ON CLASSES OF RELATIONS AND GRAPHS DETERMINED BY SUBOBIECTS AND FACTOROBJECTS

Jaroslav NEŠETŘIL and Aleš PULTR
Charles University, Prague, Czechosiovakia

Received 14 February 1977
The classes of relations and graphs déermined by subobjects and factorobjects are studied. We investigate whether such classes are closed under prosucts, whether they are finitely generated by products and subobjects and whether a class can be described alternatively by subobjects and factorobjects. This is related to good characterizations.

0. Untroduction

Most graph-theoretical notions are defined by means of the existence (or non-existence) of certain special homomorphisms. Typical examples include: chromatic number $\chi^{\prime}(G)$. existence of homomorphisms into complete graphs); independence number $\alpha(G)$ (=existence of embeddings of discrete graphs); clique number $\omega(G)$ (= existence of embeddings of complete graphs); connectivity of a graph ($=$ non-existence of a homomorphism onto ($\{1,2\},\{\{1\},\{2\}\}$); hamiltonian graphs (=existence of monomorphisms of a circuit onto a graph).

The wa;s one can describe classes of graphs by means of homomorphisms or particular type homomorphisms vary, and consequently also the properties of the classes thus obtained are in general very diverse. There are, however, some questions one can answer in a satisfactory generality.

In particular, we are interested in the questions as to whether a class can be determined (using existence of homorphisms) in substantially different ways, whether it is closed under products and whether it is generated (forming products and full subobjects) by a finite number of objects.

In the last question there is a surprising difference between the classes of graphs determined by factorobjects (i.e. homomorphisms from the graphs; a typical example is the class of all graphs with chromatic number $\leqslant n$), and classes of graphs determined by subobjects (i.e. homomorphisms into the graphs; a typical example is the class of all graphs with clique number $\leqslant n$), see Theorems 2.6 and 3.2 below. In consequence, the classes which can be determined both by factorobjects and subobjects are extremey rare. (This question is discussed in Section 3.)

There may be more in the last question than meets the eye: Th? classes \mathscr{O}_{3} which can be cefined both by existence of homomorphisms into some of B_{1}, \ldots, or B_{n} and by non-existence of homomorphisms from A_{1}, \ldots, and A_{m} are the
simplest ones having the good characterization in the sense of Edmonds ([2]; the
 disproving it, are both non-deterministic polynomial. In the more complex cases the good characterization can be often viewed, roughly speaking, as defining the class both by the existence of homomorphisms into a $B \in \mathscr{B}$, and by the nonexistence of homomorphisms from an $A \in d$-or dually non-existence in the former and existence in the latter case-where \mathcal{A}, \mathscr{B} are defined by reasonable formulas.) Thus, Theorem 4.1 may be interpreted as a list of all trivial good characterizations.

Let us remark here thet of the four possible combinations of descriptions, the two cases mentioned, namely those with the non-existence of homomorphisms on the one hand and the existerice on the other hand, are those which make sense. (If Q is determined by the existence of a homomorphism from an $A_{i}, i=1, \ldots, n$, and by the existence of one into a $B_{i}, i=1, \ldots, m$, then necessarily \mathbb{C} is the class of all graphs. Indeed, consider an arbitrary X and take $X \times A_{1}$; since $\left.A_{1} \in\right\}$ we have a homomorphism $A_{1} \rightarrow B_{i}$, hence $X \times A_{1} \rightarrow B_{i}$, hence there is a homomorphism $A_{y} \rightarrow X \times A_{1} \rightarrow X$, so that $X \in \mathscr{C}$.)

The paper is divided into five parts. Section 1 is concerned with the necessary definitions, and sumnarizes known results. In Section 2 we prove that all classes determined by the existence of factorobjects are finitely generated. In Section 3, on the other hand, we show that this is the case with only a few classes determined by forbidden subobjects. In Section 4, classes determined both by subobjects and factorobjects are discussed. While the classes determined by the existence of homomorphisms into a given object, of won-existeace of homomorphisms from given ones, or also by existence of homomorphisms from one given object, are always productive, in the case of aon-existence of homomorphisms into a given ob ect one obtains both productive and nonproductive classes. Section 5 contains some results on productivity concerning particular types of targets.

1. Preliminary results

1.1. Conventions. We will be concerned with classes 8 of digaphs (\equiv sets with binary relations; or objects which nay be viewed as such, e.g. undirected grephs). A homomorphism between two digraphs $(X, R),(Y, S)$ is a mapping $f: X \rightarrow Y$ such that $(f(x), f(y)) \in S$ whenever $(x, y) \in R$. In such a case we write $f:(X, R) \rightarrow(Y, S)$. If $f:(X, R) \rightarrow(Y, S)$ is a homomorphism with $f: X-Y$ invertible and $f^{-1}:(Y, S) \rightarrow(X, R)$ a homomorphism, we speak about an isomorphism.

Let (X, R) be a digraph, $Y \subseteq X$. The digraph $(Y, R \backslash Y)=(Y, R \cap Y \times Y)$ is called subobject of (X, R) (carried by Y).

Given a class \mathscr{C} of digraphs and a set X, denote by $\mathscr{C X}$ the set of all $(X, R) \in \mathscr{C}$ partially ordered by $(X, R)<(X, S)$ iff $R \subseteq S$. The symbols A, A for meet $(\equiv$ infimum) are used in accordance with the ordering $<$.

