Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The connectivity of a graph and its complement

Angelik[a](#page-0-0) Hellwig^a, Lutz Volkmann ^{[b,](#page-0-1)}*

a *Institut für Medizinische Statistik, Universitätsklinikum der RWTH Aachen, Pauwelsstraße 30, 52075 Aachen, Germany* b *Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany*

a r t i c l e i n f o

Article history: Received 23 September 2005 Received in revised form 7 November 2006 Accepted 21 May 2008 Available online 27 June 2008

Keywords: Edge-connectivity Vertex-connectivity Complementary graph Nordhaus–Gaddum type results

a b s t r a c t

Let *G* be a graph with minimum degree $\delta(G)$, edge-connectivity $\lambda(G)$, vertex-connectivity $\kappa(G)$, and let *G* be the complement of *G*.

In this article we prove that either $\lambda(G) = \delta(G)$ or $\lambda(\bar{G}) = \delta(\bar{G})$. In addition, we present the Nordhaus–Gaddum type result $\kappa(G) + \kappa(\bar{G}) \ge \min{\{\delta(G), \delta(\bar{G})\}} + 1$. A family of examples will show that this inequality is best possible.

© 2008 Elsevier B.V. All rights reserved.

\PPLIED
AATHEMATICS

1. Terminology and preliminary results

For graph-theoretical terminology and notation not defined here we follow Bondy and Murty [\[1\]](#page-3-0). We consider finite, undirected and simple graphs *G* with the vertex set $V(G)$ and the edge set $E(G)$. For each vertex $v \in V(G)$, the *neighborhood* $N(v) = N_G(v)$ of v is defined as the set of all vertices adjacent to v, and $d(v) = |N(v)|$ is the *degree* of v. We denote by $\delta(G)$ the *minimum degree*, by $\Delta(G)$ the *maximum degree* and by $n(G) = |V(G)|$ the *order* of *G*.

For a connected graph *G*, we define the *distance* $d_G(u, v)$ between two vertices *u* and *v* as the length of a shortest path from *u* to *v* in *G*. The *diameter* of *G* is the number $dm(G) = max{d_G(u, v) : u, v \in V(G)}$. If a graph *G* is not connected, then we define $dm(G) = \infty$. Furthermore, let $d_G(X, Y) = min\{d_G(x, y)|x \in X, y \in Y\}$ for two vertex sets X and Y in the graph G, The *complement* \bar{G} of a graph *G* is the graph with vertex set $V(G)$ and two vertices are adjacent in *G* if they are not adjacent in *^G*. A graph *^G* is called *self-complementary*if *^G*¯ is isomorphic to *^G*.

An *edge-cut* or *vertex-cut* of a connected graph *G* is a set of edges or vertices whose removal disconnects *G*. The *edgeconnectivity* λ(*G*)is defined as the minimum cardinality of an edge-cut over all edge-cuts of *G*, and if *G* is non-complete, then the *vertex-connectivity* κ(*G*) is defined as the minimum cardinality of a vertex-cut over all vertex-cuts of *G*. For the complete graph K_n of order *n*, we define $\kappa(K_n) = n - 1$. In 1932, Whitney [\[6\]](#page-3-1) proved the classical inequality chain $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for every graph *G*.

Each edge-cut or vertex-cut *S* satisfying $|S| = \lambda(G)$ or $|S| = \kappa(G)$ is called a *minimum edge-cut* or a *minimum vertex-cut*. The following known results play an important role in our investigations. We start with a nice result which can be found in the book by Bondy and Murty [\[1\]](#page-3-0) on p. 14 as an exercise (for a proof cf. Volkmann [\[5\]](#page-3-2), p. 19).

Theorem 1.1 (*Bondy, Murty [\[1\]](#page-3-0)* 1976). *If* G is a graph of diameter $dm(G) > 4$, then $dm(\bar{G}) < 2$.

