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1. Terminology and preliminary results

For graph-theoretical terminology and notation not defined here we follow Bondy and Murty [1]. We consider finite,
undirected and simple graphs G with the vertex set V(G) and the edge set E(G). For each vertex v € V(G), the neighborhood
N(v) = Ng(v) of v is defined as the set of all vertices adjacent to v, and d(v) = |[N(v)| is the degree of v. We denote by §(G)
the minimum degree, by A(G) the maximum degree and by n(G) = |V (G)| the order of G.

For a connected graph G, we define the distance d¢(u, v) between two vertices u and v as the length of a shortest path
from u to v in G. The diameter of G is the number dm(G) = max{d¢(u, v) : u, v € V(G)}. If a graph G is not connected, then
we define dm(G) = oo. Furthermore, let d¢(X, Y) = min{d¢(x, ¥)|x € X,y € Y} for two vertex sets X and Y in the graph G,
The complement G of a graph G is the graph with vertex set V(G) and two vertices are adjacent in G if they are not adjacent
in G. A graph G is called self-complementaryif G is isomorphic to G.

An edge-cut or vertex-cut of a connected graph G is a set of edges or vertices whose removal disconnects G. The edge-
connectivity A(G) is defined as the minimum cardinality of an edge-cut over all edge-cuts of G, and if G is non-complete, then
the vertex-connectivity k (G) is defined as the minimum cardinality of a vertex-cut over all vertex-cuts of G. For the complete
graph K, of order n, we define « (K;;) = n— 1.In 1932, Whitney [6] proved the classical inequality chain « (G) < A(G) < §(G)
for every graph G.

Each edge-cut or vertex-cut S satisfying |S| = A(G) or |S| = «(G) is called a minimum edge-cut or a minimum vertex-cut.

The following known results play an important role in our investigations. We start with a nice result which can be found
in the book by Bondy and Murty [1] on p. 14 as an exercise (for a proof cf. Volkmann [5], p. 19).

Theorem 1.1 (Bondy, Murty [1] 1976).If G is a graph of diameter dm(G) > 4, then dm(G) < 2.
Theorem 1.2 (Jolivet [2] 1972, Plesnik [3] 1975). If G is a graph with dm(G) < 2, then A(G) = §(G).
Theorem 1.3 (Plesnik, Zndm [4] 1989). If G is a bipartite graph with dm(G) < 3, then A(G) = §(G).
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2. Main results

Theorem 2.1. Let G be a bipartite graph. If dm(G) < 3, then A(G) = §(G). If dm(G) > 4, then A(G) = §(G).

Proof. If dm(G) < 3, then we deduce from Theorem 1.3 that A(G) = §(G). If dm(G) > 4, then Theorem 1.1 implies
dm(G) < 2 and thus Theorem 1.2 leads to A(G) = 6(G). O

In particular, it follows from Theorem 2.1 that if G is a bipartite graph, then A(G) = 8(G) or A(G) = §(G). The next result
will show that this is valid for all graphs.

Theorem 2.2. If G is an arbitrary graph, then
1(G) =8(G) or A(G) = 8(G).

Proof. If dm(G) < 2 ordm(G) < 2, then the desired result follows immediately from Theorem 1.2. Hence there remain the
cases where dm(G) > 3 and dm(G) > 3.1f A(G) = §(G) or A(G) = 4(G), then we are done.

Therefore we suppose to the contrary that A(G) < §(G) — 1and A(G) < 6(G) — 1.If S is an arbitrary minimum edge-cut,
then we denote the vertex sets of the two components of G — S by X and Y. The vertex set X; € X consists of the vertices
with at least one neighbor in Y and the vertex set Y; C Y consists of the vertices with at least one neighbor in X. In addition,
letXo = X \ X; and Yy = Y \ Y;. Using the assumption A(G) < §(G) — 1, we observe that

S@)IX] <Y de() < IXI(IX| — 1) +8(G) — 1

xeX

and thus |X| > 8(G) 4+ 1. Combining this with the inequality |X;| < A(G) < 8(G) — 1, we find that |Xp| = |X| — |X1] > 2.
Similar analysis shows that |Yy| > 2. We note that dg(Xp, Yo) > 3.

Since Yy # 0, we deduce that dz(x, a) < 2, forx € Xp and a € V(G). Using the fact that X, # #J, we obtain analogously
dz(y,b) < 2,wherey € Yy and b € V(G). Furthermore, it follows that dz(a, b) < 2fora,b e X;ora, b € Y;.

X3 Y,
Xe > Y
G X() YO
Xr Yr
Xi Yy
% | Yo [><]X% | g
G (=X (=Y
g X] XR (@) YR g Y]

Let S be an arbitrary minimum edge-cut in G and let X, Y, Xo, Yo, X1, Y; be defined as before. Analogously, we obtain
|X0| |Yo| > 2 and thus dG(Xo, Yo) > 3, since A(G) < §(G). Usmg our distance observations above, we conclude first that
Xo, Yo C X; UY; and then that Xo € X;, Yo € Yy orXo € Y1, Yo € Xy, sayXO C X; and Yy C Y;. In G we denote the vertex
set Xp by X, and Y, by Yy, and we define Xz = X; \ Xiand Yz = Y71 \ Y.

In G each vertex in Xj is adjacent to every vertex in Y and each vertex in Y, is adjacent to every vertex in X. Thus
Y() c )_(],XO c }_/1 and asXR ﬂ)_(() = YR N 1_/0 = 0’, we deduce thatXR U YR c )_(1 U }_/1.