An equivalence relation E on X is said to se a \mathscr{C}-congruance (or, simply, congruence, if there is no danger of confusion) on $A=(X, R) \in \mathscr{C}$, if $A / E=$ $\left(X / E, R_{F}\right)$, where $(E x, E y) \in R_{E}$ iff there exist $x^{\prime} \in E x, y^{\prime} \in E y$ such that $\left(x^{\prime}, y^{\prime}\right) \in R$ is in \mathscr{C}. The trivial congruence $\{(x, x): x \in X\}$ will be denoted by Δ. A non-trivial congruence E on A is said to be critical if for every $B>_{\neq A} A$ on which E is stin a congrucnce, $B / E \neq A / E$

A product of digraphs is defined by

$$
{\underset{i=1}{n}}_{X}\left(X_{i}, R_{i}\right)=\left({\underset{X}{X}}_{n}^{n} X_{i}, R\right)
$$

where $\left(\left(x_{i}\right),\left(y_{i}\right)\right) \in R$ iff $\left(x_{i}, y_{i}\right) \in R_{i}$ for all i. For products of two objects we use the symbol $(X, R) \times(Y, S)$. The homomorphisms $X\left(X_{i}, R_{i}\right) \rightarrow\left(X_{j}, R_{j}\right)$ sending $\left(x_{i}: i=1, \ldots, n\right)$ to x_{i} are called projections. The product of n copies of the same digraph A will be denoted by A^{n}.

All the classes \mathscr{C} we will deal with will be supposed closed under isomorphisms.
1.2. Definition. A class \mathscr{C} of finite digraphs is said to be hereditary if it is closed under subobjects, productive if it is closed under products. It is said to have multiplication of points if for every onto mapping $f: X \rightarrow Y$ and every $(Y, S) \in \mathscr{C}$, $\left(X,(f \times f)^{-1}(S)\right)$ is in \mathscr{C}.
1.3. Remark. The converse property that if $\left(X,(f \times f)^{-1}(S)\right)$ is in \mathscr{C}, also (Y, S) is in \mathscr{C} is available in every hereditary \mathscr{C}. Indeed, (Y, S) is isomorphic to a subobject of $\left(X,(f \times f)^{-1}(S)\right)$.
1.4. Definition. Let A_{1}, \ldots, A_{n} be objects of \mathscr{C}. We put:
$\left(A_{1}, \ldots, A_{n}\right) \rightarrow \mathscr{C}=\left\{A \in \mathscr{C}:\right.$ for no i there is an $\left.f: A_{i} \rightarrow A\right\}$, $\mathscr{C} \rightarrow\left(A_{1}, \ldots, A_{n}\right)=\left\{A \in \mathscr{C}:\right.$ there is an i and an $\left.f: A \rightarrow A_{i}\right\}$, $\left(A_{1}, \ldots, A_{n}\right) \neg \mathscr{C}=\left\{A \in \mathscr{C}: A\right.$ has no subobject isomorphic to an $\left.A_{i}\right\}$, $\operatorname{SPC}\left(A_{1}, \ldots, A_{n}\right)=\{A \in \mathscr{C}: A$ is isomorphic to a subol iect of a nontrivial product of copies of A_{i} \}.
1.5. Conventions. (1) To avoid the trivial case, in $\mathscr{C} \rightarrow\left(A_{1}, \ldots, A_{n}\right)$ we will always assume that no A_{i} has a loop (i.e. no (x, x) is in its $\left.r \in l a t i o n\right)$.
(2) Vrite $A \sim B$ if there are homomorphisms $A \rightarrow B$ and $B \rightarrow A$. Obviously the first two classes from Definition 1.4 do not change after replacing A_{i} by B_{i} such that $A_{i} \sim B_{i}$.

1.6. We obtain easily

Proposition. Let \mathscr{C} be hereditary productive. Then every $\left(A_{1}, \ldots, A_{n}\right) \rightarrow \mathscr{C}, \mathscr{B} \rightarrow$ $\left(A_{1}, \ldots, A_{n}\right)$ and $\operatorname{SPC}^{C}\left(A_{1}, \ldots, A_{n}\right)$ is hereditary productive, and every $\left(A_{1}, \ldots, A_{n}\right)-\mathscr{C}$ is hereditary.
1.7 Reponditon, For every system A_{1}, \ldots, A_{n} in a hereditary $\mathbb{4}$ there are B_{1}, \ldots, B_{m} ssuch that

$$
\left(A_{1}, \ldots, A_{n}\right)+\mathscr{C}=\left(B_{1}, \ldots, B_{m}\right) \neg \mathscr{C}
$$

Proof. It suffees to take all the n such that there is a homomorphic image C of an A_{1} in \mathscr{C} with $C<B$.
18. Definition. An object A of a hereditary productive \mathscr{C} is said to be subdirsctiy irreducible if, whenever $f: A \rightarrow X B_{1}$ is an isomorphism outo a subobject in \mathscr{C} such that $p_{i} \circ f$ is onto for every projection p_{i}, then at least one of the $p_{i} \circ f$ is an isomorphism.
1.9. By $[6,2.6]$ we have

