Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The connectivity of a graph and its complement

Angelika Hellwig^a, Lutz Volkmann^{b,*}

^a Institut für Medizinische Statistik, Universitätsklinikum der RWTH Aachen, Pauwelsstraße 30, 52075 Aachen, Germany ^b Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

ARTICLE INFO

Article history: Received 23 September 2005 Received in revised form 7 November 2006 Accepted 21 May 2008 Available online 27 June 2008

Keywords: Edge-connectivity Vertex-connectivity Complementary graph Nordhaus-Gaddum type results

ABSTRACT

Let *G* be a graph with minimum degree $\delta(G)$, edge-connectivity $\lambda(G)$, vertex-connectivity $\kappa(G)$, and let \overline{G} be the complement of *G*.

In this article we prove that either $\lambda(G) = \delta(G)$ or $\lambda(\overline{G}) = \delta(\overline{G})$. In addition, we present the Nordhaus–Gaddum type result $\kappa(G) + \kappa(\overline{G}) \ge \min{\{\delta(G), \delta(\overline{G})\}} + 1$. A family of examples will show that this inequality is best possible.

© 2008 Elsevier B.V. All rights reserved.

1. Terminology and preliminary results

For graph-theoretical terminology and notation not defined here we follow Bondy and Murty [1]. We consider finite, undirected and simple graphs *G* with the vertex set *V*(*G*) and the edge set *E*(*G*). For each vertex $v \in V(G)$, the *neighborhood* $N(v) = N_G(v)$ of v is defined as the set of all vertices adjacent to v, and d(v) = |N(v)| is the *degree* of v. We denote by $\delta(G)$ the *minimum degree*, by $\Delta(G)$ the *maximum degree* and by n(G) = |V(G)| the *order* of *G*.

For a connected graph *G*, we define the *distance* $d_G(u, v)$ between two vertices *u* and *v* as the length of a shortest path from *u* to *v* in *G*. The *diameter* of *G* is the number dm(*G*) = max{ $d_G(u, v) : u, v \in V(G)$ }. If a graph *G* is not connected, then we define dm(*G*) = ∞ . Furthermore, let $d_G(X, Y) = \min{\{d_G(x, y) | x \in X, y \in Y\}}$ for two vertex sets *X* and *Y* in the graph *G*, The *complement* \overline{G} of a graph *G* is the graph with vertex set *V*(*G*) and two vertices are adjacent in \overline{G} if they are not adjacent in *G*. A graph *G* is called *self-complementary* if \overline{G} is isomorphic to *G*.

An *edge-cut* or *vertex-cut* of a connected graph *G* is a set of edges or vertices whose removal disconnects *G*. The *edge-connectivity* $\lambda(G)$ is defined as the minimum cardinality of an edge-cut over all edge-cuts of *G*, and if *G* is non-complete, then the *vertex-connectivity* $\kappa(G)$ is defined as the minimum cardinality of a vertex-cut over all vertex-cuts of *G*. For the complete graph K_n of order *n*, we define $\kappa(K_n) = n - 1$. In 1932, Whitney [6] proved the classical inequality chain $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for every graph *G*.

Each edge-cut or vertex-cut *S* satisfying $|S| = \lambda(G)$ or $|S| = \kappa(G)$ is called a *minimum edge-cut* or a *minimum vertex-cut*. The following known results play an important role in our investigations. We start with a nice result which can be found in the book by Bondy and Murty [1] on p. 14 as an exercise (for a proof cf. Volkmann [5], p. 19).

Theorem 1.1 (Bondy, Murty [1] 1976). If *G* is a graph of diameter $dm(G) \ge 4$, then $dm(\overline{G}) \le 2$.

Theorem 1.2 (*Jolivet* [2] 1972, *Plesník* [3] 1975). *If G* is a graph with $dm(G) \le 2$, then $\lambda(G) = \delta(G)$.

Theorem 1.3 (*Plesník, Znám* [4] 1989). If *G* is a bipartite graph with $dm(G) \leq 3$, then $\lambda(G) = \delta(G)$.

^{*} Corresponding author. Tel.: +49 241 80 94999; fax: +49 241 80 92136.

E-mail addresses: ahellwig@ukaachen.de (A. Hellwig), volkm@math2.rwth-aachen.de (L. Volkmann).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2008.05.012

2. Main results

Theorem 2.1. Let G be a bipartite graph. If dm(G) < 3, then $\lambda(G) = \delta(G)$. If dm(G) > 4, then $\lambda(\overline{G}) = \delta(\overline{G})$.

