
International Journal of Solids and Structures 47 (2010) 827–836

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Elastoplastic modeling of circular fiber-reinforced ductile matrix composites
considering a finite RVE

B.R. Kim, H.K. Lee *

Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 November 2008
Received in revised form 23 March 2009
Available online 27 November 2009

Keywords:
Metal-matrix composites (MMCs)
Debonding
Elastoplasticity
Micromechancis
Debonding
Finite RVE
0020-7683/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.ijsolstr.2009.11.015

* Corresponding author. Tel.: +82 42 869 3623.
E-mail address: leeh@kaist.ac.kr (H.K. Lee).
A micromechanical elastoplastic damage model considering a finite RVE is proposed to predict the overall
elastoplastic damage behavior of circular fiber-reinforced ductile (matrix) composites. The constitutive
damage model proposed in our preceding work (Kim and Lee, 2009) considering a finite Eshelby’s tensor
(Li et al., 2005; Wang et al., 2005) is extended to accommodate the elastoplastic behavior of the compos-
ites. On the basis of the exterior-point Eshelby’s tensor for circular inclusions and the ensemble-averaged
effective yield criterion, a micromechanical framework for predicting the effective elastoplastic damage
behavior of ductile composites is derived. A series of numerical simulations are carried out to illustrate
stress–strain response of the proposed micromechanical framework and to examine the influence of a
Weibull parameter on the elastoplastic behavior of the composites. Furthermore, comparisons between
the present predictions and experimental data available in the literature are made to further assess
the predictive capability of the proposed model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber-reinforced composites made of high-modulus fibers and
relatively ductile matrix have been widely used as advanced mate-
rials in aerospace, automotive, and infrastructure applications. Fi-
ber-reinforced composites demonstrate a great potential for
many applications due to their superior mechanical properties in
the fiber direction, but the transverse behavior of the fiber-rein-
forced composites is shown to be relatively weak (Oleszkiewicz
and Łodygowski, 2006). The most likely damage mechanism of fi-
ber-reinforced composites under transverse tensile loading can
be characterized by both an initial damage resulting from partial
fiber debonding and the plastic deformation by plastic yielding
(Oleszkiewicz and Łodygowski, 2006; Ju and Ko, 2008). Thus, a
model capable of predicting the evolutionary fiber debonding
and plasticity is needed for an accurate estimation of the behavior
of fiber-reinforced ductile composites.

Although a variety of research on various mechanical properties
and geometries of composites have been conducted, most of them
emphasize the elastic range (Huang, 1971). Plasticity has been
studies recently to understand and model the ductility and mate-
rial nonlinearity of ductile composites (Khan et al., 2007). Refer
to Hill (1950), Lubliner (1990), Khan and Huang (1995), Simo
(1998) and Simo and Hughes (1998) for detailed descriptions of
various plasticity theories and models (Moreo et al., 2007). Many
ll rights reserved.
studies have also focused on the interfacial debonding between fi-
bers and the matrix (Whitehouse and Clyne, 1993; Meraghni et al.,
1996; Bansal and Eldridge, 1999; Chiang, 2001; Caporale et al.,
2006; Li and Ghosh, 2007).

The (classical) Eshelby’s inclusion solution (Eshelby, 1957,
1959) based on the assumption that an inclusion is embedded in
an unbounded infinite domain has been widely employed to ana-
lyze the behavior of heterogeneous materials. Refer to Ju and Chen
(1994), Ju and Tseng (1996), Ju and Lee (2000, 2001), Ju and Sun
(2001), Ju and Zhang (2001), Lee and Simunovic (2001) and Lee
and Pyo (2008) for Eshelby’s inclusion solution based microme-
chanical elastoplastic composite modeling. The classical Eshelby’s
tensor approach could be a good approximation if the size of an
inclusion is small compared to the size of the representative vol-
ume element (RVE). However, the size of every RVE, in fact, is finite
and the Eshelby’s tensor needs to be dependent on the size of the
inclusion (Li et al., 2005; Wang et al., 2005). Li et al. (2005) and
Wang et al. (2005) proposed a finite Eshelby’s tensor for circular
inclusions to solve the limitation of the (classical) Eshelby’s inclu-
sion solution. Kim and Lee (2009) incorporated the finite Eshelby’s
tensor into formulations of micromechanical framework and de-
rived the effective elastic moduli of circular fiber-reinforced
composites.

