi E \nabla [\varphi(t_1) - \varphi(t_2)]) \, dx \\ &\leq \|\varphi(t_1) - \varphi(t_2)\|_{L^2(B_{2R})} \left(\|\mathscr{A}(\varphi(t_1) - \varphi(t_2))\|_{L^2(\Omega)} \\ &+ K_R \|\nabla (\varphi(t_1) - \varphi(t_2))\|_{L^2(\Omega)} \right) \quad \text{for all} \quad t_1, t_2 \ge 0. \end{split}$$

which implies by (4.76), (4.77), and (4.80) also

$$\{\nabla \varphi(t): t \ge 0\}$$
 is precompact in $L^2(\Omega \cap B_R)$ (4.82)

Finally, the result follows from (4.78), (4.81), and (4.82).

ACKNOWLEDGMENT

The author expresses gratitude to the referee for some helpful comments especially for pointing out that Holmgren's theorem can be used in the proof of Theorem 1.

REFERENCES

- 1. R. A. Adams, "Sobolev Spaces," Academic Press, 1975.
- H. Barucq and B. Hanouzet, Asymptotic behavior of solutions to Maxwell's equations in bounded domains with absorbing Silver-Müller's condition on the exterior boundary, *Asympt. Anal.* 15 (1997), 25–40.
- F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback, *Ann. Inst. Henry Poincaré* 11 (1994), 485–515.
- C. M. Dafermos, Asymptotic behavior of solutions of evolution equations, *in* "Nonlinear Evolution Equations," pp. 103–123, Academic Press, New York, 1978.
- E. Feireisl, Strong decay for wave equations with nonlinear nonmonotone damping, Nonlinear Anal. 21 (1993), 49–64.
- A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations 59 (1985), 145–154.
- 7. L. Hörmander, "The Analysis of Linear Partial Differential Operators I," Springer, New York, 1983.
- F. Jochmann, A compactness result for vector fields with divergence and curl in L^q(Ω) involving mixed boundary conditions, Appl. Anal. 66 (1997), 198–203.
- F. Jochmann, Existence of weak solutions of the drift-diffusion model for semiconductors coupled with Maxwell's equations, J. Math. Anal. Appl. 204 (1996), 655–676.
- J. L. Lopez-Gomes, On the linear damped wave equation, J. Differential Equations 134 (1997), 26–45.
- 11. A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer, New York, 1983.
- R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, *Math. Z.* 187 (1984), 151–161.
- M. Reed and B. Simon, "Mathematical Methods in Modern mathematical Physics II," Academic Press, San Diego, 1977.

- M. Slemrod, Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear nonmonotone damping, *Proc. Roy. Soc. Edinburgh Sect. A* 113 (1989), 87–97.
- C. Weber, A local compactness theorem for Maxwell's equations, *Math. Methods Appl. Sci.* 2 (1980), 12–25.
- 16. W. P. Ziemer, "Weakly Differentiable Functions," Springer-Verlag, New York, 1989.
- E. Zuzazua, Stability and decay for a class of nonlinear hyperbolic problems, Asymptot. Anal. 1 (1988), 161–185.