Proposition. For ever, A in a productive and hereditary $\mathbb{\&}$ there is an isomorphism f of A onto a subobject of $X B_{i}$ sucl. that the B_{i} are subdirectly irreducible and $p_{i} \circ f$ is onto for all the projections p.
1.10. Definition. A. hereditary productive class \mathscr{B} is said tc be finitely generated if there are A_{1}, \ldots, A_{n} such that

$$
\mathscr{C}=S P \mathscr{C}\left(\mathcal{A}_{1}, \ldots, A_{n}\right) .
$$

1.11. By 1.9 , we obtain easily

Proposition. \mathscr{E} is finitely generated iff it has only finitely many suodirectly irreducibles.
1.12. Let us reformulate here in a more handy form the main theorem of [6] applied to classes of digraphs, which we will use in the sequel. In the for nulation, the expressions "maximal" and "meet irreducible" are meant with respect to the ordering $_{<}$from 1.1. (Thus, $(X, R) \in \mathscr{C}$ is meet irreciucible iff, whenever $R=\cap R_{i}$ with ($\left.X, R_{i}\right) \leftarrow \mathscr{C}$, at least one of the R_{i} coincides with R.) We have

Theorem. In a hereditary productive \mathbb{C}, A is subdirectly irreducibie iff either A is maximal and $\bigcap_{i=1}^{n}, E_{i} \neq \Delta$ for every family of congruences E_{i} on A unless ,i. ทe E_{i} is Δ, or A is not maximal, A is meet irreducible, and there is no cititical congruc. \mathbf{c} ce on A.

2. Exisfence of factorobjects

2.1. Befinition. A digraph $A=(X, R)$ is said to be redaced if every homomorphism $A \rightarrow A: s$ an isomorphisr:.
2.2. Lemma. For every A there is (up to ison:orphism; exactly one reduced B such that $A \sim B$.

Proof. Take a homomorphism $f: A \rightarrow A$ with the least possible cardinality of the image $B=f(A)$ Now, necessarily every homomorphism $g: B \rightarrow B$ is onto and hence (since the object B is finite) an isomorphism. If also $A \sim C$ with a reduced C we obtain $B \rightarrow C, C \rightarrow B$ which compose to isomorphisms, and hence are isomorphisms themselves.
2.3. Lemma. Let $A=\left(X_{0}, R_{0}\right)$ be reduced, let \mathscr{C} have the muliplication of points. Then (X, R) is maximal is $\mathscr{C} \rightarrow A$ iff there is a mapping $f: X \rightarrow X_{0}$ such that $R=(f \times f)^{-1}\left(R_{0}\right)$.

Proof. Let (X, R) be maximal, let $f:(X, R) \rightarrow\left(X_{0}, R_{0}\right)$ be a homomorphism. By the multiplication of points, $\left(X,(f \times f)^{-1}\left(R_{0}\right)\right)$ is in \mathscr{C}. Since it follows (X, R) in $<$, we obtain $R=(f \times f)^{-1}\left(R_{0}\right)$. On the other hand, let $S \Rightarrow_{5}(f \times f)^{-1}\left(R_{0}\right),(x, y) \in$ $S \backslash(f \times f)^{-1}\left(K_{2}\right)$, and let there be a homomorphism $g:(X, S) \rightarrow\left(X_{0}, R_{0}\right)$. Put $h(f(x))=x, h(f(y))=y$ (since we assume A antireflexive-see $1.5-f(x) \neq f(y)$) and choose an arbitrary point $h(z) \in f^{-1}(z)$ otherwise. Thus a homomorphism $h:\left(X_{0}, R_{0}\right) \rightarrow(X, S)$ is obtaincd (actually, h is already a homomorphism into $\left(X,(f \times f)^{-1}\left(R_{0}\right)\right)$. We have $\varphi=g h$ an isomorphism. Consequently,

$$
(f(x), f(y))=\left(\varphi^{-1} g h f(x), \varphi^{-1} g h f(y)\right)=\left(\varphi^{-1} g(x), \varphi^{-1} g(y)\right) \in R
$$

in contradiction with the assumption.
2.4. Lemma. Let $\mathscr{C} \rightarrow\left(A_{1}, \ldots, A_{m}\right)=S P \mathscr{C}\left(B_{1}, \ldots, B_{k}\right)$ and

$$
\mathscr{C} \rightarrow\left(A_{1+m}, \ldots, A_{n}\right)=\operatorname{SPC} \mathscr{C}\left(B_{1+k}, \ldots, B_{s}\right) .
$$

Then

$$
\mathscr{C} \rightarrow\left(A_{1}, \ldots, A_{n}\right)=S P \mathscr{C}\left(B_{1}, \ldots, B_{s}\right) .
$$

Proof. The inclusion $\mathscr{C} \rightarrow\left(A_{1}, \ldots, A_{n}\right) \subset \operatorname{SPC}\left(B_{1}, \ldots, B_{s}\right)$ is obvious. On the other hand, let there be an $f: A \rightarrow X_{B} n_{i}$, which is an isomorp!ism onto a subobject of a non-trivial product. Choose an i with $n_{i} \neq 0$. We have an isomorphism $A \rightarrow B_{i}$ obtained by composing f with one of the projections onto 2 .
2.5. Notation. (1) Let M be a subset of X. We dienote by $\mathscr{C}(M)$ the equivalence on X defined by $(x, y) \in \mathscr{E}(M)$ iff $x, y \in M$ or $x-y$.
(2) The reduced B from Lenma 2.2 will be denoted by \bar{A}.
(3) For an $A=(X, \mathcal{I})$ and for an $(x, y) \in R$ define digraphs $2 x y A$ and $\overline{2 x y} A$ as follows: The set of ve cices is $X \cup\{\bar{x}, \bar{y}\}$ where $\bar{x}, \bar{y} \notin X, \bar{x} \neq \bar{y}$. If we denote by q the mapping of $X \cup\{\bar{x}, \bar{y}\}$ onto X sending z to z for $z \in X, \bar{x}$ to x and \bar{y} to y, the
relation of $2 x y A$ is $(q \times q)^{-1}(R) \backslash\{(\bar{x}, \bar{y})\}$, that of $\overline{2 x y} A$ is $(q \times q)^{-1}(R) \backslash\{(\bar{x}, \bar{j})$, $(\overline{\mathrm{y}}, \underline{x})$).
26. Theorems. Let © be herediary productive with multiplication oj points. Suppose one of the fcilowing canditions is satisfied:
(a) if (X, R) is in \mathscr{C}, then every $(X, R \backslash\{(x, y)\}$ is in \mathscr{C};
(b) all ihe (X, R) in $(\mathbb{Q}$ are symmetric, and for each of them, every $(X, R \backslash\{(x, y),(j, x)\}$ is in b .
Then $\ell_{i} \rightarrow\left(A_{1}, \ldots, A_{n}\right)$ is generated by all $2 x y A_{i}$ in case (a), by all the $\overline{2 x y} A_{i}$ in case (b).