The present study aims to develop a micromechanical elasto-
plastic damage model considering a finite RVE for predicting the
overall elastoplastic damage behavior of circular fiber-reinforced
ductile composites. The constitutive damage model proposed in
our preceding work (Kim and Lee, 2009) considering a finite
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Eshelby’s tensor (Li et al., 2005; Wang et al., 2005) is extended in
the present study to accommodate the elastoplastic behavior of
the composites. The micromechanical framework for predicting
the effective elastoplastic damage response of ductile composites
is derived based on the exterior-point Eshelby’s tensor for circular
inclusions and the ensemble-averaged effective yield criterion.
Numerical simulations including a parametric analysis are carried
out to illustrate the stress–strain response of the proposed micro-
mechanical framework and to examine the model parameter sen-
sitivity to the proposed model. Moreover, the present predictions
are compared with experimental data available in the literatures
to verify the proposed elastoplastic model.

2. Effective elastoplastic damage behavior of circular fiber-
reinforced ductile composites

2.1. Overview

Let us start by considering an initially perfectly bonded
two-phase composite consisting of a matrix (phase 0) and unidi-
rectionally aligned, elastic circular fibers (phase 1). As loads or
deformations increase, some initially perfectly bonded fibers are
transformed to debonded fibers that are regarded as (circular)
voids (phase 2) within the present framework. The schematic of
the composite is shown in Fig. 1, where the fiber orientation of
the composite is assumed to be random in the 1–2 plane. With
the help of the finite Eshelby’s tensor proposed by Li et al. (2005)
and Wang et al. (2005) for both perfectly bonded circular fibers
and circular voids, a two-dimensional (2D) micromechanics-based
constitutive model considering a finite RVE for the three-phase,
circular fiber-reinforced composite was explicitly derived in our
preceding work (Kim and Lee, 2009) as follows.

C� ¼ k�dijdkl þ l�ðdikdjl þ dildjkÞ ð1Þ

where the Lame constants k� and l� for the three-phase composites
and the details of the constitutive model can be found in Kim and
Lee (2009).

After the evolutionary damage between circular fibers and the
matrix, the debonded circular fibers may lose the load-carrying
capacity and are assumed here to be completely debonded fibers
(circular voids). For convenience, a two-parameter Weibull process
(Weibull, 1951) is adopted as an evolutionary damage model and
the average internal stress of fibers is used as the controlling factor
in the Weibull process (Tohgo and Weng, 1994; Zhao and Weng,
1996, 1997; Ju and Lee, 2000). Accordingly, the current completely
debonded fiber volume fraction /2 at a level of the uniaxial tensile
loading (in the 1-direction) can be written as (see, e.g., Ju and Lee
(2000) and Kim and Lee (2009))

/2 ¼ /Pd½ð�r11Þ1� ¼ / 1� exp � ð�r11Þ1
S0

� �M
" #( )

ð2Þ

where / is the original fiber volume fraction, and S0 and M are
Weibull parameters. ð�r11Þ1 is the internal stress of fibers (phase
Fig. 1. The schematic of a circular fiber-reinforced composite under uniaxial
tension in the transverse (1-axis) direction.
1) in the 1-direction and the subscript ð�Þ1 denotes the fiber phase.
Details of the internal stresses of fibers required for the initiation of
the evolutionary damage was derived in our preceding work (Kim
and Lee, 2009) (see Eqs. (12)–(14) therein).

