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We have modified the holographic model of Saremi and Son [12] by using a charged black brane, instead
of a neutral one, such that when the bulk pseudo scalar (θ ) potential is made of θ2 and θ4 terms, parity
can still be broken spontaneously in the boundary theory. In our model, the 3 + 1 dimensional bulk has
a pseudo scalar coupled to the gravitational Chern–Simons term in the anti de Sitter charged black brane
back ground. Parity could be broken spontaneously in the bulk by the pseudo scalar hairy solution and
give rise to non-zero Hall viscosity at the boundary theory.
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1. Introduction

In recent years, the AdS/CFT correspondence [1–3] has been ap-
plied to study strongly coupled phenomena in condensed matter
physics at finite temperature and chemical potential. In particu-
lar, inspired by the idea of spontaneous symmetry breaking in
the presence of horizon [4,5], holographic superconductors [6,7]
and superfluids [8] are two remarkable examples where the
gauge/gravity duality plays an important role.

On the other hand, the hydrodynamic limit of AdS/CFT corre-
spondence has also attracted much attention recently. Computa-
tions of the ratio of shear viscosity to entropy density for a big
class of gauge field theories with gravitational duals yields the
same number 1/4π which is not far away from that observed in
the strong interacting quark-gluon plasma created in RHIC [9,10].
Later it has been shown that by using the boundary derivative ex-
pansion, one can consistently solve the Einstein equation order by
order and compute various hydrodynamics transport coefficients of
the boundary fluid [11]. Recently, a holographic model for the par-
ity violating Hall viscosity was proposed. Like the other transport
coefficients, Hall viscosity is also found to be uniquely determined
by the near horizon data of the bulk black brane [12]. This is
yet another example of the membrane paradigm. In the original
construction the (3 + 1) dimensional bulk action has a negative
cosmological constant, a real scalar field coupled to the gravita-
tional Chern–Simons term.1
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While it has been shown that a non-trivial profile of the bulk
scalar field is important to obtain a non-vanishing Hall viscosity
of the (2 + 1) dimensional boundary field theory, from the holog-
raphy point of view it would be interesting to further investigate
what role this bulk scalar plays at the boundary. One possible in-
terpretation is to identify the boundary value of this scalar as an
order parameter field which condensates at low temperature in the
boundary field theory. From the condensed matter point of view
the physical realization of this order parameter, which leads a sys-
tem to the spontaneously parity breaking phase is not clear. But
interestingly in terms of physical quantity such as hall viscosity
one might get information about how the system breaks parity
spontaneously. So, effectively in the hydrodynamic regime, Hall
viscosity can play the role of order parameter which is non-zero
only below a critical temperature. To be ready for such a boundary
theory interpretation, one shall look for a sourceless boundary con-
dition for the hairy scalar if parity is only broken spontaneously.

However, it has been shown that a neutral scalar hair with
quadratic and quartic potential that satisfies the usual sourceless
boundary condition in a Schwarzschild-AdS black hole spacetime
does not satisfy the positive energy theorem [16]. This essentially
means that a Schwarzschild-AdS black hole with a sourceless neu-
tral scalar hair is intrinsically unstable.

While it is still possible to find a sourced solution which min-
imizes the free energy, we will take a different approach to mod-
ification of the model by including a gauge field in the bulk. The
scalar in the original theory is identified as a pseudo scalar now,
so its coupling to the gravitational Chern–Simons term does not

the holographic superconductor [13,14]. The spectrum of quasinormal modes was
studied in the dynamic Chern–Simons gravity and correction to some hydrodynamic
quantities was discussed [15].
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Fig. 1. Cartoon pictures showing the force directions associated with various viscosities against non-uniform fluid velocity in the (x1, x2) plane. The usual bulk viscosity (ζ ),
the sum of Hall viscosity (ηA ) and curl viscosity (ζA ) are generated by non-zero curl of velocity, while the shear viscosity (η) and Hall viscosity (ηA ) along are generated
by non-zero divergence of velocity. Notice that the force flips its direction when the direction of the velocity field, which is depicted by the arrows outside the spheres, is
reversed.
break parity. The pseudo scalar hair, however, breaks parity spon-
taneously and gives a pseudo scalar condensate in the boundary
field theory which, as we will demonstrate in the next section, is
important for Hall viscosity. In the probed limit, this pseudo scalar
hair solution in the charged black brane background is known to
be stable [17].