Proof. By Lemmas 2.4 and 2.2 it suffices to prove that the $\mathscr{C} \rightarrow A$ with redired A arc generated by the $2 x y A$ (respectively $\overline{2 x y A} A$). We will do this by looking at the subdirectly irreslucibiles in $\xi_{3} \rightarrow A$ (see Proposition 1.9) by means of Theorem 1.12. By Lemma 2.3, for a maximai object (X, R) we have a mapping $f: X \rightarrow X_{0}$ such that $R=(f \times f)^{-1}\left(R_{0}\right)$. Suppose $f^{-1}\left(x_{0}\right)$ contains three distinct points x_{1}, x_{2}, x_{3}. Then (see Remark 1.3), $\mathcal{E}\left(\left\{x_{i}, x_{j}\right\}\right)$ are congruences and $\bigcap_{i F_{i}} \mathcal{E}\left(\left\{x_{i}, x_{j}\right\}\right)$ is trivial. Similarly, if $x_{0} \neq y_{0}$ and $f^{-1}\left(x_{0}\right)$ and $f^{-1}\left(y_{0}\right)$ noatain two distinct points each say x_{1}, x_{2} and y_{1}, y_{2}, we have trivial $\mathscr{E}\left(\left\{x_{1}, x_{2}\right\}\right) \cap \mathscr{S}^{\prime}\left(\left\{y_{1}, y_{3}\right\}\right)$. Thus the maximal subdirectly irsed ccibles are evidently subobjects of $2 x y, 4$ (respectively $\overline{2 x y} A$).

Let (X, R) be ton-maximal meet irreducible. By the condition (a) (respectively (b)), there is an $f:(X, R) \rightarrow\left(X_{0}, R_{0}\right)$ such that $(f \times f)^{-1}\left(R_{0}\right) \backslash R=\{(u, v)\}$ (respectively $\left.(f \times f)^{-1}\left(R_{0}\right) \backslash R=\{(u, v),(v, u)\}\right)$. If $f:$ an $x \in X_{0,} f^{-1}(x) \backslash\{u, v\}$ has two distinct elements $x_{1}, x_{2}, \%\left(\left\{x_{1}, x_{2}\right\}\right)$ is a criticai congruence. This leaves as subdirectly irreducibles only subobjects of $2 x y A$ in the former case, of $\overline{2 x y} A$ in the later one. Finally, by the multiplication of p cints and by the condition (a) (respecti ely (b)), $2 x y A$ (respectively $\overline{2 x y} A$) really is in \mathscr{E}.
2.9. Examples. (1) The class of all digraphs such that there is a mrpping into \rightarrow is generated by the digraph of Fig. 1.

Fir. 1.
(2) The class of all digraphs such that there is i mapping into the 3 -cycle is generated by the digraph of Fig. 2.

Fig 2.
(3) More generally, the class of digraphs such that there is a homomorphism into an n-cycle is generated by the digraph of Fig. 3.

Fig. 3.
(4) The class of all n-chromatic un tirected graphs is generated by $K_{-2} \oplus P_{3}$, where $X \oplus Y$ is the graph obtained from tre disjoint union of X and Y b joining all $x \in X$ with ail $y \in Y, K_{k}$ is the complete graph with k poins, $P_{n}=$ $(\{0,1, \ldots, n\},\{\{i, i+1\}: i=0, \ldots, n-1\}$).
(5) Similarly as in (3), the class of all undirected graphs such there is a homomorphism into the n-circuit, n odd, is generated by the graph of 1 ig .4.

Fig. 4.
2.10. Remark. Of course, once we know or guess the generators in a concrete instance, there is often an easy direct proof of the fact that they really generate the given class. This is the case with the examples given, in particular with that under (4).

3. Forbiduden subobjects

3.1. Notation. Denote by \mathscr{D} the class of all ciscrete graphs (i.e. those with void relation); by \mathscr{O} its subclass consisting of the one-point graphs; by \mathscr{B} the lass of disioint sums of complete bipartite graphs; by C^{D} the subclass of \mathscr{B} consisting of the disjoint sums of copies of K_{2} and K_{1}.
3. 21 sourm, Let 6 be the class of undirected graphs (without loops). Then the Onli fincly gencrated productive classes of the form $\left(A_{1}, \ldots, A_{n}\right) \rightarrow \mathscr{C}$ are $\{\emptyset\}$, 式, 0,56 and 9 . Consequently, the only finitely generated $\left(A_{1}, \ldots, A_{n}\right) \rightarrow \zeta$, are ${ }_{\text {Of }}$ and \{6\}.