The overall elastoplastic response of the three-phase composite
consisting of a ductile matrix (phase 0), perfectly bonded circular
fibers (phase 1), and circular voids (phase 2) are formulated in
the present study. For simplicity, the J2-type, von-Mises yield crite-
rion with isotropic hardening law is adopted for the matrix. Thus,
the following yield criterion, which is functions of the stress r and
the equivalent plastic strain �ep at any point in the matrix, valids
(see, e.g., Ju and Lee (2000), Ju and Zhang (2001), Lee and Simunov-
ic (2001), and Lee and Pyo (2008)).

Fðr; �epÞ ¼ HðrÞ � K2ð�epÞ 6 0 ð3Þ

where Kð��pÞ signify the isotropic hardening function of the matrix
and HðrÞ � r : Id : r is the square of the deviatoric stress norm in
which Id denotes the deviatoric part of the fourth-rank identity ten-
sor I (Ju and Lee, 2000).

According to Ju and Chen (1994), Ju and Tseng (1996), Ju and
Lee (2000), Ju and Sun (2001), Ju and Zhang (2001), and Lee and
Pyo (2008), the square of the current stress norm, denoted by
Hðxj-Þ, at the local point x determining the plastic strain in the
composites for a given phase configuration - is given by

Hðxj-Þ ¼
rðxj-Þ : Id : rðxj-Þ; x 2 matrix
0; x R matrix

�
ð4Þ

The ensemble average of Hðxj-Þ over all possible realizations in
which x is in the matrix can be expressed as (cf. Ju and Lee
(2000) and Tohgo and Weng (1994))

hHimðxÞ ¼ H0 þ
Z

-1

fHðxj-1Þ � H0gPð-1Þd-1

þ
Z

-2

fHðxj-2Þ � H0gPð-2Þd-2 þ � � � ð5Þ

where h�i signifies the ensemble average operator, H0 ¼ r0 : Id : r0 is
the square of the far-field stress norm in the matrix, and Pð-qÞ de-
notes the probability density function for finding the q-phase
ðq ¼ 1;2Þ configuration -q (fibers or voids) in the (random) com-
posite (Ju and Lee, 2000).

2.2. The exterior-point Eshelby’s tensor for a circular inclusion in a
finite domain

The perturbed stress for any matrix point x due to a typical iso-
lated q-phase inhomogeneity centered at xð1Þq takes the form (cf. Ju
and Chen (1994), Ju and Lee (2000))

r0ðxjxð1Þq Þ ¼ C0 � GF x� xð1Þq

� �h i
: ��0q ð6Þ

where ��0q is the solution of the (elastic) eigenstrain ��q for the single
inclusion problem of the q-phase and is given by

��0q ¼ �ðAq þ SFÞ�1 : �0; q ¼ 1;2 ð7Þ

in which the interior-point Eshelby’s tensor for a circular inclusion
SF was previously given in Eqs. (5)–(7) of Kim and Lee (2009), and
Aq is defined as Aq ¼ ½Cq � C0��1 � C0. In addition, the exterior-point
Eshelby’s tensor GFðx� xð1Þq Þ for a circular inclusion with the radius
r0 embedded at the center of a finite, circular RVE with the radius R
was explicitly derived by Li et al. (2005) and Wang et al. (2005) by
solving a pair of Fredholm type integral equations.

The exterior-point Eshelby’s tensor for a circular inclusion in
the finite RVE subjected to the Dirichlet (displacement) boundary
condition can be written as (Li et al., 2005)
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0
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� ���
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0
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ninjnknl

�
ð8Þ

where m is the Poisson’s ratio of the matrix, q0 ¼ r0=R;q ¼ r0=jxj; t ¼
q0=q, and niðxÞ ¼ xi=jxj ði ¼ 1;2Þ are the components of the unit
vector in the direction of the position vector x (Li et al., 2005; Wang
et al., 2005). In case of the Neumann (traction) boundary condition,
the exterior-point Eshelby’s tensor can be derived as (Wang et al.,
2005)