The Letter is organized as follows: in Section 2, we present a
general discussion of the parity violating viscosities and set up the
holographic model. We then compute the Hall viscosity and com-
mend on the boundary field theory in Section 3. We then conclude
our results in Section 4. A detailed derivation of Hall viscosity to-
gether with an analytical approximation are given in Appendices A
and B.

2. General properties of viscosities

It is instructive to classify viscosities by considering the gen-
eral relation between the energy momentum tensor and the spatial
derivative of the fluid velocity

Tij = ηi jkl∂(k Vl) + ξi jkl∂[k Vl], (1)

where i, j, k, l are spatial indices and ∂(k Vl) = (∂k Vl + ∂l Vk) and
∂[k Vl] = (∂k Vl − ∂l Vk) are just the symmetric and anti-symmetric
combinations of the derivatives, respectively. We have Tij = T ji . In
two spatial dimensional systems, ηi jkl and ξi jkl can be constructed
by δi j and the two dimensional anti-symmetric tensor εi j . Taking
ηi jkl ∝ δi jδkl , δikδ jl + δ jkδil and εikε jl + ε jkεil give rise to the usual
shear (η) and bulk (ζ ) viscosity contributions

δTij = −η(∂i V j + ∂ j V i − trace) + ζ δi j∇ · V. (2)

Taking ηi jkl ∝ δikε jl + δ jkεil gives rise to the Hall viscosity (ηA ) and
“curl” viscosity (ζA ) contributions

δT A
ij = −ηA

(
(∂1 V 2 + ∂2 V 1) (−∂1 V 1 + ∂2 V 2)

(−∂1 V 1 + ∂2 V 2) −(∂1 V 2 + ∂2 V 1)

)

+ ζAδi j(∂1 V 2 − ∂2 V 1). (3)
The curl viscosity can also arise from taking ξi jkl ∝ δi jεkl . The curl
structure naturally reminds us vortices. It is interesting that the
bulk and curl viscosities are associated with the divergence and the
curl of the velocity. Both of them can only exist in systems with-
out scaling invariance due to its trace like structure in the energy
momentum tensor. It is easy to generalize the above discussion to
higher dimensions. However, the Hall and curl viscosities can only
exist in two dimensions as depicted in Fig. 1.

The Hall and curl viscosities have distinct transformation prop-
erties from the shear and bulk viscosities under parity. Under
the coordinate reflection (x1, x2) → (−x1, x2), δTij → (−1)i+ jδTij

while δT A
ij → (−1)i+ j+1δT A

ij . Since δTij exists in parity conserving

systems, δT A
ij only exists in parity violating systems.

In summary, we need to work in (2 + 1) dimensional parity
violating systems to study the Hall and curl viscosities. In the fol-
lowing section we will explicitly construct a holographic model
and calculate the Hall viscosity of the boundary fluid.

