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The classes of relations and graphs deiermined by subobjects and factorobjects are studied.
We investigate whether such classes are closed under products, whether they are finitely
generated by products and subobjects and whether a class can be described alternatively by
subobjects and factorobjects. This is related to good characterizations.

0. Introduction

Most graph-theoretical notions are defined by means of the existence (or
non-existence) of certain special homomorphisms. Typical examples include:
chromatic number x{G) . existence of homomorphisms into complete graphs);
independence number a(G) (=existence of embeddings of discrete graphs);
clique number w(G) (= existence of embeddings of complete graphs); connectivity
of a graph (== non-existence of a homomoiphism onto ({1, 2}, {1}, {2}})); hamilto-
nian graphs (= existence of monomorphisms of a circuit onto a graph).

The ways one can describe classes of graphs by mears of homomorphisms or
particular type homomorphisms vary, and consequently also the propertics of the
classes thus obtained are in general very diverse. There are, however, some
questions one can answer in a satisfactory generality.

In particular, we are interested in the questions as to whether a class can be
determined (using existence of homorphisms) in substantially different ways,
whether it is closed under products and whether it is generated (forming products
and full subobjects) by a finite number of objects.

In the last question there is a surprising difference between the classes of graphs
determined by factorobjects (i.e. homomorphisms from the graphs; a typical
example is the class of all graphs with chromatic number <n), and classes of
graphs determined by subobjects (i.e. homomorphisms into the graphs; a typical
example is the class of all graphs with clique number < n), see Theorems 2.6 and
3.2 below. In consequeiice, the classes which can be determined both by factorob-
jects and subobjects are extreme/y rare. (This question is discussed in Section 3.)

There may be more in the last question than meets the eye: Th~ classes 4
which can be cefined both by existence of Lomomorphisms into some of B, .. .,
or B, and by non-existence of homomorphisms from A, ..., and A, are the
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homomorpfusms from gwen ones, or alsoby\exxstence of homcvmorphlsms from
one given object, are always pnoductxve, ‘in' the case of aon-existence of
homomorphxsms into a‘given obect one obtains both productive and non-
productive classes. Sectlon 5 comams somt* results on productivity concerning
Pamcuiar tvpes of targets. ‘ TG '

1. Ptehminary results

1.1, Conventmns. We will be concerned thh clasaes ‘(’ of dig aphs (asets wnth
binary relatlons or ob]ects whlch may be viewed as such, e.g. undirected graphs).
A homomorphzsm between two digraphs (X, R), (Y, §) is a mapping [: X—Y
such that (f(x), f(y))e S whenever (x,y)eR. In such a case we write
fi(X, R)—->(Y S). If f:(X, R}—(Y, S)is a homomorph:sm w:thf X~» Y inverti-
ble and f7':(Y, $)—>{X. R) a homomorphism, we speak about an isororphism.

Let (X, R) be a).zdlgraph Ye X The dxaraph (Y R\Y) (Y RNYXY) is
subobject of rried by 5 7

Given a class % of digraphs and a set X, denote by @x ‘the set of ali (X R)e %
paftmﬁy ordered by (X, R)<(X, 5) if RcS. The symbols A, A for meet (=
ifimum) are used in accordance with the ordering <.
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A e.q,u.w&e(\cs relation E an X & wid @ e 2 €-congiwanee (oK, saply,
congruence, if there is no danger of confusion) on A=(X,R)e %, if A/fp=
{X/E, Rg), where (Ex, Ey) € R iff there exist x"€ Ex, y'€ Ey such that (x', y)e R, -
i3 in 4. The trivial congruence {(x, x): x € X} will be denoted by A. A non-trivial
“"congmcmc E on A is seid to be critical if for every B> A on which E is sl a
congruence, B/ > Al

A product of digraphs is defined by

X (X, R)=(X X, R),
i= i=
where ((x;), (y:)) € R iff (x;, y;) € R; for all i. For products of two objects we use the
symbol (X, R)xX(Y,S). The homomorphisms X(X;, R)—(X;, R) sending
(x;:i=1,...,n) to x; are cailed projections. The product of n copies of the same
digraph A will be denoted by A".
All the classes € we will deal with will be supposed closed under isormorphisms.

