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The classes of relations and graphs de:crmined by subobjects and factorobjects ate studied. 
We investigate whether such classes are closed under proAxts, whether they are finitely 
generated by products and subobjects and whether a class can be described alternatively by 
subobjects aud factorobjects. This is related to good charackrizations. 

Most graph-theoretical notions are defined by means of the existence (or 
non-existence) of certain special homomorphisms. Typical examples include: 
chromatic number x(G) , existence of homomorphisms into complete graphs); 
independence numbel t (w(G) (= existence of em b&dings of discrete graphs); 
clique nurnbels o(G) (= existence of embeddings of complete graphs); connectivity 
of a graph (= non-existence of a homomorphism onto ({ 1,2}, {{ 1}, (2)))); hamilto- 
nian graphs f = existence of monomorphisms of a circuit onto a graph). 

The wa; s one can describe classes of graphs by means of homomorp’hisms Qr 
particular type homomorphisms vary, and consequently also the properties of the 
classes thus obtained are in general very diverse. There are, however, some 
questions one can answer in a satisfactory generality. 

In particular, we are interested in the questions as to whether a class can be 
determined (using existence of homorphisms) in substantially different ways, 
whether it is closed under products and whether it is generated (forming products 
and full subobjects) by a finite number of objects. 

In the last question there is a surprising difference between the classes of graphs 
determined by factorobjects (i.e. homomorphisms from the graphs; a typical 
example is the class of all graphs with chromatic number dpe), and classes of 
graphs determined by subobjects (i.e. homomorphisms into the graphs; a typical 
exa is the class of all graphs with clique number s n), see Theorems 2.6 a 
3.2 In consequerlce, the classes which can be determined both by factor 
jects and subobjects are extremely rare. (This question is discussed in Section 3,) 

ht: iast question than meets t 
y existence of homomorphisms 
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cd ail graphs. Indeed, consider an arbigab- X and t&e-Xx A,; since AI E C” we 
have a homomorphism Al -+Bi, hence X\X AI-+, hence there is a homomorph- 
ism A+TCX+~ -9x; so t&+-t; ZQq&f 1” 

ne @bet is divided in.tcl%ve parts; Section 1 is concerned with the necessary 
definitions,- ai& sunimarizes:kn6wn &@I&. In See&-r. 2 we prove that all classes 
d&ersnined by the “&&t&e @f fq%+obj&& kre finitely. generated. In Section 3, 
on ” the other” hand; -we &;V$ that -@is -is the ~CWZ with I only $1 few classes 
determined by Sorbidden &ubobjects. -fn Section 4, classe‘s determmed butb by 
sabobjects and factorobject$ are discussed. Wile the classes dstermined by the 
existence of homomorphisms into a given obje& og MXWX%WHX of 
hamomorpf&ms from giv66 ones, or, alsb by existence of homomorphisms from 
one given object, are always 1 productive, in the case of uon-existence of 
homomorphisms into a given ob-ect one obtains both productive and non- 
productive classes. Section 5 comains some results on productivit 
particular types of targets. 

relations; or objects which may be 

a case we write 
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f?s.. equtia\!nw v?A%x&QR E on x is T&i!! a ‘.R a %-cQRpi%<%ce @t, $impAy, 

is er of confusion) on A = (X, R) E %, if Ala = 

9 EY there exist x’ E Ex, y’~ Ey such that (x’, y’) E R., L 

i3 in %. The trivial congruence {(x, x): x E X) will be denoted by A. A non-trivial 
cxxrgr~en~ E on A is said to be critical if fur way B >,rt on which E is sr2! a 

is defined by 

where ((Xii, (yi)) E R ifI (Xi, yi) E fizi for all i. For products of two objects we usz the 
spb01 (X, R) x (Y, S). The homomorphisms X(Xj, Ri)+ (Xi, R,) sending 

(4 :i=l,..., n) to xi are called projections. The product of II copies of the same 
digraph A will be denoted by A”. 

All the classes % we will deal with will be supposed closed under iso~orphisms. 