GF
ijkl x�xð1Þq

� �
¼ q2

0

8ð1� mÞ 9q2
0

1
t4

� �
�2ð1þ2mÞ 1

t2

� �
�2ð1þ2mÞ

��

þ3q2
0�12mðq2

0�1Þðt2Þ
�
dijdklþ �3q2

0
1
t4

� ��

þ2
1
t2

� �
þ 4�3q2

0

� 	
þ6 q2

0�1
� 	

ðt2Þ


ðdikdjlþ dildjkÞ

þ �12q2
0

1
t4

� �
þ4ð1þ2mÞ 1

t2

� ��

�12ð1�2mÞ q2
0�1
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ðt2Þ

�
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0
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ð9Þ
2.3. A first-order formulation of effective elastoplastic behavior of
fiber-reinforced ductile composites

The total stress at any point x in the matrix can be the superpo-
sition of the far-field stress r0 and the perturbed stress r0 due to the
presence of the fibers and voids (Ju and Lee, 2000).

rðxÞ ¼ r0 þ r0ðxÞ ð10Þ

in which r0 and r0 are defined as

r0 � C0 : �0 ð11Þ

r0 � C0 :

Z
A

GFðx� x0Þ : ��1ðx0Þdx0 þ C0 :

Z
A

GFðx� x0Þ : ��2ðx0Þdx0

ð12Þ

where �0 is the elastic strain field induced by the far-field loading,
��qðx0Þ denotes the elastic eigenstrain in the q-phase ðq ¼ 1;2Þ, and
x0 resides in either a fiber or a void, and A is the area of RVE.

Following Ju and Lee (2000), Ju and Zhang (2001), and Lee and
Pyo (2008), the ensemble-average stress norm for any point x gi-
ven in Eq. (5) can be evaluated by collecting and summing up all
the current stress norm perturbation produced by any typical fiber
or void centered at xð1Þq ðq ¼ 1;2Þ in the fiber or void domains and
averaging over all possible locations of xð1Þq as
hHimðxÞ ffi Ho þ
Z ¼r0 jx�xð1Þ1 j¼R

x�xð1Þ
1j j

H xjxð1Þ1

� �
� Ho

n o
Pðxð1Þ1 Þ dxð1Þ1

þ
Z ¼r0 x�xð1Þ

2j j¼R

x�xð1Þ2j j
H xjxð1Þ2

� �
� Ho

n o
P xð1Þ2

� �
dxð1Þ2 þ � � �

ð13Þ

where the probability density function for finding a fiber or a void
centered at xð1Þq is assumed to take the form P xð1Þq

� �
¼ Nq=A, in

which Nq ¼ /q=q2
0

� 	
is the total numbers of fibers or voids dispersed

in a representative area A. Eq. (13) can be further recast into a more
simplified form (cf. Ju and Zhang, 2001):

hHimðxÞ ffi H0 þ N1

A

Z 2p

0

Z R

r0

r1fHðr1Þ � H0gdr1dh

þ N2

A

Z 2p

0

Z R

r0

r2fHðr2Þ � H0gdr2dh ð14Þ

where rq ¼ x� xq and rq ¼ krqk.
During the ensemble average evaluation of the surface integrals,

the following three different integral identity groups are discov-
ered (cf. Ju and Lee, 2001).

(i) When the integrand ½HðrqÞ � H0� does not have ni, we have

Z R
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0
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a
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0
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ð1� a3Þ
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in which a ¼ q2
0.