1.2. Definition. A class € of finite digraphs is said to be hereditary if it is closed
under subobjects, productive if it is closed under products. It is said to have
multiplication of points if for every onto mapping f: X— Y and every (Y, S)€ €,
(X, (fx)7(S)) is in €.

1.3. Remark. The converse property that if (X, (fx f)~(S)) is in 4, also (Y, S) is
in € is available in every hereditary 4. Indeed, (Y, S) is isomorphic to a subobject

of (X, (fx f)"H(S).

1.4. Definition. Let A;,.... A, be objects of €. We put:
(Ay,...,A)P€={Ae%b: for no i there is an f: A;,—> A},
€->(A,,...,A,)={A€%: thereisan i and an f: A—> A},

(A, ..., Ay)16={A e €: A has no subobject isomorphic to an A;},

SPE (A, ..., A,)={Ae%: A is isomorphic to a suboi ‘ect of a nontri-
vial product of copies of A;}.

1.5. Conventions. (1) To avoid the trivial case, in €—(A., ..., A,) we will
always assume that no .A; has a loop (i.e. no (x, x) is in its rejation).

(2) Write A ~ B if there are homomorphisms A— B and B—> A. Obviously the
first two classes from Definition 1.4 do not change after replacing A; by B; such
that A. ~ B,.

1.6. We obtain easily
Proposition. Let € be hereditary productive. Then every (A, LA PE €~

(Ay,...,A,) and SP€(A,,...,A,) is hereditarv productive, and every
(A, ..., A,)~ € is hereditary.
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' _,Farﬁ:'cvm symm Al, ,'A.,. m' a hereditary € there are
S (A— , _A_Mt‘ﬁ (B..,, ,B. )%

 Proot. Tt suffises to thke il the 1 such that there is & homomorphic image C of
an. A§ m ‘€ mth C<B :

- L8 Deﬂniuon. An ob;ect A of a hered:tary productive € is said to be sub-
' dtr*cuy lrreducxble if, whenever f: u—-r)(B, it an isomorphism ou1to a subobject in

- % such that P;° f is. onto for eve*y pro;ectlon p,, then at least one of the p,°f is an
dsomorphlsm -

19. By [6, 26]wchavc S

Proﬁﬁs’iﬁon. Forevery Aina ér‘oducubé and hereditary 6 there is an isomorphism f
of A onito a subobject of XB, sucl that the B, are subdlrectly irreducible and p;°f is
_ ﬁﬁi('i for a:l the pro;ectiou, e

L__l,l).‘ Definition. A here'ditary pi'(_iductive class € is said tc be finitely generated if
there are A,,..., A, such that

€=SP€(A,,...,A,).
1.11. By 1.9, we obtain easily

Proposition. € is finitely generated iff it has only finitely many suodirectly irreduci-
bles.

1.12. Let us reformulate here in a more handy form the main theorem of [6]
applied to classes of digraphs, which we will use in the sequel. In the for:nulation,
the expressions “maximal” and “meet irreducible” are meant with respect to the
ordering < from 1.1. {Thus, (X, R)€ 4 is meet irrecucible iff, whenever R = R,
with (X, R;)« %, at least one of the R; coincides with R.) We have

Theorem. In u hereditary productive 6, A is subdirectly irreducibie iff either A is
maximal and [}i=, E;# A for every family of congruences E; on A unless ..me E,

is 4, or A is not maximal, A is meet irreducible, and there is no c-itical congruc.ce
on A.