1.2. tion. A class % of finite digraphs is said to be hereditary if it is closed 
under subobjects, productive if it is closed under products. It is said to have 
multiplication qf points if for every onto mapping f: .X-, Y and every (Y, S) E %, 
(X, (fXf)-l(S)) is in %. 

ark. The converse property that if (X, (f x f)-‘(S)) is in %, also (Y, S) is 
in % is available in every hereditary %. Indeed, (Y, S) is isomorphic to a subobject 

qf c(X, (f X f)-‘(S))= 

loa8 D&niibion, Let Al,. . . : A, be objects of %. We put: 

(A,, . . .y A,)+%={AE%: for no i there is an f:Ai+A), 

%--*(Al,. . . , A,)={AE Ce: there is an i and an f IA-A,), 

(A 1, . . . , A,)1 % = {A E %7 A has no subobject isomorphic to an Ai}, 

SP% (Al,. . . , A,) = {A E %: Pi is isomorphic to a subol ;ect of a nontri- 
vial product of copies of Ai}. 

o avoid the trivial case, in %-+ (A I q . . . ? A,) we will 
that no l 4i has a loop (i.e. no (x, x) is in its relation). 

(2) Write A - B if there are homomorphisms A -+ --, A. Qbviously the 
first two classes from Definition 1.4 do not change after replacing Ai by Bi such 
that A: - Bi. 

. We obtain easily 



L&I~@BM~~‘.A~ objec$A &‘a h&edit&y productive % is said to be sub- 
di&& i&du&le. if, whenever f : A +i x 3 ‘, LA ’ l ,’ i .I& an ~somorphisn~ ol.\to a subobject in 

. . % SI@ thti &olf ikbnt‘o for e\r.&y pioj&tioh pi, then: at least one of the pi 0 f is an ..: .i;&&&bmi .,; ,. : ” * - .’ - : ” .’ 

Lb? By 16, 2.6) wi= have 
: 

D&~&BIB. AL hereditary p&duc.tive class % is said tc be finitely generated if 
aire A 1,. . . , A, such that 

% = SlW(& . . . , A,,). 

By 1.9, we obtain easily 

P~opsition. % is finitely genemted iff it kus dy finitely many suodirectly irreduci- 
bles. 

Ll2. Let us reformulate here in a more handy form the main theorem of [6] 
applied to classes of digrgph!, which we will use in ,the sequel. In the for: nulation, 
the expressions “maximal” and “meet irreducible” are meant with respect to the 
ordering +C from ‘1.1. (Thus, (x R) E V is meet irreGucibie ifIF, whenever R = n Ri 
with (x Xi)+ %, at least one of the Ri coincides with R.) We have 

In u hereditary productive WY A is subdimtly irreducible if either A is 
maximal CI.~ r) y= , -Ei # A for evev ftttttily of congruences Ei art A W&W A VT Ei 
is A, or A is not maximal, A is meet invdu~ible, md there is no c.-i’rical co1~grcwce 
on A. 
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~‘~‘h&. ‘&a .!%t et~ery A there is (up to isonxwphism) exactly one reduced B such 
<Jhar A - B. 

Prod: Take a, homomorphism f : A / ““_ ” T.,“p 
- j&$q&aj-i j(/S). 

--+A with the least possible cardinality of rbe: 
N OW, I, ._ necessarily every homomorphism g : B+ $I is onto ;lnd 

‘hhl~& (tiince tihe object B is finite) an isomorphism. If also A - C with a reduced 
t cJ+ we cibtain B-+ 6: C-B which compose to isomorphisms, and hence are 
isomorphisms themselves. 

23. DRUM. Let A = (X0, RQ) be reducttd, let ‘3 have the mulriplication of points. 
Then (X, R) is maximal 9, %+ A iff there is Q mapping f :: X-,X0 such that 
R = (f x f)--“(IQ. 

hoof. Let (X, R) be maximal, let f : (A; R)*(Xo, R,) be a homomorphism. By 
the multiplication of points, (X, (f x f)-‘( R,)) is In Ce. Since it follows (X, R) in i , 
we obtain R = (f x f)-‘(I&,). On the other hand, let S -+\f x f)-‘(RJ, (x, yj E 
S \ (fx f)-‘(IQ, and let there be a ‘nomomurphism g : @C, S)+(X,, R,). Put 
hcf(x)) = x, h(f( y)) = y (since we assume A antireflexive-see 1.5-f(x) f f( y j) 
and choose an arbitrary point h(x) E f-l(z) otherwise. Thus a homomorphism 
h : (X0, J&)+(X, S) is obtained (actually, h is already a homomorphism into 
(X9 CfxR-‘(_&)). We have p = gh an isomorphism. Consequently, 

V(x), f(y)) = (rp-‘g~fW, cp-*ghf(y)) = (cP-~&), cp-‘g(y)) E R 

in contradiction with the assumption.. 