(ii) When the integrand ½HðrqÞ � H0� has ninj, we have

Z R
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2
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(iii) When the integrand ½HðrqÞ � H0� has ninjnknl, we haveZ R
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By using the above three integral identity groups and the per-
turbed stress given in Eq. (14), the ensemble-averaged current
stress norm at any point in the matrix can be derived as

hHimðxÞ ¼ r0 : T : r0 ð18Þ

where the components of the positive definite fourth-rank tensor T
read

Tijkl ¼ T1dijdkl þ T2ðdikdjl þ dildjkÞ ð19Þ

with

T1 ¼ �
1
2
þ F ½1�1 þ F ½2�1 ; T2 ¼

1
2
þ F ½1�2 þ F ½2�2 ð20Þ

where the parameters F ½q�1 and F ½q�2 ðq ¼ 1;2Þ are given in Appendix A.
Following Ju and Lee (2001) and Lee and Simunovic (2001), the

relation between the far-field stress ro and the macroscopic stress
�r can be expressed as

ro ¼ P : �r ð21Þ

where the components of the fourth-rank tensor P are

Pijkl ¼ P1dijdkl þ P2ðdikdjl þ dildjkÞ ð22Þ

with

P1 ¼ �
C1

4C2ðC1 þ C2Þ
; P2 ¼

1
4C2

ð23Þ

and the coefficients C1 and C2 read:

C1 ¼ 2/1 �S1x½1�1 � S1x½1�2 þx½1�1
1
2
� S2

� �� 


þ 2/2 �S1x½2�1 � S1x½2�2 þx½2�1
1
2
� S2

� �� 

ð24Þ
C2 ¼
1
2
þ 2/1x

½1�
2

1
2
� 2S2

� �
þ 2/2x

½2�
2

1
2
� 2S2

� �
ð25Þ

The ensemble-averaged current stress norm in a matrix can be re-
cast by combining Eqs. (19) and (22) as

hHimðxÞ ¼ �r : T : �r ð26Þ

where the positive definite fourth-rank tensor T is defined as

T � PT � T � P ð27Þ

and can be derived as

Tijkl ¼ T1dijdkl þ T2ðdikdjl þ dildjkÞ ð28Þ

in which

T1 ¼ 4½ðP1 þ P2ÞðP1T1 þ P1T2 þ P2T1Þ þ P2T2P1�; T2 ¼ 4P2T2P2

ð29Þ

According to Ju and Lee (2000), Lee and Simunovic (2001), and Lee
and Pyo (2008), the ensemble-averaged current stress norm for any
point x in the three-phase composite can be defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hHiðxÞ

p
¼ ð1� /1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r : T : �r

p
ð30Þ

where /1 is the volume fraction of current perfectly bonded fibers.
Accordingly, the effective yield function for the three-phase com-
posite given in Eq. (3) becomes

F ¼ ð1� /1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r : T : �r

p
� Kð�epÞ ð31Þ

For simplicity, the following simple power-law type isotropic hard-
ening function is adopted here.

Kð�epÞ ¼
ffiffiffi
2
3

r
fry þ hð�epÞqg ð32Þ

where ry denotes the initial yield stress, and h and q signify the
linear and exponential isotropic hardening parameters, respectively
(see also Ju and Lee (2000)). The effective ensemble-averaged
plastic strain rate _��p and the effective equivalent plastic strain rate
_�ep required for obtaining the ensemble-averaged current stress
norm were given in Eqs. (61) and (62) of Ju and Zhang (2001),
respectively.

2.4. Elastoplastic stress–strain relation under uniaxial tension

The elastoplastic stress–strain relation under uniaxial tensile
loading of the proposed micromechanical framework is formulated
in this subsection. The applied macroscopic stress �r under the
plane-strain condition can be written as

�r11 > 0; �r33 ¼ m�A �r11; all other �rij ¼ 0 ð33Þ

Accordingly, the effective yield function in Eq. (31) can be rephrased
for the uniaxial loading case as (Ju and Zhang, 2001; Ju et al., 2006)

Fð�r11; �epÞ ¼ ð1� /1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT1 þ 2T2Þ

q
�r11 �

ffiffiffi
2
3

r
fry þ hð�epÞqg ð34Þ

Following Ju and Zhang (2001) and Ju et al. (2006), the overall mac-
roscopic stress–strain relation for the monotonic plane-strain uni-
axial loading can be obtained as