Theorem 1.2 (*Jolivet [\[2\]](#page-3-3)* 1972, Plesník [\[3\]](#page-3-4) 1975). If G is a graph with dm(G) \leq 2, then $\lambda(G) = \delta(G)$.

Theorem 1.3 (*Plesník, Znám [\[4\]](#page-3-5)* 1989). *If G is a bipartite graph with* $dm(G) \leq 3$ *, then* $\lambda(G) = \delta(G)$ *.*

[∗] Corresponding author. Tel.: +49 241 80 94999; fax: +49 241 80 92136.

E-mail addresses: ahellwig@ukaachen.de (A. Hellwig), volkm@math2.rwth-aachen.de (L. Volkmann).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter © 2008 Elsevier B.V. All rights reserved. [doi:10.1016/j.dam.2008.05.012](http://dx.doi.org/10.1016/j.dam.2008.05.012)

2. Main results

Theorem 2.1. Let G be a bipartite graph. If $dm(G) < 3$, then $\lambda(G) = \delta(G)$. If $dm(G) > 4$, then $\lambda(\overline{G}) = \delta(\overline{G})$.

Proof. If dm(*G*) \leq 3, then we deduce from [Theorem 1.3](#page-0-3) that $\lambda(G) = \delta(G)$. If dm(*G*) \geq 4, then [Theorem 1.1](#page-0-4) implies $dm(\bar{G})$ < 2 and thus [Theorem 1.2](#page-0-5) leads to $\lambda(\bar{G}) = \delta(\bar{G})$. \Box

In particular, it follows from [Theorem 2.1](#page-1-0) that if *G* is a bipartite graph, then $\lambda(G) = \delta(G)$ or $\lambda(\bar{G}) = \delta(\bar{G})$. The next result will show that this is valid for all graphs.

Theorem 2.2. *If G is an arbitrary graph, then*

$$
\lambda(G)=\delta(G) \quad \text{or} \quad \lambda(\bar{G})=\delta(\bar{G}).
$$

Proof. If dm(*G*) < 2 or dm(\overline{G}) < 2, then the desired result follows immediately from [Theorem 1.2.](#page-0-5) Hence there remain the cases where dm(*G*) > 3 and dm(*G*) > 3. If λ (*G*) = δ (*G*) or λ (*G*) = δ (*G*), then we are done.

Therefore we suppose to the contrary that $\lambda(G) \leq \delta(G) - 1$ and $\lambda(\bar{G}) \leq \delta(\bar{G}) - 1$. If *S* is an arbitrary minimum edge-cut, then we denote the vertex sets of the two components of $G - S$ by X and Y . The vertex set $X_1 \subseteq X$ consists of the vertices with at least one neighbor in *Y* and the vertex set $Y_1 \subseteq Y$ consists of the vertices with at least one neighbor in *X*. In addition, let $X_0 = X \setminus X_1$ and $Y_0 = Y \setminus Y_1$. Using the assumption $\lambda(G) \leq \delta(G) - 1$, we observe that

$$
\delta(G)|X| \leq \sum_{x \in X} d_G(x) \leq |X|(|X|-1) + \delta(G) - 1
$$

and thus $|X| \ge \delta(G) + 1$. Combining this with the inequality $|X_1| \le \lambda(G) \le \delta(G) - 1$, we find that $|X_0| = |X| - |X_1| \ge 2$. Similar analysis shows that $|Y_0| \geq 2$. We note that $d_G(X_0, Y_0) \geq 3$.

Since $Y_0 \neq \emptyset$, we deduce that $d_G(x, a) \leq 2$, for $x \in X_0$ and $a \in V(G)$. Using the fact that $X_0 \neq \emptyset$, we obtain analogously $d_{\tilde{G}}(y, b) \le 2$, where $y \in Y_0$ and $b \in V(G)$. Furthermore, it follows that $d_{\tilde{G}}(a, b) \le 2$ for $a, b \in X_1$ or $a, b \in Y_1$.