2. Existence of factorobjects

Z.1. Definition. A digraph A =(X, R) is said to be red.iced if every homomorph-
ism A—>A 5 an isomorphisr:.
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mma. For every A there is (up to ison:orphism) exactly one reducec B such

‘ake a homomorphism f: A-> A with the least possible cardinality of the
= f(A). Now, necessarily every homomorphism g:B—>B is onto and
(s:nce the object B is finite) an isomorphism. If also A ~ C with a reduced
.C, we obtain B—C, C—B which compose to isomorphisms, and hence are
1somorphlsms themselves.

2w wem

Mool T oo Y D) b e lnan] 1.4 £./% D) A % D \ Lin o Lomn m LS n_.
Kool L€t (A, R) b€ maximai, let f:(X, X)~>{Aq, Ko} be a homomorphism. By
tha munltiablantinm Af mninte (V 76y A1 D W\ ic tia @ Qimnn i £Aallawie (VY D) in -~
LIIG 11} lupu\.auuu Ui lJUllllb, Ny \] "\]} \‘\0[} S il V. IV 1L LUIMUWD \I\, l\} J 59 N »
wa nhtain R=(f¥Y A" YD\ On tha athor hand lat €2 i fY A YR (v vie
L NIULGAALR F 3N \J N\ J ’ \‘\o’ A St Silv WViilwi llallu, AW 7 ;/\’ L I } \L\O}, \A, l ~
SN AFfX A~YUEK ). and let there be a homomornhism o:(; V(X R\Y Put
v ON\Y J7 ANAR Jy SRii aVe wilwaiw Ve & avasaUs RIVE QFARIGRIL  § e \damy w7 \<320y A%/ 1 e
h(f(x))=x, h(f(y))=y (since we assume A antireflexive—see 1.5—f(x)# f(y))
\l'\ ll’ et 4 I \J 7’/ 7 \ hnd J N 7 JNT 7
and choose an arb trary pomt h(z)ef(z) otherwme Thus a homomomhlsm

in contradiction with the assumption.

€—(A,,...,A,)=5P6(B,,...,B,)).

Proof. The inclusion €-»(A,,..., A,)<SP¥4(B,,...,B,) is obvious. On the
other hand, let there be an f: A— X§, which is an isomorphism onto a subobject
of a non-trivial product. Choose an i with n;# 0. We have an isomorphism A— B,
obtained by composing f with one of the projections onto .

2.5. Notation. (1) Let M be a subset of X. We denote by (M) the equivalence
on X defined by (x,y)c (M) iff x,ye M or x—-y. )
~ (2) The reduced B from Lemma 2.2 will be denoted by A.

(3) For an A =(X, I ) and for an (x, y)€ R define digraphs 2xyA and 2xyA as
follows: The set of ve :ices is X U{%, y} where %, &€ X, X# j. If we denote by g
the mapping of X U{%, y} onto X sending z to z for ze X, x to x and y to y, the
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ﬁlatmn ﬂt nyA is (q Xq)"‘(R) \ {(f, )}, that of 2xyA is (g% ¢ ~(R) \ {(%, ),
102918

2.6 ‘Thevrem. Let € be herediiary productive with multiplication of points. Suppose
~one of the }miowmg conditions is satisfied:

(@).if (X, R) is in %, then every (3, R\ {{x, y)}) is in'%;

(b) all ihe tX R) in ‘€ are symmetricc and for each oy them, evey
(X, R\{(x, y). (» x)} isin €. _
Then €—(A,, ..., A,) is generated by all 2xyA, ir case (a), by all the 2xyA, in
case (b).

Proof. By Lemimas 2.4 and 22 it suffices to prove that the €— A with redued A
arc generated by the 2xyA (respectively 2xyA). We will do this by looking at the
subdirectly irreducibiles in ¥—.A (see Proposition 1.9) by means of Theorem
1.12. By Lemma 2.3, for a maximai object (X, R) we have a mapping f: X— X,
such that R=(fxf)""(R,). Suppose f '(xo) contains three distinct points
X1, X2, X3. Then (see Remark 1.3), 8({x, x;}) are congruences and (), &({x, x,}) is
trivial. Similarly, if x, # y, ancl f~*(x,) and f~'{y,) ~ontain wo distinct points each.
say X;,x, and y,, y,, we have trivial E({x,, x,) N ¥{y,, y.}). Thus the maximal
subdirectly irredcibles are evidently subobjects of 2xyA (respectively 2xyA).