�� ¼
E�A � E�Tm�2A 0

0 �E�Am�T � E�Tm�2A

" #
�r11

E�T E�A

þ ð1� /1Þ
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðT1 þ 2T2Þ
q T1 þ 2T2 0

0 T1

" #
ð35Þ

where k is the positive parameter and was obtained previously by
the plastic consistency condition F ¼ 0 (see, e.g., Ju and Zhang,
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Fig. 2. The predicted stress–strain curves of circular fiber-reinforced composites
with various a values.
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2001; Ju et al., 2006). In addition, the effective transverse and axial
Young’s modulus E�T and E�A, and effective transverse and axial Pois-
son’s ratios m�T and m�A of the composite can be found from Eqs. 31,
32, 33, 35a of Hashin (1972) and Eqs. (16)–(20) of Ju and Zhang
(2001).
Fig. 3. The flowchart describing step-by-step algorith
3. Numerical simulations

The proposed elastoplastic model is exercised to predict the elas-
toplastic behavior of circular fiber-reinforced composites under uni-
axial tension in the transverse direction. The elastoplastic behavior
of 2024 aluminum alloy composites reinforced with unidirection-
ally aligned boron fibers (34% in fiber volume fraction) quoted by
Ju and Zhang (2001) is predicted using the proposed model. The
material properties of the matrix and fibers reported by Ju and Zhang
(2001) are used: Em ¼ 55:85 GPa;mm ¼ 0:32, and Ef ¼ 379:23 GPa,
mf ¼ 0:20, where the subscripts m and f denote the matrix and fibers,
respectively. The same plastic parameters as used in Ju and Zhang
(2001) are also employed: ry ¼ 79:29 MPa;h ¼ 827:4 MPa and
q ¼ 0:6.

Various values of the parameter a, which is related to the ratio of
the volume of the fiber to volume of the RVE, are considered in the
simulation to examine the influence of the parameter a on the elas-
toplastic stress–strain behavior of the composites. The predicted
stress–strain curves of the composites with various a values are
shown in Fig. 2. It is seen from the figure that the predicted stress–
strain curves converge to that obtained from the infinite RVE model
as the parametera continues to decrease. The effect of the parameter
a on the plastic behavior beyond the yielding point is shown to be
more influential than that on the elastic behavior.

A parametric analysis is conducted to examine the influence of
the Weibull parameter S0 on the overall elastoplastic damage
behavior of circular fiber-reinforced composites. Fig. 3 exhibits a
flowchart describing step-by-step algorithms used for the predic-
tion of the elastoplastic behavior of circular fiber-reinforced com-
posites considering evolutionary damage. The symbol I in the
flowchart is used to denote the iteration number of stress incre-
ment until the final stage and the symbol N signifies the maximum
iteration number (e.g. N ¼ 100). The elastoplastic behavior of SiC/
Ti–6Al–4V composites (fiber volume fraction of 32%) with various
S0 values is predicted. The material properties and plastic parame-
ters are adopted in accordance with Ju and Ko (2008) as: Em ¼
113:7 GPa;mm ¼ 0:3; Ef ¼ 414:0 GPa;mf ¼ 0:3; ry ¼ 500:0 MPa;h ¼
700:0 MPa;q ¼ 0:1. Two different S0 values (S0 ¼ 1:09� ry and
S0 ¼ 0:59� ry) with two different boundary conditions (the
Dirichlet and the Neumann boundary conditions) are used in the
parametric analysis. Another Weibull parameter M is fixed as fol-
lows: M ¼ 3:0.
ms used for the present numerical simulations.
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The present predicted elastoplastic stress–strain responses of
the composites with two different S0 values and the two different
boundary conditions under uniaxial tension are plotted in Fig. 4.
Portions of the stress–strain curves experiencing severe interfacial
damage together with the corresponding evolution of volume frac-
tions of perfectly bonded fibers and completely debonded fibers
are exhibited in Fig. 5. Typical three-stage elastoplastic stress–
strain responses, which have also been observed and reported by
other researchers (e.g., Majumdar and Newaz (1992), Nimmer
et al. (1991) and Ju and Ko (2008)), are observed in Fig. 4. The linear
portion of the curves in Fig. 4 is the first stage response featuring
that fibers are perfectly bonded and the composites behaves yet
elastically, some fibers begin to debond as shown in Parts A–D of
Fig. 5 as strain continues to increase (the second stage), and the
composites reach elastoplastic stage (the final stage) after the
yielding stress. Smooth and gradual transitions from perfectly
bonded fibers to completely debonded fibers occur with the Dirich-
let boundary condition as shown in Fig. 5(b) and (d), whereas slight
sharp progressions are observed in the evolutions of perfectly
bonded fibers and completely debonded fibers with the Neumann
boundary condition as shown in Fig. 5(f) and (h). It is also obvious
from the Figs. 4 and 5 that lower Weibull parameter S0 leads to
lower elastoplastic stress–strain responses.