Let \bar{S} be an arbitrary minimum edge-cut in \bar{G} and let $\bar{X},\bar{Y},\bar{X}_0,\bar{Y}_0,\bar{X}_1,\bar{Y}_1$ be defined as before. Analogously, we obtain $|\bar{X}_0|, |\bar{Y}_0| \ge 2$ and thus $d_{\bar{G}}(\bar{X}_0, \bar{Y}_0) \ge 3$, since $\lambda(\bar{G}) < \delta(\bar{G})$. Using our distance observations above, we conclude first that $\bar{X}_0,\bar{Y}_0\subseteq X_1\cup Y_1$ and then that $\bar{X}_0\subseteq X_1,\bar{Y}_0\subseteq Y_1$ or $\bar{X}_0\subseteq Y_1,\bar{Y}_0\subseteq X_1$, say $\bar{X}_0\subseteq X_1$ and $\bar{Y}_0\subseteq Y_1.$ In G we denote the vertex set $\overline{X_0}$ by X_* and $\overline{Y_0}$ by Y_* , and we define $X_R = X_1 \setminus X_*$ and $Y_R = Y_1 \setminus Y_*$.

In \bar{G} each vertex in X_0 is adjacent to every vertex in *Y* and each vertex in Y_0 is adjacent to every vertex in *X*. Thus $Y_0 \subseteq \bar{X}_1, X_0 \subseteq \bar{Y}_1$ and as $X_R \cap \bar{X}_0 = Y_R \cap \bar{Y}_0 = \emptyset$, we deduce that $X_R \cup Y_R \subseteq \bar{X}_1 \cup \bar{Y}_1$.

We collect some of the derived properties:

- (1) If $x \in X_*$ and $y \in Y_*$, then $xy \in E(G)$.
- (2) If $x \in X_0$ and $y \in Y_0$, then $xy \in E(\overline{G})$.

(3) It follows from (1) that $\lambda(G) \ge |X_*||Y_*| + \max\{|X_R|, |Y_R|\} \ge |X_*||Y_*| + \frac{|X_R| + |Y_R|}{2}$.

- (4) It follows from (2) that $\lambda(\bar{G}) \geq |X_0||Y_0| + \frac{|X_R| + |Y_R|}{2}$.
- (5) $\delta(G) \leq |X| 1 = |X_0| + |X_R| + |X_*| 1$
- (6) δ(*G*) ≤ |*Y*| − 1 = |*Y*0| + |*YR*| + |*Y*∗| − 1
- $(7) \ \delta(\bar{G}) \leq |X_*| + |Y_0| + \frac{|X_R|+|Y_R|}{2} 1 \text{ or } \delta(\bar{G}) \leq |Y_*| + |X_0| + \frac{|X_R|+|Y_R|}{2} 1.$

Case 1. Assume that $\delta(\bar{G}) \leq |X_*| + |Y_0| + \frac{|X_R| + |Y_R|}{2} - 1$. Since $\lambda(G) \leq \delta(G) - 1$; the inequalities (3) and (5) imply

$$
|X_*||Y_*| + |X_R| \leq \lambda(G) \leq \delta(G) - 1 \leq |X_0| + |X_R| + |X_*| - 2
$$

and thus

$$
|X_*||Y_*| \leq |X_0| + |X_*| - 2
$$

and so

$$
|X_0| - 1 \ge |X_*||Y_*| - |X_*| + 1.
$$

Using (4), (7), $|Y_*| \ge 2$ and $|Y_0| \ge 2$, we arrive at the following contradiction:

$$
\lambda(\bar{G}) \ge |X_0||Y_0| + \frac{|X_R| + |Y_R|}{2}
$$
\n
$$
= |Y_0| + |Y_0|(|X_0| - 1) + \frac{|X_R| + |Y_R|}{2} - 1 + 1 + |X_*| - |X_*|
$$
\n
$$
\ge \delta(\bar{G}) + |Y_0|(|X_0| - 1) + 1 - |X_*|
$$
\n
$$
\ge \delta(\bar{G}) + |Y_0|(|X_*||Y_*| - |X_*| + 1) + 1 - |X_*|
$$
\n
$$
= \delta(\bar{G}) + |X_*|(|Y_0||Y_*| - |Y_0| - 1) + 1 + |Y_0|
$$
\n
$$
\ge \delta(\bar{G}) + |X_*|(|Y_0| - |Y_0| - 1) + 1 + |Y_0|
$$
\n
$$
= \delta(\bar{G}) + |X_*|(|Y_0| - 1) + 1 + |Y_0|
$$
\n
$$
\ge \delta(\bar{G}) + |X_*|(2 - 1) + 1 + |Y_0|
$$
\n
$$
> \delta(\bar{G}).
$$

Case 2. Assume that $\delta(\bar{G}) \leq |Y_*| + |X_0| + \frac{|X_R| + |Y_R|}{2} - 1$. Combining $\lambda(G) \leq \delta(G) - 1$, (3) and (6) we find that

$$
|X_*||Y_*| + |Y_R| \leq \lambda(G) \leq \delta(G) - 1 \leq |Y_0| + |Y_R| + |Y_*| - 2
$$

and thus

$$
|X_*||Y_*| \leq |Y_0| + |Y_*| - 2
$$

and so

$$
|Y_0| - 1 \ge |X_*||Y_*| - |Y_*| + 1.
$$

Using (3), (7), $|X_*| > 2$ and $|X_0| > 2$, we obtain analogously to Case 1 the final contradiction

$$
\lambda(\bar{G}) \ge |X_0||Y_0| + \frac{|X_R| + |Y_R|}{2}
$$
\n
$$
= |X_0| + |Y_*| + \frac{|X_R| + |Y_R|}{2} - 1 - |Y_*| + |X_0|(|Y_0| - 1) + 1
$$
\n
$$
\ge \delta(\bar{G}) + |X_0|(|Y_0| - 1) + 1 - |Y_*|
$$
\n
$$
\ge \delta(\bar{G}) + |Y_*|(|X_0||X_*| - |X_0| - 1) + 1 + |X_0|
$$
\n
$$
> \delta(\bar{G}). \quad \Box
$$

The following family of examples shows that [Theorem 2.2](#page-1-1) is not valid in general for the vertex-connectivity of a graph and its complement.

Example 2.3. Let H_1 and H_2 be two copies of the complete graph K_p of order $p \geq 3$. We consider the disjoint union of the graphs *H*1, *H*² and the empty graph *H* with *p* vertices together with the edges with one end in *V*(*H*) and the other one in *V*(*H*₁) ∪ *V*(*H*₂). By the removal of one edge between *V*(*H*) and *V*(*H*₁) ∪ *V*(*H*₂), we obtain the graph *G*. We note that $\delta(G) = 2p - 2$, $\kappa(G) \le |V(H)| = p < \delta(G)$, $\delta(G) = p - 1$ and $\kappa(G) = 1 < \delta(G)$.

Corollary 2.4. *If G is a self-complementary graph, then* $\lambda(G) = \delta(G)$ *.*

Corollary 2.5. *If G and G are connected graphs, then*

$$
\lambda(G) + \lambda(\bar{G}) \ge \min\{\delta(G), \delta(\bar{G})\} + 1.
$$

The next theorem shows that [Corollary 2.5](#page-2-0) is also valid for the sum of the vertex-connectivities of a graph and its complement.