2.4. Lemma. Let O+(AI,. . . , A,,,)= SF%(B,, . . . , B,) and 

%+(A l+m, l l l 9 A,) = Sm(Bl+k, l l * 3 B,). 

Then 

V-,(AI,. . . , A,)= 3%(B,, l . L, B,). 

Proof. The inclusion %-+(Al, . . . , A$ Sl%(B1, . . , B,) is obvious. On the 
other hand, let there be an f: A -*xai, which is an isomorp!lism onto a subobject 
of a non-trivial product:. Choose an i with nif 0. We have an isomorphism A+ Bi 
obtained by composing f with one of the projections onto 2,. 

2.5. Not&ou. (1) Let kf be a subset of X. We dwote by %(M) the equivalence 
on X defined by (x, y) 6 g(M) iff X, y E M OS x -- y. 

(2) The reduced B horn Lemma 2.2 will be denoted by A. 
(3) For an A = (S, It 

follows: The set of ve 
the mapping of X U{.Z 

I 

9 

) and for an (x, y> E R define digraphs 2xyA and 2xyA as 
:ices is U {Z, jji where X, YE! X, X’S p). If we denote by q 
ji} onto X sending z to z for z E X, X to .x and y to y, the 



Praof. By ksm~nas 2.4 and 2 :2_ it Suffices to prove that the Vg-+ A with red;.:+d A 
arc generated ky the 2xyA (respectively GA). We will do this by looking at the 
subdirqctly irrerlucibiles in %-+A (s&e Proposition 1.9) by means of Theorem 
1.12. By Lemmil 2.3,mfor a maximai object (X, R) we have a mapping .f:X+X,, 
sue@ that R = (fx f)-‘(RJ. Suppose f-l&,) contah~s three distinct points 
x1, G, x3. Then (see Remark 1.31, $({xf, 3)) are congruqncxs and nl.,%??({q, x$ is 
.trivial. Gmilnrly, iI x0 f yb ancl f’(q) and f’(yo) w:ltaiq nvo distinct poirits each. 
say xl1 x2 and y,, y2, we havle trivial 8({x,, x&n Y((y,, yJ). Thus the maximal 

R!~ be Ion-maximalmeet irreducible, By f he condition (a) [respectively 
(b)), there is an f:(X R)+ (X0, R,) such that (fxf)-‘(R,)\R =((u, u)} 
(respsctively (jx f)-‘(R,) \ R = ((as n), (u, u)}). If f :r an x E X0, f’(x) \ {u, U} 
has two distinct elements xl, .+&((x,, x,)) is a critical congruence. This leaves as 
subdirectly irreducibles only subobjects of 2xyA in thF: fcmner case, of FyA in 
the later one. Finally, by the multiplication of prbints and by the condition (rz) 
(respecti dly (b)), 2ayA (respectively %yA) really is in yf;‘. 

2.9. Exsmp~es. (1) The class of all digraphs such that there is a mfpping into + is 
generate;! by the digraph of Fig. 1. 

,-+---+-- --4 

(2) The class of all digraphs such that theic is ‘J mapping into the Scycle is 
gtllerated by the digraph of Fig. 2. 



Classes by objects 293 

(3) More generally, the class of digraphs such that there is a homomorphism 
into an n-cycle is generated by the digraph of Fig. 3. 

(4) The class of all n-chromatic 
where X@ Y is the graph obtained 
all x E X with ah y E Y, I& is 

Fig. 3. 

un lirecied graphs is generated by K ,,_2@ P3, 
from tf.e disjoint union of X and Y bll’ joining 
the complete graph with k pains, P, = 

m 1 Y-‘-9 n),&i+l}:i=O,...,n-1)j. 
(5) Similarly as in (3), The class of all undirected graphs such W:re is a 

hcmomorphism into the n-circuit, n odd, is generated by the grap.h of Fig. 4. 

2.10. Remsr)r. Of course, once we know or guess the generators in $3 croncrete 
instance, there is often an easy direct proof of the fact that they really elenerate 
the glveu class. This is the case with the examples given, iu particular u,ith that 

undei. (4) 

iscrete graphs (i.e. those wi::h voi 



the 

m)* 
the 

Fig. 5. 

In case (a) we see that ~4 = {$J}- 
In case (b) we see that J& is a subsystem of the system of all complete graphs. 

Such an &, E.lowever, is productive only if equal to f (and this, on the other hand, 
is of the required form, namely f[K, + &, K&7 %). 