4. Experimental comparisons

Comparisons between the present predictions and experiments
on SiC/Ti–6Al–4V composites conducted by Nimmer et al. (1991)
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Fig. 4. The predicted stress–strain curves of SiC/Ti–6Al–4V composites with the Dirichlet
and Sun et al. (1990) are made to further assess the predictive
capability of the proposed model. A similar comparison between
predictions (Ju et al., 2006) and the experiment (Nimmer et al.,
1991) on the same composites was also reported by Ju et al.
(2006). The material properties of the composites used in the
simulations are (Sun et al., 1990; Nimmer et al., 1991; Li and
Wisnom, 1996): Em¼110 GPa;mm¼0:33;Ef ¼414 GPa;mf ¼0:19;ry¼
970 MPa. The volume fraction of fibers of the composites used in
Sun et al. (1990)’s experiment was 40%, while the composites with
two different fiber volume fractions 32% and 34% were used in
Nimmer et al. (1991)’s experiments. The a value for the composites
used in Sun et al. (1990)’s experiment is calculated to be a ¼ 0:41,
whereas the a values for the composites with two different fiber
volume fractions 32% and 34% used in Nimmer et al. (1991)’s
experiments are calculated to be 0.33 and 0.35, respectively.

In accordance with the boundary condition of the specimens used
in their experiments, the Dirichlet boundary condition is used in the
present predictions. Since the model parameters S0;M;h, and q were
not reported in Sun et al. (1990) and Nimmer et al. (1991), they are
estimated by fitting an experimentally obtained stress–strain curve
(Sun et al., 1990) with the present prediction. The model parameters
are estimated to be S0 ¼ 0:436� ry;M ¼ 1:5; h ¼ 1:8 GPa;q ¼ 0:07.
Fig. 6(a) shows the comparison between the present prediction
based on the above material properties and parameters and the
experimental data (Sun et al., 1990) on the overall elastoplastic
stress–strain response of the composites. Overall, the present pre-
diction and the experimental data match well. The predicted damage
evolution curves corresponding to the Fig. 6(a) are shown in Fig. 6(b).
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Fig. 5. Portions of the stress–strain curves in Fig. 4 experiencing severe damage, and the corresponding the damage evolutions curves.
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The proposed elastoplastic model is further exercised to predict the
behavior of the composites reported in Nimmer et al. (1991). Fig. 6(c)
and (e) show the comparisons of stress–strain curves between the
present predictions and the experimental data on the composites
with fiber volume fractions of 32% and 34%, respectively (Nimmer
et al., 1991). The evolution of volume fractions of perfectly bonded
fibers and completely debonded fibers corresponding to Fig. 6(c)
and (e) are exhibited in Fig. 6(d) and (f), respectively. Good agree-
ments between the present predictions and the experiments (Nim-
mer et al., 1991) are also observed in Fig. 6(c) and (e).
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5. Concluding remarks