Let (X, R) be 10n-maximal meet irreducible. By the condition (a) {respectively
(b)), there is an f:(X, R)— (X, Ro) such that (fxH{RINR ={(u, v)}
(respectively (fX)7'(Ro) \ R={(s, n), (v, w)}). If f2r an xe X,, f7(x) \ {u, v}
has two distinct elements x;,, x,, &({x,, x,}) is a criticai congruence. This leaves as
subdirectly irreducibles only subobjects of 2xyA in the former case, of 2xyA in
the later one. Finally, by the multiplication of pcints and by the condition (2)
(respecti ely (b)), 2xyA (respectively 2xyA) really is in 6.

2.9. Exsmples. (1} The class of all digraphs suck that there is a m-pping into — is
generated by the digraph of Fig. 1.

Fir, 1.

(2) The class of all digraphs such that theis is 4 mapping into the 3-cycle is
generated by the digraph of Fig. 2.

AV



(3) More ggnerally, the class of digraphs such that there is a homomorphism
into an n-cycle is generated by the digraph of Fig. 3.

p)

Fig. 3
(4) The class of all n-chromatic un ¥recied graphs is generated by K. D P;,
where X@® Y is the graph obtained from tte disjoint union of X and Y by joining
all xeX with z2li yeY, K, is the complete graph with k poins, P,=
do,1,...,n},{{i,i+1}:i=0,...,n—1}).
(5) Similarly as in (3), the class of all undirected graphs such thire is a
hcmomorphism into the n-circuit, n odd, is generated by the graph of I7ig. 4.
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2.10. Remark. Of course, once we know or guess the generators in 2 concrete
instance, there is often an easy direct proof of the fact that they realily generdlc

the g'ven class. This is the case with the exampies given, iu particular with thart
(R PR ¥ A
aacr (&)

3.1. Notation. Denote by @ the class of all discrete graphs (i.e. those with void
relation); by O its subclass consisting of the one-point graphs; by R the :lass of

disioint sums of complete bipartite graphs; by ¢? the subclass of B consisting of
tne disjoint sums of copies of K, and K.



irected- graphs (wrthmctloops) Then the
i __\Aof ‘the form (A,,..., A,)% are {#}, 3,
‘the only finitely generated (A,, ..., A,‘)-—>‘1,’ are @ and

oof, Let si= (A,,... A )*1‘6 SP‘%(A,, Am) Thus, in parflcular the
chmmatlc number x(A) of no Aesd exceeds c=max(x(A); i=1,..., m).
Suppeﬁe every A, contains a non-trivial circuit, let d be the maximum of the
len , ’Ai. By [3] there exists ¢ graph C with x(C):>¢ which does
not coniain 'cxrcutte of lungthq <d Thxs is a contradiction, since Ce s and
C¥£ SP’&(A oy Ap Hence, at least one A; is a forest. Because of the produc-
tivity «nd the fact that P, generates the system’ of all bipartite graphs (cf. 2.9(4)),
we have P, £ & and hence one of its full subgraphs has to be amoag the A, We
will assume that it is A,. Thus, A, is one of the graphs of Fig. 5

’ . * L e L o ° [ S - —
Ky Kek, K, Kt K, ? ?
') (b) (&) () @) (73]

Fig. 5.

In case (a) we see that of ={f}}.

In case (b) we see that & is a subsystem of the system of all completc graphs.
Such an &, however, is productive only if equal to € (and this, on the other hand,
is of the required form, namely {K;+K,, K;)1%).

In case (c) we obtain a subsystem of P. There are just two produnctive
hereditary ones: & and O.