Proof, Let $s A=\left(A_{1}, \ldots, A_{n}\right) \rightarrow \mathscr{C}=\operatorname{SPC}\left(A_{i}^{\prime}, \ldots, A_{m}^{\prime}\right)$. Thus, in particular, the chromatic number $\chi(A)$ of no $A \in \mathscr{A}$ exceeds $c=\max \left(\chi\left(A_{i}\right) ; i=1, \ldots, m\right)$. Suppose every A_{1} contains a non-trivial circuit, let d be the maxinum of the lengths of circuits in A_{i}. By [3] there exists ε graph C with $\chi(C)>c$ which does not contain circuits of lengths $\leqslant d$. This is a contradiction, since $C \in \mathscr{A}$ and $C \notin \operatorname{SPC}\left(A_{1}^{\prime}, \ldots, A_{m}^{\prime}\right)$. Hence, at least one A_{i} is a forest. Because of the productivity and the fact that P_{3} generates the system of all bipartite graphs icf. 2.9(4)), we have $P_{3} \notin \mathscr{A}$ and hence one of its full subgraphs has to be among the A_{i}. We: will assume that it is A_{1}. Thus, A_{1} is one of the graphs of Fig. 5

Fig. 5.
In case (a) we see that $\mathscr{A}=\{\emptyset\}$.
In case (b) we see that \mathscr{A} is a subsystem of the system of all coniplete graphs. Such an sf, however, is productive only if equal to \mathcal{C} (and this, on the other hand, is of the required form, namely $\left.\left(K_{1}+K_{1}, K_{2}\right) \neg \mathscr{Q}_{5}\right)$.

In case (c) we obtain a subsystem of \mathscr{D}. There are just two productive hereditary ones: $\mathscr{\mathscr { L }}$ and \mathbb{O}.

Case (d) do ses bring anything new: namely, the graph in question is a subobject of $K_{2} \times K_{i}$ and hence P_{2} has to be forbidden, too.

For cases (e) and (f) note first that the graphs in question are subobjects of $K_{3} \times K_{3}$. Thus, we either return to case (a) or (c), or, say, $A_{2}=K_{3}$. In case (e) this leaves only productive subclasses of \mathscr{P}, which are, as one easily sees, exactly $\{\emptyset\}$, \mathscr{O}, \mathscr{D} and \mathscr{P}. Finally in case (f), we have $\mathscr{A} \mathscr{A}^{\prime}=\left(P_{3}, K_{3}\right)-1 \mathscr{C}=\mathscr{A}$. (Indeed, let us show that a connected $(X, R) \in \mathscr{A}^{\prime}$ is complete bipartite. Suppose, by way of contradiction, that there are others and let (X, R) be a counterexample with the smallest possible cardinality. Obviously, there is an x such that, for $Y=X \backslash\{x\}$, ($Y,\left.R\right|_{Y}$) is still connected. Thus, $\left(Y,\left.R\right|_{Y}\right.$) is a complete bipartite with, say, the classes Y_{1}, Y_{2}. Now, since (X, R) is connected, x has to be joined with some y, say in Y_{1}. Then, since K_{3}.s forbidden, x is joined with no element of Y_{2}. If z is $: 1 y$ other element of Y_{1}, take a $u \in Y_{2}$ and consider the path xyuz. Since P_{3} is forbidden, we have necessarily x joined with z.) Now, obviously, the only productive subs stems of \mathscr{B} are $\{\emptyset\}, \mathscr{O}, \mathscr{B}, \mathscr{P}$ and \mathscr{B}.
3.3. Remark. If we consider the class of all undirected graphs (hons are admitted). it. list of the finitely generated A_{1}, \ldots, A_{n})-7 given in Theorem 3.2 is
not complete. We have to add, then, the yoid class, the class consisting of one-point graphs with loop, the class of all discrete graphs with all loops added, the class of all complete graphs with all lowps, the class of all disjoint sums of complete graphs with all loops, and the class of all graphs with all loops, see [6, 4.2].

4. Classes determined by hoth factorobjects and forbidden subobjects

4.1. By Theorem 3.2 we obtain immediately

Corollary. L.et \mathscr{C} be the class of ail undirected graphs or the class of all undirected graphs without loops. Except for $K_{1} \rightarrow \mathscr{C}=\mathscr{C} \rightarrow \emptyset$ and $K_{2} \rightarrow \mathscr{C}=\mathscr{C} \rightarrow K_{1}$, iere is no $\left(A_{1}, \ldots, A_{n}\right) \rightarrow \mathscr{C}$ equal to $a \mathscr{C} \rightarrow\left(A_{1}^{\prime}, \ldots, A_{m}^{\prime}\right)$.
4.2. Proposition. Put $L_{n}=(\{0,1, \ldots, n\},\{(i, i+1): i=0,1, \ldots, n-1\}), \quad \ddot{i}_{n}=$ $(\{0,1, \ldots, n\},\{(i, j): i<j\})$. Let \mathscr{C} be the class of all digraphs or of all digraphs without loops. Then $L_{n} \nmid \mathscr{C}=\mathscr{C} \rightarrow \overleftarrow{L}_{n-1}$.