Proof. If dm(G) \leq 3, then we deduce from Theorem 1.3 that $\lambda(G) = \delta(G)$. If dm(G) \geq 4, then Theorem 1.1 implies $dm(\bar{G}) < 2$ and thus Theorem 1.2 leads to $\lambda(\bar{G}) = \delta(\bar{G})$. \Box

In particular, it follows from Theorem 2.1 that if G is a bipartite graph, then $\lambda(G) = \delta(G)$ or $\lambda(\overline{G}) = \delta(\overline{G})$. The next result will show that this is valid for all graphs.

Theorem 2.2. If G is an arbitrary graph, then

$$\lambda(G) = \delta(G)$$
 or $\lambda(G) = \delta(G)$.

Proof. If dm(*G*) < 2 or dm(\overline{G}) < 2, then the desired result follows immediately from Theorem 1.2. Hence there remain the cases where dm(*G*) \geq 3 and dm(\overline{G}) \geq 3. If $\lambda(G) = \delta(G)$ or $\lambda(\overline{G}) = \delta(\overline{G})$, then we are done.

Therefore we suppose to the contrary that $\lambda(G) \leq \delta(G) - 1$ and $\lambda(G) \leq \delta(G) - 1$. If S is an arbitrary minimum edge-cut, then we denote the vertex sets of the two components of G - S by X and Y. The vertex set $X_1 \subseteq X$ consists of the vertices with at least one neighbor in Y and the vertex set $Y_1 \subset Y$ consists of the vertices with at least one neighbor in X. In addition, let $X_0 = X \setminus X_1$ and $Y_0 = Y \setminus Y_1$. Using the assumption $\lambda(G) \leq \delta(G) - 1$, we observe that

$$\delta(G)|X| \le \sum_{x \in X} d_G(x) \le |X|(|X| - 1) + \delta(G) - 1$$

and thus $|X| \ge \delta(G) + 1$. Combining this with the inequality $|X_1| \le \lambda(G) \le \delta(G) - 1$, we find that $|X_0| = |X| - |X_1| \ge 2$. Similar analysis shows that $|Y_0| \ge 2$. We note that $d_G(X_0, Y_0) \ge 3$.

Since $Y_0 \neq \emptyset$, we deduce that $d_{\overline{G}}(x, a) \leq 2$, for $x \in X_0$ and $a \in V(G)$. Using the fact that $X_0 \neq \emptyset$, we obtain analogously $d_{\tilde{G}}(y, b) \leq 2$, where $y \in Y_0$ and $b \in V(G)$. Furthermore, it follows that $d_{\tilde{G}}(a, b) \leq 2$ for $a, b \in X_1$ or $a, b \in Y_1$.

Let \bar{S} be an arbitrary minimum edge-cut in \bar{G} and let $\bar{X}, \bar{Y}, \bar{X}_0, \bar{Y}_0, \bar{X}_1, \bar{Y}_1$ be defined as before. Analogously, we obtain $|\bar{X}_0|, |\bar{Y}_0| \ge 2$ and thus $d_{\bar{G}}(\bar{X}_0, \bar{Y}_0) \ge 3$, since $\lambda(\bar{G}) < \delta(\bar{G})$. Using our distance observations above, we conclude first that $\bar{X}_0, \bar{Y}_0 \subseteq X_1 \cup Y_1$ and then that $\bar{X}_0 \subseteq X_1, \bar{Y}_0 \subseteq Y_1$ or $\bar{X}_0 \subseteq Y_1, \bar{Y}_0 \subseteq X_1$, say $\bar{X}_0 \subseteq X_1$ and $\bar{Y}_0 \subseteq Y_1$. In *G* we denote the vertex set \overline{X}_0 by X_* and \overline{Y}_0 by Y_* , and we define $X_R = X_1 \setminus X_*$ and $Y_R = Y_1 \setminus Y_*$.

In \overline{G} each vertex in X_0 is adjacent to every vertex in Y and each vertex in Y_0 is adjacent to every vertex in X. Thus $Y_0 \subseteq \overline{X}_1, X_0 \subseteq \overline{Y}_1$ and as $X_R \cap \overline{X}_0 = Y_R \cap \overline{Y}_0 = \emptyset$, we deduce that $X_R \cup Y_R \subseteq \overline{X}_1 \cup \overline{Y}_1$.

We collect some of the derived properties:

- (1) If $x \in X_*$ and $y \in Y_*$, then $xy \in E(G)$.
- (2) If $x \in X_0$ and $y \in Y_0$, then $xy \in E(\overline{G})$.

(3) It follows from (1) that $\lambda(G) \ge |X_*||Y_*| + \max\{|X_R|, |Y_R|\} \ge |X_*||Y_*| + \frac{|X_R| + |Y_R|}{2}$.