Case (d) dozs nct bring anything new: namely, the graph in question is a
subobject of K,X X . and hence P, has to be forbidden, too.

For cases (e) and (f) note first that the graphs in question are subobjects of
K; X Kj3. Thus, we either return to case (a) or (c), or, say, A, =K,. In case (e) this
leaves only productive subclasses of @, which are, as one easily sees, exactly {@},
0, & and P. Finally in case (f), we have o' =(P;, K;)-1€ = B. (Indeed, let us
show that 2 connected (X, R)e &' is complete bipartite. Suppose, by way of
contradiction, that there are others and let (X, R) be a counterexample with the
smallest possible cardinality. Obviously, there is an x such that, for Y= X \ {x},
(Y, R|y) is still connected. Thus, (Y, R|y) is a complete bipartite with, say, the
classes Yy, Y.. Now, since (X, R) is connected, x has to be joined with some y,
say :n Y;. Then, since Kj .s forbidden, x is joined with no element of Y,. If z is
-1y other elcinent of Y, take a ue Y, and consider the path xyuz. Since P; is
fuorbidden, we have necessarily x joined with z.) Now, obviously, the only
productive subssters of & are {#}, 0, B, P and B.

3.3. Remark. If we consider the class of all undirected graphs {loops are admit-
tedi. ik~ st of the finitely gererated A, . ... A,) "% given in Thzorem 3.2 is



not complete. We have to add, then, the void class, the class consisting of
one-point graphs with loop, the class of all discrete graphs with all loops added,

the class of all complete graphs with all lcops, the class of all disjoin
complete graphs with all loops, and the class f all graphs with all
4.2].

4. Classes determined by both factorebjects and forbidden subobjects
4.1. By Theorem 3.2 we obtain immediately
Corollary. i.et € be the class of ail undirected graphs or the class of all undirected

graphs without ioops. Except for K,~p € =% >0 and K, € =%—K, . iere is no
(A,...,A) € equal to a €—(A],..., AL).

1
.

4 A _ PUPREEE ", WA ¥y _ifn 4 ' 74 4N, s 1 PREY =

4.2. Propesition. Put L,=({0,1,...,n},{(4i+1):i=0,1,...,n-1}), I,=

ffn 1 Y f82 N. 2l W\ T s (O L. alin AV L 11 X2 L _ . _L 1 1:. 1

Wh L, ..., 08, \,L ) i<jg). Lél © D€ in¢ Ciass 0] au aigrapns or o] du aigrapns
..

withhnnt Inane Thow T L@ _@_ 1

HIvWKE 3. X FICY L"T v W'—’Ln_l
Proof. Since there is no homomorphism L,—L,_,, we have €—>L,_ S -b€
On the other hand, suppose there is no homomorphism ¢:L, —(X, R).Put

P(x) ={i: there exist xo,Rx,Rx; - -+ x,_1Rx; = x},

%A

P(x) = max F(x).

We have k& P(x) for all k=n, and ¥(x)<y(y) whenever xRy. .hus, ¢ is a
homomorphism (X, K)—L,_;.