Proof. Since there is no homomorphism $L_{n} \rightarrow \bar{L}_{n-1}$, we have $\mathscr{C} \rightarrow \bar{L}_{n-1} \subseteq \Sigma_{n}-\nmid \mathscr{C}$. On the other hand, suppose there is no homomorphism $\varphi: L_{n} \rightarrow(X, R)$.Put

$$
\begin{aligned}
& P(x)=\left\{i: \text { there exist } x_{0} R x_{1} R x_{2} \cdots x_{1-1} R x_{i}=x\right\}, \\
& \psi(x)=\max \mathbb{F}(x)
\end{aligned}
$$

We have $k \notin P(x)$ for all $k \geqslant n$, and $\psi(x)<\psi(y)$ whenever $x R y$. hus, ψ is a homomorphism $(X, F) \rightarrow \bar{L}_{n-1}$.
4.3. Proposition. Let \mathscr{C} be the class of all digraphs or of all digraphs, ithout loops. Assume that for some $A \in \mathscr{C}$ there is an A^{\prime} such that $A \nmid \mathscr{C}={ }_{6} \rightarrow A^{\prime}$. Then, 'or a suitably large n, there is a homomorphism $A \rightarrow L_{n}$.

Proof. The sequences x_{0}, \ldots, x_{n} of esements of digraphs (X, R) such that always $\left(x_{i}, x_{i+1}\right) \in R$ or $\left(x_{i-1}, x_{i}\right) \in R$ will be referred to as quasipaths of length n. For a quasipath q put $P(q)$ (respectively $N(q)$) the number of occurrences of the former (respectively latter) of the two cases. If $x_{0}=x_{n}$ we speak about quasic Suppose that in the symmetrization of an antisymmetric (Y, S) :here is no proper cycle of length $\leqslant d$. Then for every quasicycle q of length $\leqslant d$ in any (X, R) with a homomorphism $\varphi:(X, R) \rightarrow(Y, S)$ we have $P(q)=N(q)$. (Ind:ed, let n be the smallest natural number such thit there is a counterexample x_{0}, \ldots, x_{n}. Since there are no short cycles in $\left(Y, s\right.$, , the are $i, j, i<j=n$, such that $\varphi\left(x_{i}\right)=\oint\left(x_{i}\right)$. Thus we have homo norphisms $\alpha: P \rightarrow(Y, S), \beta: Q \rightarrow(Y, S)$ wh re P (rfspectively Q) is obtained fron the full subgranh spanned by $x_{i}, x_{i+1}, \ldots, x_{j}$ (icspectively
 chnice of n since at least in one $s f P$, O there is a quasipath q with $P(q) \neq N(q)$.

Now, consider $(X, R)=A$. To pro'e our statement, it obviously suffices to prove that $\mathrm{P}(q)=\mathrm{N}(q)$ for every quasicycle $q=\left(x_{0}, \ldots, x_{n}\right)$ in A.

Take a symuettic (Y, S) with daromatic number $\chi(Y, \bar{S})>\chi(\bar{A})$ where \bar{A}^{\prime} is the symmetrization of A, and such that eve. J proper cycle in (Y, S) is longer than n. (Such a (Y, \bar{S}) exists by [3]) Take an arbitrary orientation (Y, S) of (Y, \bar{S}). Since there is no homomorphism $(Y, S) \rightarrow A^{\prime}$, there has to be a $\varphi:(X, R) \rightarrow(Y, S)$, so inat $P(q)=N(q)$.
4.2. Remmaks. In contrast with the symmetric case (see Remark 3.3) we are so far unable to prove much more than what is stated in Section 3. One can show very easily that if $A \rightarrow \mathscr{C}=\mathscr{C} \rightarrow A^{\prime}$, there is a connected A_{1} rith $A_{1} \nrightarrow \mathscr{C}=A-\mathscr{C}$. Also among the A such that there is no homomorphism $L_{3} \rightarrow A, L_{2} \nmid \mathscr{C}$ is the only $A+\mathscr{C}$ equal to a $\mathscr{C} \rightarrow A^{\prime}$.
4.5. We suspect that Proposition 4.2 covers all the possibilities. Let us formulate this as

Probiem 1. Let $A \rightarrow \mathscr{C}=\mathscr{C} \rightarrow A^{\prime}$ for \mathscr{C} the class of all digraphs. Is then necessarily $A \sim L_{n}\left(\right.$ and hence also $A^{\prime} \sim \bar{L}_{n-1}$) for some n ?

5. Forbidden factorobjects

5.1. Hefintion. Define the classes

$$
\left(A_{1}, \ldots, A_{n}\right) \rightarrow \mathscr{C}=\left\{A \in \mathscr{C}: \text { there is an } i \text { and an } f: A_{i} \rightarrow A\right\}
$$

$\mathscr{C} \nmid\left(A_{1}, \ldots, A_{n}\right)=\left\{A \in \mathscr{C}:\right.$ for no i there is an $\left.f: A \rightarrow A_{i}\right\}$,
(compare Definition 1.4.).
5.2. Interesting problems arise here in the question of productivity. We have:

Theorem. $\left(A_{1}, \ldots, A_{n}\right) \rightarrow \mathscr{C}$ is productive iff it is equal to $A_{i} \rightarrow \mathscr{C}$ for some i.
Proof. Obviously each class $A \rightarrow \mathscr{C}$ is productive. Consider a class $\mathscr{r}=$ $\left.A_{i}, \ldots, A_{n}\right) \rightarrow \mathscr{C}, n>1$. Cleárly we mcy write $\mathscr{K}=\left(A_{1}^{\prime}, \ldots, A_{m}^{\prime}\right) \rightarrow \mathscr{C}$ such that there is no homomorphism $A_{i}^{\prime} \rightarrow A_{i}^{\prime}$ for every $i \neq j, i, j \in\{1,2, \ldots, m\}$. If $m=1$ the: $\mathscr{K}=A_{i}^{\prime} \rightarrow \mathscr{C}$ and \mathscr{K} is productive. If $m>1$ hen $A_{i} \in \mathscr{K}$ but $A_{1} \times A_{2} \in \mathscr{K}$ as $f: A_{i} \rightarrow A_{1} \times A_{2}$ inplies the existence of morphisms $A_{i}-3 A_{1}$ and $A_{i} \rightarrow A_{2}$.
9.3. The sauation with productivity of classes $\mathscr{C} \rightarrow\left(A_{1}, \ldots, A_{2}\right)$ is less twansparn: Take, $\therefore . g$. $A, B \in \mathscr{C}$ such that there is neither a homomorphisra $A \rightarrow B$ nor
$B \rightarrow A$. (This occurs very often in reasonable classes \mathscr{C}, e.g. in the class of digraphs, undirected graphs, graphs containing a given one, n-chromatic graphs with $n \geqslant 3$, digraphs withcut cycles, etc.-see $[4,5]$.) Then $A, 1$, are in $\mathscr{C}-\mid(A \times$ B) while $A \times B$ is not. T.ius, e.g. in digraphs consider A the $;$-cycle and B the 3 -cycle, $\dot{A} \times B$ being the 6 -cycle. In undirected graphs the smallest $A \times B$ thus obtained seems to be annecessarily large. There arises

Problem 2. Find the smallest \mathbb{A} in the class \mathscr{C} of all undirect d graphs (respectively digraphs) such that $\mathscr{C} \nrightarrow A$ is not productive.
5.4. Positive problems of this kind are perhaps even more interesting. A trivial example is obtained as an immediate Corollary 4.2: If \mathscr{C} is the cleass of all digraphs, every $\mathscr{C} \rightarrow \bar{L}_{n}\left(=L_{n+1} \rightarrow \mathscr{C}\right)$ is productive. The following twiv satements are less trivial:
5.5. Theorem. If \mathscr{C} is the class of all digrciphs then $\mathscr{C} \nrightarrow L_{n}$ is a productive clas; for each $n \geqslant 1$.
5.6. Theorem. If \mathscr{C} is the class of all digraphs and p is a prime number, then $\mathscr{C} \nrightarrow C_{p}$ is a productive class (C_{p} is the directed cycle of length $)$.

Remark. Thus, after proving the theorem we will see that, in contrast vith Theorem 5.2, one has productive classes $\mathscr{C} \nrightarrow\left(A_{1}, \ldots, A_{n}\right)$ with any number of A_{i} such that there are no homomorphisms $A_{i} \rightarrow A_{j}$. One can take e.g. $A_{i}=C_{p_{i}}$, where P_{i} are distinct primes, or $A_{1}=\bar{L}_{k}$ and $A_{i}=C_{p_{i}}$ for $i \geqslant 2$. (Inde ed, since $\mathscr{C} \nrightarrow\left(A_{1}, \ldots, A_{n}\right)=\bigcap\left(\mathscr{C} \rightarrow A_{i}\right)$, it is productive whenever all the $\mathscr{\circ} \rightarrow A_{i}$ are. $)$

The proofs of Theorems 5.5 and 5.6 will be given after proving first two lemmas.
5.7. Observations. By Iig. 6, the products of quasipaths (see Proposition 4.3) formed by two arrows are indicated. The paths produced are assumed to be oriented from left to right, and from below upwards. (Thus, the products of the quasipath formed by two consecutive reversed arrows are not depicted explicitly; the reader can check easily that the following observations are true for them, too.)
(1) First, we se - that in all the case:s, an even number of arrows neet in the middl $=$ point.
(2) Second, we observe that if we orient paths in the product as undicated by dotted oriented courves, the position of the arr ows in the procuct follows the rule given in Table 1 where the first two lines indicate the position of the arrows

Fig. 6.
coming into the product, the third line indicates the position of the result:
Table 1

+	+	-	-
+	-	+	\cdots
+	-	-	+

5.8. Lernma. A product of two quasipaths of length n contains a quasipath of the same lenpth n.

Proof. Let $\{0, \ldots, r\}, R),(\{0, \ldots, s\}, S)$ be the two quasipaths. Consider their product $\{(i, j): 0 \leqslant i \leqslant r, 0 \leqslant j \leqslant s\}, T)$. Put $\bar{T}=\{\{u, v\}:(u, v) \in T\}$ (the symmetrization of $T)$. By $5.7(1)$, for $0<i<r$ ard $0<j<s, T\{i, j\}$ has even cardinality.