We collect some of the derived properties:
(1) Ifx € X, and y € Y,, thenxy € E(G).
(2) Ifx € Xpand y € Y, thenxy € E(G).
(3) It follows from (1) that A(G) > |X,||Ys| + max{|Xgl, |Yg|} > [X||Y,| + ZelHYel,
(4) It follows from (2) that A(G) > [Xo||Yo| + P&l
(5) 8(G) = IX| = 1= |Xo| + IXr| + IXs| — 1
(6) 8(G) < [Y| =1 =|Yo| + [Yp| + |Ys| — 1
(7) 8(G) < 1X.| + Yol + 2R — 10r §(G) < |V,| + [Xo| + bl _q,

Case 1. Assume that §(G) < |X.| + |Yo| + 22| 1. Since 1(G) < §(G) — 1; the inequalities (3) and (5) imply
[XallYiel + [Xr] < A(G) < 8(G) — 1 < |Xo| + [Xr| + |Xi| — 2
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and thus
IXcllYi| = 1Xol + 1Xi| — 2
and so
IXol = 1= [X[IYal — [Xi| + 1.
Using (4), (7), |Y«| > 2 and |Yp| > 2, we arrive at the following contradiction:

IXr] + [Yg]

A(G) = |Xol Yol + 5

[Xr| + YR
2

= Yol + Yo (|Xo| = 1) + =T+ 1+ X — X

> 5(G) + Yol (IXo] = 1) + 1 — [Xu|
> 3(G) + [Yol (IXellYil — Xul + 1) + 1 — |X]
= 8(G) + X[ (IYollYsl — [Yol = 1) 4+ 1+ [Yo
= 8(G) + [X|2[Yo| — Yol — 1) + 1+ |Yo
= 8(6) + X (1Yol = 1) + 1+ Yol
> 8(6) + X2 — 1) + 1+ [Yo]
> 8(G).
Case 2. Assume that §(G) < |V.| + [Xo| + X2l — 1. Combining #(G) < 8(G) — 1,(3) and (6) we find that
[Xel Vsl + [Yr] < A(G) < 8(G) — 1 < [Yo| + |Yr| + [Ya] — 2
and thus
Xl Y] < [Yol 4 [Yi| — 2
and so
[Yol = 1= [X||Yel — |Yul + 1.
Using (3), (7), |Xs| > 2 and |Xy| > 2, we obtain analogously to Case 1 the final contradiction
[Xr| + [Yrl

2

Xkl + Yzl
= [Xol + |Yu| + % — 1= Yl + [Xol(IYo] = 1) + 1

MG) > [XollYol +

> 8(G) + [Xol(IYol — D) + 1 — |Yy]
> 8(G) + Vil (1Xol1Xs] — [Xol — 1) + 14 [Xo|
> 8(G). O

The following family of examples shows that Theorem 2.2 is not valid in general for the vertex-connectivity of a graph
and its complement.

Example 2.3. Let H; and H; be two copies of the complete graph K, of order p > 3. We consider the disjoint union of
the graphs Hq, H, and the empty graph H with p vertices together with the edges with one end in V(H) and the other one
in V(H;) U V(H,). By the removal of one edge between V(H) and V(H;) U V(H,), we obtain the graph G. We note that
8(G)=2p—2,k(G) < |VH)|=p < 8(G),8(G)=p—Tand«x(G) =1 < §(G).

Corollary 2.4. If Gis a self-complementary graph, then A(G) = §(G).
Corollary 2.5. If G and G are connected graphs, then
2(G) + A(G) = min{8(G), §(G)} + 1.

The next theorem shows that Corollary 2.5 is also valid for the sum of the vertex-connectivities of a graph and its
complement.

Theorem 2.6. If G and G are connected graphs, then
k() + k(G) = min{5(G), 8(G)} + 1.
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Proof. If x(G) = &(G) or k(G) = 8(6‘), then we are done. Now we assume that ¥ (G) < §(G) and k(G) < 8(G). LetS
be an arbitrary minimum vertex-cut and let X denote the vertex set of an arbitrary component of G — S. Furthermore, let
Y =V(G)\ (X US). Our assumption implies

Y], 1X] = 8(C) —«x(G) +1=2. (1)
Analogously, let S be an arbitrary minimum vertex-cut of G. Furthermore, let X be a vertex set of a component of G — S and
Y =V(G)\ XUS).Since k(G) < §(G), we obtain

Y] 1X| = 8(C) — k(@) +1=2. (2)

Case 1.If (X UY) C S, then (X UY) C S and we arrive at the contradiction

k(G) = IS| = |X| + Y|
V() \ S| =n(G) — «(G)
nG) — (6(G) = 1) = A(G) + 2
> 8(G).

v

Case 2. Assume that XUY)NEKUY) # (). Assume, without loss of generality, that there exists a vertex x such that
xeXandx e X. ~ _

Case 2.1.IfY N X # ¥, then Y C S, since each vertex in X is adjacent to each vertex in Y in G. Using inequality (1), we
obtain k (G) = |S| = |Y| > 6(G) — x(G) + 1, and this yields the desired bound. _ _ ~

Case2.2.IfYNX = ¢, thenY C S and therefore |Y| < «(G). Applying inequality (2), we derive k (G) > §(G) — |Y|+1 >
3(G) — k(G) + 1, and this finally leads to the desired result. O

The following example will show that Theorem 2.6 is best possible, in the sense that « (G) + « (G) > min{8(G), §(G)} +2
is not true in general.

Example 2.7. Letp > 1be aninteger, and let H be a complete bipartite graph with the partition sets A and B such that |A| =
|B| = 3p. The graph G is defined as the union of H together with a further vertex x such that [Ng(x) N A| = |[Ng(x) N B| = p.
It is a simple matter to verify that x(G) = §(G) = 2p. In the connected graph G, the vertex x is a cut vertex, and thus
k(G) 4+ x(G) = min{§(G), §(G)} + 1, since §(G) =3p — 1 > 2p = §(G).
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