A2 W o n2d e Y 04 @ Lo alan alace ~f 1] Jicenela ~se ~f ~11 dige~rnlo s¢lamssit Louneme
Bede X PWIIW o L.€I © UC INE LI 'y L aigrapny ur Uj il atgraprns ° /einvut wwops.
A ccrssvman that fars QNnva.n Ar @ thovo 6 nsn A! c1inh ff!nnt A_,L,(é’ el O s A" Thon Frr A
ASSUIME INGs Jor SoMc Ac v inefe is an A Siln iiar A—p o v CA . anén, 'ora
cuitnhly laras w thoro ic 1 hamamarnhiom —T
I’“..“u'! lulsﬁ 'U, NI D W "V"Iv".vlyl’.hd'll A A ‘_4"-
- ~ r'n r h | b} e v4 ™ 1 1 . 1. —
Fro0o1. 1he Sequen S Xo, y Xp ¢ ciements of aigraphns (A, i) such tnat aiways
4 N - Y rd A Y " o1 P\ S P L ey SR o N T
X, X;+1) € KK OF (X;_.4, X;) € KX Wl D€ TE€ICITEA 10 as quasipains or €ngwn n. ror a
ccmntmndl. o et I\ fonnemnaioales AT S\ Ll aiicnbine A Annrireaans ~Af tha fArmar
quasipaiu g put rig) \IcspeCuveiy 1vig)j ud numoct 01 OCLUITeites Ut ik 1ot
fonseanntiale:, lattsel Af tha ¢t~ nacne T v — o wa cenaalk ahnant aguacirueloc
\! BPC&UVCly Iattvi) UL v twu  Ladsiy. 11l A Ap WO SPUAR aiiulkl  yuwoit rtito.
Cunnnca that in tha cummatrizaticrn nf Fo% 2 anticurmmetric { Y Q) ‘here 1c nny nroner
U\-IPIJUBV LAl B LG SYREIIGUIZAUL T UL G QIO Yy LIV IV | L4 L7 ) CRIWIL 00 IV PR Upivs
cycle of lenegth =< d. Then for everv guasicycle g of length < dinanv (X R)witha
Julv N/l Avllé\ll = % A LW AR EUSa v'vx'v ‘-’\Ohnll\-) - EW ‘1 llllll Dlll L ) 43 J A 5 7
homomorchism o (] Y—(Y. S) we have P(g)= N(3). (Ind:ed, let n be the
A EREVREL [ eesoRss b AR B A=y 1/ 1% PANEAN 5
smallest natural number such t_h.i, there is a countercxamole Xg, o o -y X, INCE

Thus we have hom»o norphlsms o P—-\( Y. S). B : Q—-\(Y. S) wh:re P (rf. spcct.ively
Q) is obtained iror1 the full subgranh spanned by x, x;,q,..., X (cespectively



i 78 ;thh X Thls contradacts the
P, O there is a quasipath g with P(q) # N(q).
pro'e our statement, it obviously suffices to
asicycle g=(Xo, ..., %) in A, |
; _chiromatic number x( Y S)“‘x(A’) where A' i

ity symmet atmn of A, an«d such that eve. J proper cycle in (Y, S) is longer than
n. (Such a (Y, S) exists by [3]) Take an arbitrary orientation (Y, S) of (Y, S).
Since theve is no: homommphasm (Y S) - A’, there has to be a ¢ : (X, R)—(Y, ),
SO mat (g)= N{q)

4.4, Rpmks_ In contrast with the symmetric case (see Remark 3.3) we are so
far unable to prove much more than what is stated in Section 3. One can show
very easily that if A-p €=~ A’, there is a connected A, vith A, €= A-p <.
Also among the A such that there is no homomorphism Ly— A, L4 € is the
only A-b% equal to a €—>A'.

4.5, We suﬁpec!{ that Proposition 4.2 covers all the possibilitics. Let us formulate
this as

Problem 1. Let A-p € = €— A'for € the class of all digraphs. Is then necessarily
A~L, (and hence also A"~ L,_,) for some n?

5. Forbidden factorobjects

5.1. Y:efinition. Define the classes

(A, .. .,A)>€={Aec ¥ thereisaniand an f: A,—~ A},
é$.A,,...,A)={Ac€: fornoithereisan f:A— A},
{compare Definition 1.4.).

5.2. Interssting problems arise here in the question of productivity. ‘We have:
Theorem. (A, ..., A,)— € is productive iff it is equal to A,— € for some i.

Proof. Obviously cach class A—¥ is productive. Consider a class X' =
A, A,)—>%, n>1. Clearly we mzy write ¥ =(A},..., AL)— € such that
thete ‘s no homomorphism A[— A] for every i#j, i, je{l1,2,...,m}. f m=1
the:t X = Aj—% and X is productive. If m>1 hen A, e ¥ but A, X A,&€¥ as

»
£

fiA;— A, XA, inplies the existence of morphisras A;-3 A, and A,— A,.