We can assume that no proper subquasipath of $(\{0, \ldots, r\}, R)$ or ($\{0, \ldots, s\}, S$) has length n (otherwise choose, instead of the original quasipaths, a shortest subquasipath of the length n), and that $(0,1): R$ and $(0,1) \in S$. Then there is just one edge in $\bar{T}\{0,0\}$. Now conside. the longest quasipath q in T starting from $(0.0):(0,0),\left(i_{1}, j_{1}\right), \ldots,\left(i_{m}, j_{m}\right)$, such that no edge repeats. Since $\bar{T}\{i, j\}$ is even for $0<i<r, 0<j<s$, we have $\left(i_{m}, j_{m}\right) \in\{0 r\} \times\{0,1, \ldots, s\} \cup\{0,1, \ldots, r\} \times\{0, s\}$. Since $\bar{T}\{0,0\}$ is one element, $\left(i_{m}, j_{m}\right) \neq(0,0)$. Evidently, the length of q coincides with the lengths of its projections $0, i_{1}, i_{3}, \ldots, i_{m}$ and $0, j_{1}, \ldots, j_{m}$. Thus, if $i_{m}=0$, this common length is 0 and hence also the length of $0,1,2, \ldots, j_{n}-1, j_{m}$ is 0 , so that, finally, the length of $i_{m}, j_{m}+1, \ldots, s-1, s$ is n in contradiction with the assumption on quasipaths. Thus, $i_{n}=r$ and hence the len wh of q is n.
5.9. Proof of Theorem 5.5. We have $A \in\left(\mathscr{C} \rightarrow L_{n}\right)$ iff there is a quasipath q of length $n+1$ and a homomorphism $\varphi: q \rightarrow A$. (Indeed, A rontains either a quisipath of length $n+1$ or a cycle of nontrivial length; in the latter case we obtain the required homomorphism by "winding up" along the cy:le.) Now, if $A_{i} \equiv\left(\% \rightarrow L_{n}\right), i=1,2$, consider honiomorphisms $\varphi_{i}: q_{i} \rightarrow A_{i}$ with length of q_{i} equal to $n+1$. By Lemma 5.8 we have an embedding $\psi: q \rightarrow q_{1} \times q_{2}$ of an equally $\operatorname{lor} g$ quasipath. Thus, due to $\left(\varphi_{1} \times \varphi_{2}\right) \circ \psi, A_{1} \times A_{2}$ is in $\mathscr{C} \nrightarrow L$.
5.1.0. Lemma. Let q_{1}, q_{2} be quasicycles with lengths n_{1}, n_{2} respectively. Then the product $q_{1} \times q_{2}$ can be decomposed into a disjoint system of quasicycles with the sum of lengths equal to n_{1}, n_{2}.

Proof. By 5.7(1), $q_{1} \times q_{2}$ obviously decompeses into a disioin 1 system of quasicycliss. We have to prove that we can choose and orient them in :uch a way that the sum of their lengths will be as required. This follows from $5.7(2)$: If in cases (d) and (f), we observe the rule of proceeding fom each arrow to 2 neighboring one (r ther than to the opposite one), the position of the arrows is as in-licated in Tible 1. Thus, if q_{i} consists of n_{i}^{+}direct and n_{i}^{-}reversed arrows, we bove $n_{i}=\imath_{i}^{-}-n_{i}^{-}$, and the sum of the lengths of the cuasicycles in our decompositicn is $\left(n_{1}^{+} n_{2}^{+}+n_{1}^{-} n_{2}^{-}\right)-\left(n_{1}^{+} n_{2}^{-}+n_{1}^{-} n_{2}^{+}\right)=n_{1} n_{2}$.
5.11. Proof of Theorem 5.6. One sees easily that $A \in\left(\mathscr{C} \nmid C_{n}\right)$ iff there is a quasicycle in A the length of which is not divisible by n. Consider such a quasicycle q_{i} in A_{i}, with length n_{i}. Let every quasicycle in $a_{1} \times q_{2}$ hav, length divisible by n. By 5.10, $n_{1} n_{2}$ is divisible by n, in contradicticn with $n b^{\prime}$, ,ng prime and dividing neither n_{1} nor n_{2}.
5.12. Remark. On the other hand, one sees easily that no $\mathscr{C} \nrightarrow C_{n}$ with $n=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} x$ where p_{1} and p_{2} are distinct primes, is productive.
The remaining case of $n=$ power of a prime is more complicated We bave a good indication that here again a productive class is obtained, but di not see any proof as simple as thcse above. We suspect, however, there may be one.
5.13. Little is ' ${ }^{\prime}$ no vn about productive classes $\mathscr{C} \rightarrow A$, where \mathscr{C} is the class of (undirected) graphs. In [1] it was shown that productivity occurs with $A=K_{1}, K_{2}$ and K_{3}. The following problem is due to L. Lovász:

Problem 3. Is every des. $\mathscr{C} \nrightarrow K_{n}$ productive? (Equivalently, does it hoid that $\chi(G \times H)=\min \{\chi(G), \chi(\mathcal{H})\}$? $)$

So far, even the possib! lity that there are only finitely man / A with productive $\mathscr{C} \rightarrow \boldsymbol{A}$ is not excluded. Also, it would be interesting to find a produlive $\mathscr{C} \rightarrow A$ with a non-complete A.

Rwernaces

[1] S. Burr, P. Erdös and L. Lovász, On graphs of Ramsey type ARS Combinatoria 1 (1976) 167-190.
[4] J. Edmonds, Paths, trees and flowers, Can. J. Math. 17 (1965) 449-467.
[$1 \mathbf{F}$ Erdös, Graph theory and probability, Can. J. Math. 11 (19:3) 34-38.
[4] Z. Hedrhin and A. Pultr, On full embedding of categories of algebres, Illinoic J. Math. 10(3) (1966) 392-406.
[5] P. Hell and J. Nešetřil, Graphs and k-societies, Can. Math. Bull. 13(3) (1970) 375-381.
[6] A. Pultr and J. Vinarek, Productive classes and subdirent irreducibility, in particular for graphs, Discrete Math. 20 (1977) 159-176.