- (4) It follows from (2) that $\lambda(\overline{G}) \ge |X_0||Y_0| + \frac{|X_R| + |Y_R|}{2}$.
- (5) $\delta(G) \le |X| 1 = |X_0| + |X_R| + |X_*| 1$
- (6) $\delta(G) \leq |Y| 1 = |Y_0| + |Y_R| + |Y_*| 1$ (7) $\delta(\bar{G}) \leq |X_*| + |Y_0| + \frac{|X_R| + |Y_R|}{2} 1 \text{ or } \delta(\bar{G}) \leq |Y_*| + |X_0| + \frac{|X_R| + |Y_R|}{2} 1.$

Case 1. Assume that $\delta(\overline{G}) \leq |X_*| + |Y_0| + \frac{|X_R| + |Y_R|}{2} - 1$. Since $\lambda(G) \leq \delta(G) - 1$; the inequalities (3) and (5) imply

$$|X_*||Y_*| + |X_R| \le \lambda(G) \le \delta(G) - 1 \le |X_0| + |X_R| + |X_*| - 2$$

and thus

$$X_*||Y_*| \le |X_0| + |X_*| - 2$$

and so

$$|X_0| - 1 \ge |X_*||Y_*| - |X_*| + 1$$

Using (4), (7), $|Y_*| \ge 2$ and $|Y_0| \ge 2$, we arrive at the following contradiction:

$$\begin{split} \lambda(\bar{G}) &\geq |X_0||Y_0| + \frac{|X_R| + |Y_R|}{2} \\ &= |Y_0| + |Y_0|(|X_0| - 1) + \frac{|X_R| + |Y_R|}{2} - 1 + 1 + |X_*| - |X_*| \\ &\geq \delta(\bar{G}) + |Y_0|(|X_0| - 1) + 1 - |X_*| \\ &\geq \delta(\bar{G}) + |Y_0|(|X_*||Y_*| - |X_*| + 1) + 1 - |X_*| \\ &= \delta(\bar{G}) + |X_*|(|Y_0||Y_*| - |Y_0| - 1) + 1 + |Y_0| \\ &\geq \delta(\bar{G}) + |X_*|(2|Y_0| - |Y_0| - 1) + 1 + |Y_0| \\ &\geq \delta(\bar{G}) + |X_*|(2|Y_0| - 1) + 1 + |Y_0| \\ &\geq \delta(\bar{G}) + |X_*|(2 - 1) + 1 + |Y_0| \\ &\geq \delta(\bar{G}). \end{split}$$

Case 2. Assume that $\delta(\overline{G}) \leq |Y_*| + |X_0| + \frac{|X_R| + |Y_R|}{2} - 1$. Combining $\lambda(G) \leq \delta(G) - 1$, (3) and (6) we find that

$$X_*||Y_*| + |Y_R| \le \lambda(G) \le \delta(G) - 1 \le |Y_0| + |Y_R| + |Y_*| - 2$$

and thus

$$|X_*||Y_*| \le |Y_0| + |Y_*| - 2$$

and so

$$|Y_0| - 1 \ge |X_*||Y_*| - |Y_*| + 1$$

Using (3), (7), $|X_*| \ge 2$ and $|X_0| \ge 2$, we obtain analogously to Case 1 the final contradiction

$$\begin{split} \lambda(\bar{G}) &\geq |X_0||Y_0| + \frac{|X_R| + |Y_R|}{2} \\ &= |X_0| + |Y_*| + \frac{|X_R| + |Y_R|}{2} - 1 - |Y_*| + |X_0|(|Y_0| - 1) + 1 \\ &\geq \delta(\bar{G}) + |X_0|(|Y_0| - 1) + 1 - |Y_*| \\ &\geq \delta(\bar{G}) + |Y_*|(|X_0||X_*| - |X_0| - 1) + 1 + |X_0| \\ &> \delta(\bar{G}). \quad \Box \end{split}$$

The following family of examples shows that Theorem 2.2 is not valid in general for the vertex-connectivity of a graph and its complement.

Example 2.3. Let H_1 and H_2 be two copies of the complete graph K_p of order $p \ge 3$. We consider the disjoint union of the graphs H_1 , H_2 and the empty graph H with p vertices together with the edges with one end in V(H) and the other one in $V(H_1) \cup V(H_2)$. By the removal of one edge between V(H) and $V(H_1) \cup V(H_2)$, we obtain the graph G. We note that $\delta(G) = 2p - 2$, $\kappa(G) \le |V(H)| = p < \delta(G)$, $\delta(\overline{G}) = p - 1$ and $\kappa(\overline{G}) = 1 < \delta(\overline{G})$.