3.3. The sivuation with productivity of classes €-p(A,. ..., A,} is less transpar-
‘nt. Take, c.g. A. B < € such that there is neither a homomorphista A— B nor
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B— A. (This occurs very often ia reasonable classes 6, e.g. in the cliss of
digraphs, undirected graphs, graphs con.aining a given one, n-chromatic graphs
with n =3, digraphs withcut cycles, etc.—see [4, 5].) Then A, B} ar= in €-»(A X
B) while AXB is not. T.us, e.g. in digraphs coasider A the -cvcle and B the
3-cycle, A X B being the 6-cycle. In undirected graphs the smallest A X B thus
obtained seems to be annecessarily large. There arises

Problem 2. Find the smallest A in the class € of all undirected graphs (respec-
tively digraphs) such that - A is not productive.

5.4. Positive problems of this kind are perhaps even more intzresting. A trivial
example is obtained as an immediate Corollary 4.2: If € is the class of all
digraphs, everv - L,(= L,.,— €) is productivz. The following tw> statements
are less trivial:

5.5. Theorem. If € is the class of all digrcphs then €-» L,, is a productive class for
each n=1,

5.6. Theorem. ’f € is the class of all digraphs and p is a prime number, then
% C, is a productive class (C, is the directed cycle of length »).

Remark. Thus, after proving the theorem we will see tha:., in contrast with
Theorem 5.2, one has productive classes €-»(A;, ..., A,) with any number of A,
such that there are no homomorphisms A;— A;. One can take ¢.g. A; = C,, where
p: are distinct primes, or A, =L, and A =C, for i=2. (Inde=d, since
€P(Ay, ..., A)= (64 A), it is productive whenever all the € A. are.)

The proofs of Theorems 5.5 and 5.6 will be given after proving first two lemmas.

5.7. Observations. By l'ig. 6, the products of quasipaths (see Propcsition 4.3)
formed by two arrows are indicated. The paths produced are assumed to be
oriented from left to right, and from below upwards. (Thus, the products of the
quasipath formed by two consecutive reversed arrows are not depicted explicitly;
the reader can check easily that the following obiservations are true for them, too.)

(1) First, we se* that in all the cases, an even number of arrows mz2et in the
middl: point.

(2) Second, we observe that if we orient paths in the product as indicated by
dotted oviented courves, the nos:tion of the arraws in the procuct fol uws the rule
given in Table 1 where the first two lines indicate the position of the arrows
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coming iito the product, the third line indicates the position of the result:

Table 1

5.8. Lemama. A product of two quasipaths of length n contains a quasipath of the
same length n.

Proof. Let {0,...,r}, R),({C,...,s}. §) be the two quasipaths. Corsider their
product {(i,/):0<i<r 0<j=<s}, T). Put T={{u, v}:(u, v)e T} (the symmetriza-
tion of T). By 5.7(1), for 8<i<<r ard 0<j<s, T{i, j} has even cardinality.

We can assume that no proper subguasipath of ({0,...,r}, R)or ({0....,s}, S)

has length n (otherwise choose, instead of the ongmal quasipaths, a shortest
quhnu_asma_th of the lenafh n), and that (0, 1) = R and {0, 1)& §. Then there is mct

ore edge in T{0, 0}. Now conside: the longest quasipath q in T starting from

0.03: (0,0), (i1, j1), ..., (i Jm), such that no edge repea's. Since ‘{a j} is even
for 0<i<r, O<j<s, we have (i, j,)€{0 r}x{0,1,...,5;U{0, 1,..., r}x{0, s}
Since 110, U} is one element, (i, j.) # (0, J). Ew(ﬁ;ﬁ ly, the length of g coincides
with the lengths of its projections 0, iy, iy, ..., i, and 0, jy, ..., j,.. Thus, if i, =0,
this common length is 0 and hence also the lengtn af 0,1, 3 e L jm 18 0, 50
that, finally, the length of i, j,+1... . ,s=1.5 &5 a in contradiction with the