In case (c) we obtain a subsystem of 5% There are just two productive 
hereditary ones: 9 and 0’. 

Case (d) dof:s net bring anything new: namely, the grilph in question is a 
subobject of .!& x X, and hence P2 has to be forbidden, too. 

For cases (e) and (f) note first that the graphs in question are subobjects of 
K3 >( K3. Thus, we either return to case (a) or (c), or, say, A2 = K3. In case (e) this 
leaves only productive subclasses of 9, *+rhich are, as one easily sees, exactly {p)), 
6’, 9 and 5 Enally in case (f), we have SlQ’ = (P3, KS)- I % = .%. (Indeed, let us 
show that a connected (X, 23) E J@ is complete bipartite. Suppose, by way of 
contradiction,, that there are others and let (X, R) be a counterexample with the 
smallest p~>sslble cardinality. Obviously, there is an x such that, for Y = X \ {x}, 

(Y, Rly) is st iPI connected. Thus, (Y, Rly) is a complete bipartite with, say, the 
das:;e,s Y1, I’,:. Now, since (X, R) is connected, x has to be joined with some y, 
say !:n Y1. Thc:n, since K3 ,s forbidden, x is joined with no element of Y2. If z is 
:*‘ly other 4~) nent of Y1, take a u E U, and consider the path xylrz. Since P3 is 
forbidden, we have necessarily x joined wit11 z.) Now, obviously, the only 
productive subs!stems of 3 are {8), OY 8, $P and 98. 



( ‘le ses i)y objerfs 295 

not complete. We have to add, then, the void class, the class consisting of 
one-point graphs with loop, the class of all discre:te graphs with all loops adclled. 
the ciass of all complete graphs v&h all loops, the class of all disjoint sumtiN of 
complete graphs with all loops, and the class of all graphs with all loops, see [6, 
4.2]. 

4. CIrrsses determined by both factorobjects and forbidden subobjects 

4.1. By Theorem 3.2 we obtain immediately 

Coroky. Let % be the class of ail wxdirecttd gra,Dhs or the class of all undirel:ted 
graphs without loops. Except for K, -j+ % = % -+p) and M2+ % = % +D IS, l lere i,r: no 

(A,,. . . , A,){*% equal to a %+A:, . . . ,143. 

_.. 
4.2. propositi0n.~ Put L, = ({i&l, . . . , n}, {(t, i t 1): i = 0, 1, . . . , n - l}), I.,, == 

(W, 1, l l l ¶ n), {(i, j): i < j}). Let % be the class of all digraphs or of alI digrlzphs 
without loops. The,? L,-j+ % = % ---) t,,+. 

Proof. Since there is no homomorphism L,-+l&l, we have %‘-+ I$,_, C L,-(9 %‘. 

On the other hand, suppose there is no homomorphism q : L, -+(X, H).Put 

P(X) = {i: there exist xoRxIRxz l l l ;C,_,lQXi = x}, 

e(x) = max P(X). 

We have k&P(x) for all k 2 n, and G(x) < $(y) whenever xl+ ‘bus, 4 is a 
homomorphism (X, &!)-+ L,+ 

4.3. Proposition. Lzr Ce be the class of all digraphs or of all digraphs b Gthsut klops. 
Assume that for some A E (8 there is an A’ such t,kat A+ % = % -+A’. Then, j’or a 
suitably large n, there is a homomorphism A+ L,. 

Proof. The sequences x0,. . . , x, of elements of fdigraphs (X, R I such that always 

(Xi, Xi+I)E R or (Xi--l, Xi) E H will be referred to as quasipaths t bf length n. FOP a 

quasipath q put P(q) (reslpectively N(q)) the number of occurrences of the former 

(respectively latter) of the two cases. If x0 = .x, we speak about qua.sic$es. 

Suppose that in the symmetrizaticn of an antisymmetric (Y, S) :here is no pr oper 

cycle of !ength s d. Then for everv quasicycle q of length s d in any (X, R) with a 

homomorphism cp : CX, R)+( Y, s> we have P(L/) = N(q). (Indl:ed, let n lx the 

smallest natural number such th,lt there is a counterzxample x0, . . _ , x,,. Since 

there are no short cycles in (Y, ;,‘;, the ::e are i, j, i <j : P, such that q ( x,) = dx, 1. 
Thus we have horn9 norphisms Q! : P --, C Y, S). /3 : Q--+ ( kl S) wh 3x2 1$ t,rc spcct ively 

Q) is dained l‘roril the full subgratlh spanned by Xi, Xi+l, . . . , X, (;CS~“UI iv~ly 



46, ‘We suspect that Propo&on 4.2 pokers all the possibi’lities. Let us ixmulate 
this as 

PP~HWB 1. Let A-at, ‘& = %-+ X for c& the class of all digraphs. Is then necessarily 
A * t, (and hence also A’- L_,) for some H? 