Theorem 2.6. If G and \bar{G} are connected graphs, then

 $\kappa(G) + \kappa(\bar{G}) > \min\{\delta(G), \delta(\bar{G})\} + 1.$

Proof. If $\kappa(G) = \delta(G)$ or $\kappa(\overline{G}) = \delta(\overline{G})$, then we are done. Now we assume that $\kappa(G) < \delta(G)$ and $\kappa(\overline{G}) < \delta(\overline{G})$. Let *S* be an arbitrary minimum vertex-cut and let *X* denote the vertex set of an arbitrary component of *G* − *S*. Furthermore, let *Y* = *V*(*G*) \ (*X* ∪ *S*). Our assumption implies

$$
|Y|, |X| \ge \delta(G) - \kappa(G) + 1 \ge 2. \tag{1}
$$

Analogously, let *^S*¯ be an arbitrary minimum vertex-cut of *^G*¯. Furthermore, let *^X*¯ be a vertex set of a component of *^G*¯ − *^S*¯ and $\overline{Y} = V(G) \setminus (\overline{X} \cup \overline{S})$. Since $\kappa(\overline{G}) < \delta(\overline{G})$, we obtain

$$
|\bar{Y}|, |\bar{X}| \ge \delta(\bar{G}) - \kappa(\bar{G}) + 1 \ge 2. \tag{2}
$$

Case 1. If $(\bar{X} \cup \bar{Y}) \subseteq S$, then $(X \cup Y) \subseteq \bar{S}$ and we arrive at the contradiction

$$
\kappa(\bar{G}) = |\bar{S}| \ge |X| + |Y|
$$

= |V(G) \setminus S| = n(G) - \kappa(G)

$$
\ge n(G) - (\delta(G) - 1) = \Delta(\bar{G}) + 2
$$

> \delta(\bar{G}).

Case 2. Assume that $(\bar{X} \cup \bar{Y}) \cap (X \cup Y) \neq \emptyset$. Assume, without loss of generality, that there exists a vertex *x* such that $x \in X$ and $x \in \overline{X}$.

Case 2.1. If $\bar{Y} \cap X \neq \emptyset$, then $Y \subseteq \bar{S}$, since each vertex in *X* is adjacent to each vertex in *Y* in \bar{G} . Using inequality (1), we obtain $\kappa(\bar{G}) = |\bar{S}| > |Y| > \delta(G) - \kappa(G) + 1$, and this yields the desired bound.

Case 2.2. If $\bar{Y} \cap X = \emptyset$, then $\bar{Y} \subseteq S$ and therefore $|\bar{Y}| \le \kappa(G)$. Applying inequality (2), we derive $\kappa(\bar{G}) > \delta(\bar{G}) - |\bar{Y}| + 1 >$ $\delta(\bar{G}) - \kappa(G) + 1$, and this finally leads to the desired result.

The following example will show that [Theorem 2.6](#page-2-1) is best possible, in the sense that $\kappa(G) + \kappa(\bar{G}) > \min\{\delta(G), \delta(\bar{G})\} + 2$ is not true in general.

Example 2.7. Let $p > 1$ be an integer, and let *H* be a complete bipartite graph with the partition sets *A* and *B* such that $|A| =$ $|B| = 3p$. The graph *G* is defined as the union of *H* together with a further vertex *x* such that $|N_G(x) \cap A| = |N_G(x) \cap B| = p$. It is a simple matter to verify that $\kappa(G) = \delta(G) = 2p$. In the connected graph G, the vertex x is a cut vertex, and thus $\kappa(\bar{G}) + \kappa(\bar{G}) = \min{\{\delta(G), \delta(\bar{G})\}} + 1$, since $\delta(\bar{G}) = 3p - 1 \geq 2p = \delta(G)$.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press Ltd., London, Basingstoke, 1976.
- [2] J.L. Jolivet, Sur la connexité des graphes orientés, C.R. Acad. Sci. Paris 274 A (1972) 148–150.
- [3] J. Plesník, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Commenian Math. 30 (1975) 71–93.
- [4] J. Plesník, S. Znám, On equality of edge-connectivity and minimum degree of a graph, Arch. Math. (Brno.) 25 (1989) 19–25.
- [5] L. Volkmann, Fundamente der Graphentheorie, Springer, Vienna, New York, 1996.
- [6] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150–168.