Corollary 2.4. If G is a self-complementary graph, then $\lambda(G) = \delta(G)$.

Corollary 2.5. If G and \overline{G} are connected graphs, then

$$\lambda(G) + \lambda(G) \ge \min\{\delta(G), \delta(G)\} + 1.$$

The next theorem shows that Corollary 2.5 is also valid for the sum of the vertex-connectivities of a graph and its complement.

Theorem 2.6. If G and \overline{G} are connected graphs, then

 $\kappa(G) + \kappa(\overline{G}) \ge \min\{\delta(G), \delta(\overline{G})\} + 1.$

Proof. If $\kappa(G) = \delta(G)$ or $\kappa(\overline{G}) = \delta(\overline{G})$, then we are done. Now we assume that $\kappa(G) < \delta(G)$ and $\kappa(\overline{G}) < \delta(\overline{G})$. Let *S* be an arbitrary minimum vertex-cut and let *X* denote the vertex set of an arbitrary component of *G* – *S*. Furthermore, let $Y = V(G) \setminus (X \cup S)$. Our assumption implies

$$|Y|, |X| \ge \delta(G) - \kappa(G) + 1 \ge 2. \tag{1}$$

Analogously, let \overline{S} be an arbitrary minimum vertex-cut of \overline{G} . Furthermore, let \overline{X} be a vertex set of a component of $\overline{G} - \overline{S}$ and $\overline{Y} = V(G) \setminus (\overline{X} \cup \overline{S})$. Since $\kappa(\overline{G}) < \delta(\overline{G})$, we obtain

$$|\bar{Y}|, |\bar{X}| \ge \delta(\bar{G}) - \kappa(\bar{G}) + 1 \ge 2.$$
⁽²⁾

Case 1. If $(\bar{X} \cup \bar{Y}) \subseteq S$, then $(X \cup Y) \subseteq \bar{S}$ and we arrive at the contradiction

$$\begin{split} \kappa(\bar{G}) &= |\bar{S}| \geq |X| + |Y| \\ &= |V(G) \setminus S| = n(G) - \kappa(G) \\ &\geq n(G) - (\delta(G) - 1) = \Delta(\bar{G}) + 2 \\ &> \delta(\bar{G}). \end{split}$$

Case 2. Assume that $(\bar{X} \cup \bar{Y}) \cap (X \cup Y) \neq \emptyset$. Assume, without loss of generality, that there exists a vertex *x* such that $x \in X$ and $x \in \bar{X}$.

Case 2.1. If $\overline{Y} \cap X \neq \emptyset$, then $Y \subseteq \overline{S}$, since each vertex in X is adjacent to each vertex in Y in \overline{G} . Using inequality (1), we obtain $\kappa(\overline{G}) = |\overline{S}| \ge |Y| \ge \delta(G) - \kappa(G) + 1$, and this yields the desired bound.

Case 2.2. If $\overline{Y} \cap X = \emptyset$, then $\overline{Y} \subseteq S$ and therefore $|\overline{Y}| \leq \kappa(G)$. Applying inequality (2), we derive $\kappa(\overline{G}) \geq \delta(\overline{G}) - |\overline{Y}| + 1 \geq \delta(\overline{G}) - \kappa(G) + 1$, and this finally leads to the desired result. \Box

The following example will show that Theorem 2.6 is best possible, in the sense that $\kappa(G) + \kappa(\overline{G}) \ge \min\{\delta(G), \delta(\overline{G})\} + 2$ is not true in general.

Example 2.7. Let $p \ge 1$ be an integer, and let H be a complete bipartite graph with the partition sets A and B such that |A| = |B| = 3p. The graph G is defined as the union of H together with a further vertex x such that $|N_G(x) \cap A| = |N_G(x) \cap B| = p$. It is a simple matter to verify that $\kappa(G) = \delta(G) = 2p$. In the connected graph \overline{G} , the vertex x is a cut vertex, and thus $\kappa(\overline{G}) + \kappa(G) = \min\{\delta(G), \delta(\overline{G})\} + 1$, since $\delta(\overline{G}) = 3p - 1 \ge 2p = \delta(G)$.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press Ltd., London, Basingstoke, 1976.
- [2] J.L. Jolivet, Sur la connexité des graphes orientés, C.R. Acad. Sci. Paris 274 A (1972) 148–150.
- [3] J. Plesník, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Commenian Math. 30 (1975) 71–93.
- [4] J. Plesník, S. Znám, On equality of edge-connectivity and minimum degree of a graph, Arch. Math. (Brno.) 25 (1989) 19–25.
- [5] L. Volkmann, Fundamente der Graphentheorie, Springer, Vienna, New York, 1996.
- [6] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.