5. Porbfddem factambjects 

5.1. Il~itii~n. De:fme the classes 

( &q . ..,A,,)~~~(A~~:theseisaniandanf:A~-+A}, 

%+l.A3, . . . , A,)==(AE %: for no i there is an f :A-+Ai}, 

(con~pzs.re Definition 1.4.). 

5.2. Interesting problems arise here in the question of productivity. We have: 

Pw& Obviously each class A-, % is productive, Consider a class X= 
A,,J.. 7A,)+%, n >I. Cleirly we rn~y write %=(A;, . . *, A&,)-+%3 such that 

there 6 ns honumorphism AI-,/$ for every iP j, I:, Jo {1,2. . . . ) m}. (f m = 1 
the;! %“=A;--+% and X is productive. If m > 1 ;,hen Ai E X but Al x A+! X as 
.r”: A;---, Al x A2 iLq?lies the existence of morphisms Ai - 3 At and Aj + Aa. 
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B-, A. (This occurs very often i A~ reasonable classes %, e.g. in the ~1;~s o:F 
digraphs, undirected graphs, graphs containing a given one, n-chromatic I;:raphs 
with n 33, digraphs without cycles, etc.- see [4, 51.) Then A, I{ a:~ in %-!*(A x 

B) while A X B is not. ‘LNIS, e.g. in digraphs cosnsider A the 2 -cycle and R the 
hyce, A X B being the &cycle. In undirected graphs the smallest A x 8 thus 
obtained seems to be rlnnecessarily large. There arises 

Problem 2. Find the smallest 4 in the class % of all undirectc d graphs (respec- 
tively digraphs) such that %+A is not productilre. 

5.4. Positive prob!ems of this kind are perhaps even more int xesting. A trivial 
example is obtained as an immediate Corollary 4.2: If % is the class of all 
digraphs, eve?1 %+ &,( = L,+l + Ce) is productivl=. The following tv;z 31;atements 
are less trivial: 

5.5. Theorem. If % i,c the clmc~ of all digrqhs thm q-j* L,, is a poductiue clas; for 
each nN. 

5.6. The~wm. Ff % is t:le class of all digraphs and p is a prime mmber, t!ten 
%T+ q is a productbe class (C, is the directed cycle of length 3). 

Remark. ?~ILPS, after proving the theorem we will see thLL!, in col*\?rast with 
Theorem 5.2, one has productive cksses W-j+ (A,, . . . , A,) with any nu,*rrber of Ai 
such that there are no homomorphisms Ai + Aju One can take c.g. Ai = tCpi, where 
pi are distinct primes, or Al = Lk and Ai = CR for i 2 2. (In& xl, since 

+t+(A,, . . . > A,,) = n (%+ Ai), it is productive whenever all the % + P : are.) 

The proofs of Theorems 5.5 and 5.6 will be given after proving first two kmmas. 

5.7. Observations. By Vig. 6, the products of quasipaths (se,e Proposirion 4.3) 
formed by two arrows are indicated. The paths produced are assumed to bc 

oriented from left to right, and from below upwards. (Thus, the products of the 
quasipath formed by two consecutive reversed arrows are not depicted explicitly; 
the reader can check easily that the following ot bservations are true for %h~ m, too.) 

(1) First, we se - that in all the izse:,, an even number of arrows .nxt in the 

middl: point. 
(2) Second, we observe that if we orient paths in the product as Illclic:at,ed by 

dotted oslented courves, the pos;tion of the ax-r DWS in the procuct fol’!tws the rule 

given in Table 1 where the first two lines indicate the position ot t”Pe arrow< 



o~ming kite the product, the third line indicates the position of the result: 

Table Ii 

5.8. Leeamts. A product of two quasipaths of length n cont;l,rns a quasipath of the 
same leyth n. 

Pm& Let (0,. . . , r}, R), ((0,. . . , s], S’) be the two quasipaths. Consider their 
product f((& j) : 0 < i c r. 0 d j 2~ s), ‘I’). Put T = {{u, u) : (u, I)) E 7”) (the symmetriza- 
titan of T). Bv 5.7(l), lor 3 i i r’ r ar d 0 < j < s, Ij?;(S, j} has even cardinal@. 