assumption o quasipaths. Thus, 4, = ¢ and hence the lennih of g 18 i
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5.9. Proof of Theorem 5.5. We have A« (€+>L,) iff there is a quasipath g of
lenith n+1 and a homomorphism ¢:g— A. (Indeed, A rontains either a
quesipath of length n+1 or a cycle of nontrivial length; in the latter case we
obtain the required homomorphism by “winding up” along the cy:le.) Now, if
A z(¢$L)), i=1,2, consider homomoerphisms ¢,:q,— A; with length of g;
equal to n+1. By Lemma 5.8 we have an embedding ¢: g—> q, X g, of an equally
lor g quasipath. Thus, due to (¢, X @,)ot, A; X A, is in 6L .

5.10. Lemma. Let q,. g, be quasicycles with lengths n,, n, respectively. Then the
product q, X q; can be decomposed into a disjoint system of quasicycles witn the sum
of lengths equai to ny, n,.

w» e M L TE RS N P R S W U | vt s o .

roof. By 5.7(1), q, X g, obviously decompcses into a disjoir'i systemn of quasicy-
wl o YXF L b mmenio alond cavm mmen b e A ciiianes Sl cime e o ab o ol sl na oL o
CLd, VW 114Vl W plUVC Lildl WE Call CHIOOUXC a'ld OLICHT LICIEL 1 JUCH 4 Way Ulat Ul
i nf thaie lanaths wnll ha ag ranrirad Tlao fiallawgie fram & 7/ N I i ~Aagag {A)
SUil ULl UiICit v lslll; Wikl VUC ad 1 quu(:u. LD IUNBUWD [11UUL J. /Mt AL 111 Ladld Uy
l)r\."‘ IS\ AV ¢7-1 n'\cnn)n "‘\ﬂ I‘IIID f\f “fl\f‘ﬁﬁd;“ﬂ fvnm oo arrnwu to o I'\[):r‘!‘ l\ iy ANe
QL \l!, Wiw ULV Viw Lilw 1 uilw Ul PIUUUUUIIIE A UL WOANAL 1AV VY WL O IAUIL‘IIII Jh 511 y A\ )y L
(rather than to the opposite one), the position of the arrows is as in-licated in
Taible 1. Thus, if g¢; consists of n] direct and n; reversed arrows, we have
n; = a{-— n;, and the sum of the lengths of the cuasicycles in our decoripositic

5.11. Proof of Theorem 5.6. One sees easily that Ae(6-pC,) iff there it
quasicycle in A the length of which is not divisible by n. Consider such a
quasicycle g in A, with length n;. Let every quasicycle in_a,Xg, hav. length
divisible by n. By 5.10, n;n, is divisible by n, in contradicticn with n b.ing prime
end dividing neither n, nor n,.

P ive.
Tha ramaining cace af n = nnwar of a nrimsa i more comalicated. We bave a
i1 l\-lllalllllls AN UL T pPUYLL Ul A praaue @ 1AW NRTIii Ui Gl Y. 2TGQVNe &
aond indication that here aocain a nroductive c'ass is obtained. but d(. not see any
s\lv\l AAANAAWGALAVEE RAACR WA W “5“‘!! “a ‘Jl AL Bd T W W LA AT WL Lisa Wenry venr Nel 2zt N DWW S J

5.13. Little is ¥*no'vn about productive classes € A, where € is the class of
(undirected) graphs. In [1] it was shown that productivity occurs with A =K,, K,
and K.. The folloving problem is due to L. _ovasz:

Problem 3. Is every de<s € K, productive? (Equivalently, does it hoid that
x(G x H) = min {x(G), x (F)}?)

So far, even the possib’lity that therc are only finitely man s A with productive
%-b A is not excluded. Also, it would be interesting to find g produciive $-b> A
with a non-complete A.
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