A micromechanical elastoplastic damage model considering a
finite RVE has been presented to predict the overall elastoplastic
damage behavior of circular fiber-reinforced ductile composites.
A micromechanical framework to predict the effective elastoplastic
damage responses of ductile composites is derived based on the
exterior-point Eshelby’s tensor for circular inclusions and the
ensemble-averaged effective yield criterion. A series of numerical
simulations and experimental comparisons are conducted to illus-
trate and assess the predictive capability of the proposed model.
The findings of this numerical study can be summarized as: (1)
the present predicted stress–strain curves converge to that ob-
tained from the infinite RVE model as the parameter a continues
to decrease. (2) The effect of the parameter a on the plastic behav-
ior beyond the yielding point is shown to be more influential than
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that on the elastic behavior. (3) Typical three-stage elastoplastic
stress–strain responses are observed in the predicted stress–strain
curves. (4) Smooth and gradual transitions from perfectly bonded
fibers to completely debonded fibers occur with the Dirichlet
boundary condition, whereas slight sharp progressions are ob-
served in the evolutions of perfectly bonded fibers and completely
debonded fibers with the Neumann boundary condition. (5) Lower
Weibull parameter S0 leads to lower elastoplastic stress–strain re-
sponses. (6) Good agreements between the present predictions and
experimental data verify the predictive capability of the model.

This study has demonstrated the capability of the proposed
micromechanical framework for predicting the elastoplastic dam-
age behavior of circular fiber-reinforced composites. In particular,
the proposed micromechanical elastoplastic model is suitable for
predicting the behavior of fiber-reinforced ductile composites hav-
ing moderately large circular fibers. However, a unified experimen-
tal and numerical study needs to be carried out for the calibration
of the model parameters of the proposed model.
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Appendix A. Parameters F ½q�1 and F ½q�2 ðq ¼ 1;2Þ in Eq. (20)

The parameters F ½q�1 and F ½q�2 ðq ¼ 1;2Þ in Eq. (20) take the form

F ½q�1 ¼
/qq4
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where /q is the volume fraction of q-phase, 	 � 
 denotes the inte-
gral intentity groups described in Eqs. (15)–(17) in which ‘‘�” signi-
fies the integrand of the integral intentity groups, and the
parameters n½q� and g½q� are given by

n½q� ¼ � k0

2l0ðk0 þ l0Þ
x½q�1 þx½q�2

� �
þ g½q�; g½q� ¼ x½q�2

2l0
ð38Þ

with
x½1�1 ¼ �
.1

4.2ð.1 þ .2Þ
; x½1�2 ¼

1
4.2

;

x½2�1 ¼ �
S1

ð2S2 � 1Þð2S1 þ 2S2 � 1Þ ; x½2�2 ¼
1

2ð2S2 � 1Þ ð39Þ

and the coefficients .1 and .2 are

.1 ¼ S1 þ
k0

2ðl1 � l0Þ
� k0 þ l0

2ðk1 � k0 þ l1 � l0Þ
;

.2 ¼ S2 þ
l0

2ðl1 � l0Þ
ð40Þ

where the components of the interior-point Eshelby’s tensor S1 and
S2 for a circular inclusion can be found in Li et al. (2005), Wang et al.
(2005), and Kim and Lee (2009).

In addition, the parameters Ki ði ¼ 1; . . . ;4Þ in Eqs. (36) and (37)
in case of the Dirichlet (displacement) boundary condition read:

K1 ¼ �6l0q
2
0; K2 ¼ 4l0;

K3 ¼ �2l0 ð3� 4m0Þ þ
3 q2

0 � 1
� 	
4m0 � 3

� 

;

K4 ¼ 12m0
q2

0 � 1
4m0 � 3

ð41Þ

In case of the Neumann (traction) boundary condition, the parame-
ters are

K1 ¼ �6l0q
2
0; K2 ¼ 4l0;

K3 ¼ 2l0ð4� 3q2
0Þ; K4 ¼ 12m0 q2

0 � 1
� 	

ð42Þ
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