We can assume that no proper sukluasipath of ({0, . . . , r), R) or ((0, . . . , s), S) 
has length n (otherwise choose, instsild af the original quasipsths, a shortest 
subquasipath of the length n), and that (0, 1) 2 R and (0, 1)~ S. T’len there is just 
one edge in F{O, 0). Now c;onsidei the longest quasipati\ q in T starting from 

(0.0): (0, OJY (4, ir), ’ * * , kn, id, such that no edge repeals. Since T{i, j} is even 
for O<i<‘r, O<j<s, we have (i,,,j,,)~{O $x(0, l,...,.~‘jU(0, I ,..., r)X{O,s). 
Since p{O, 0) is one element, (i,,,, im) id (0, 3). Evid~ntXy, the length of q coincides 
v&h the lengths of irs projections lji,, i,, L, . . . , i, and 0, j3, . . . , &,. Thus, if i,, = 0, 
fIris cowr~on length is 0 and hence :&so the length of &I, 2, I , j,,, - 1, jm is 0, so 
that, finaHv, the length of ;,. j,,, f 1. . , s - 1. 5 is n in ~~~~:I~~~~~~~~~~~ with the 
:~~~;~~~~$~~j~ ilr q~a~~~a~~s” T 6, P,,, =- i” aa?d hence the Icn;:th of q is n. 
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5.9, Proof ob Theorem 5.5. We have A e (%+ L,) iff there is a qcasipath 4 of 

ken 5th u + 1 and a homomorphism p : 41 +A. (Indeed, .A contains either a 

qu;sipath of length n + li or a cycle of nontrivial length; in the latter case we 

obtain the required homomorphism by “winding up” along the cy$:le.:r Now, if 

Ai z(u+&,), i = 1,2, consider honrtimcrphisms lip, : qi --) A4i with Ien@h of Q 

equal to n + 1. By Lemma 5.8 we have an embedding $ : q-3 q1 x: q2 of an equally 

lor g quasipath. Thus, due to (cpI x cp&& Al x A2 is in %‘-(, E, . 

5.1.0. Lemma. Let ql, q2 be qwasicycles with lengths n,, n2 respectively, Then the 
prildwct q1 x q2 can be decomposed into a disjoint system of quasicycles w UI the sum 
o,f lengths equal to n,, n2. 

boof. By S.7( I), 4, x q2 obviously decompclses into a disiokt system 01: quasicy- 

~11:s. We have to prove that we can choose alld orient them in uch a way that the 

sum of their lengths will be as required. This follows from 5.7(Z): If in cases (dj 

arid (f), we observe the rule of proceeding fi*om each arrow’ to 2 nei,shb:xing one 

(r ither than to the opposite one), the position of the arrows is as irl cticated in 

T ible 1. Thus, if qi consists of n’ direct and ni reversed arrows, we hqve 
ni =: ,qc - n,, and the sum of the lengths of the cuasicycles in our decorlpositicn is 

(jr; nl+n,n,)-(ntn,+n;nf)= n,n,. 

511. Proof of Theorem 5.6. One sees easily that A E (%+ C,,) iff there i: a 

quasicycle in A the length of which is not divisible by n. Consider such a 

quasicycle qk in Ai, with length ni. Let every quasicycle in, n! X q2 hav, length 
divisible by n. By 5.10, t11n2 is divisible by n, in contradict& wrth n hnng prime 

2nd dividing neither n, 3or n,. 

5.12. Remark. On the other hand, one sees easily that no %+ <Z,, with n = 

pylpz2x where p, and p2 are distinct primes, is productive. 
The remaining case of n = pwer of a prim e is, more com.?licated WC fuvc a 

good indication that here again a productive class is obtairled, but d(. nc)t see any 

proof as simple as those above. We suspect, however, there may be one. 

5.13. Little is knot dn about productive class:s %+ A, where % is the class of 

(undirected) graphs. In [l] it was shown that prolductivity occurs with A = K , , K, ._ 

and K3. The follnv,ine problem is due to L. ~M&SZ: 

3. Is every cl25 %+ I(,, productiw . ‘) (Equivalently, does it hold that 

x(G x H) = min {x(G), a(X))?) 

So far, even the possib’!ity that there are only finitely man ! A with productive 

%$, A is not exc!uded. Also, it would be interesting to find a prockiiw %{+ A 
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