3. The holographic set up

Following the discussion of the previous section, we will con-
sider a four dimensional bulk action as the holographic dual to a
three dimensional boundary theory. It is given by a four dimen-
sional Einstein action with a negative cosmological constant; the
matter sector includes an abelian Yang–Mills Fμν and a pseudo
scalar field θ :

L = R − 6

L2
− 1

4
F 2 − 1

2
(∂θ)2 − V (θ) − λ

4
θ ∗R R. (4)

The bulk action conserves parity, so θ is a pseudo scalar from
the last term on the Lagrangian which is important to introduce
parity violation to the boundary theory through the θ conden-
sate. The F 2 term is the only difference between our model and
Saremi and Son’s. In our model a charged black hole solution is al-
lowed. We will recover their result by taking the black hole charge
to zero.
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In this Letter, we will only focus on the following form of the
potential,

V (θ) = 1

2
m2θ2 + 1

4
cθ4. (5)

As discussed in [17], the second term is necessary to have consis-
tent solution at T = 0. We will study the probed limit of the scalar
field by sending θ → εθ and λ → ελ for small ε. Thus, at lead-
ing order in ε, we only need to solve for the equation of motion
governed by the upper line of (4). Then the background is exactly
a charged black brane in AdS4 spacetime and the Hall viscosity
ηA can be recovered at the O(ε2) order, since ηA → ε2ηA in this
probe limit.

The charged black brane solution is given by the metric:

ds2 = 2 dv dr − r2 f (r)dv2 + r2(dx2 + dy2), (6)

where

f (r) = 1

L2
− M

r3
+ Q 2

r4
(7)

and the abelian gauge field2:

A = 2
Q

rH

(
1 − rH

r

)
dv − Q

r3 f
dr. (8)

Here black brane mass and electric charge are M and Q . The hori-
zon is at r = rH . The metric is asymptotically AdS4 with curvature
radius L. It is convenient to work in the units of L = 1 and rescale
the horizon to rH = 13

f (r) = 1 − 1 + 3κ

r3
+ 3κ

r4
, A = 2

√
3κ

(
1 − 1

r

)
dv. (10)

The charged black brane in the bulk corresponds to a boundary
field theory at finite temperature T and chemical potential μ, that
is

T = 3

4π
(1 − κ), μ = 2

√
3κ. (11)

We remark that κ = 0 corresponds to a neutral black brane with
zero chemical potential and κ = 1 corresponds to an extremal
black brane at zero temperature.

The equation of motion the probed neutral pseudo scalar reads

θ ′′ +
(

f ′

f
+ 4

r

)
θ ′ − V ′(θ)

r2 f
= 0. (12)

Near the boundary, the asymptotic behavior of pseudo scalar is

θ = J

r�− + O
r�+ + · · · , (13)

with

�± = 3

2
±

√
9

4
+ m2L2. (14)

2 The Ar component of gauge potential can be gauged away with no contribu-
tion to the equation of motion. However, we keep it here to show that under a
proper coordinate transformation, v = t +h(r) where h′(r) = 1

r2 f (r)
, this black brane

solution can be brought to the usual diagonal coordinate given by (t, r, x, y).
3 The action and equations of motion are invariant under the following scaling:

r → cr, (v, x, y) → c−1(v, x, y),

Q → c2 Q , M → c3 M,

θ → θ, A → A, f → f . (9)

Here we adopt the convention of [17] where Q → Q r2
H , r → rH r and (v, x, y) →

r−1
H (v, x, y).
We remark that in our construction, the mode J can be consis-
tently turned off and O is identified as the condensate in the
boundary.4 However, this was not possible in the original con-
struction with neutral black brane [12] where J can be turned
off only if c < − 3

4 [16] which violates the positive energy the-
orem and hence it is not a stable solution. In our model, the
θ4 term is required to make the θ solution regular at the hori-
zon [17].

4. The Hall viscosity

The detail derivation of the viscosities is presented in Ap-
pendix A. We have first included the back reaction of θ as was
done in [12], then take the probe limit (θ → εθ and λ → ελ)
to the final result of the viscosity expression. The expression
for ηA , which appears at O(ε2), is identical to that obtained
in [12].

From the derivation in Appendix A, we obtain the shear viscos-
ity of the universal value as expected:

η

s
= 1

4π
, (15)

where s is the entropy density. Theses combinations are dimen-
sionless and are invariant under the scaling of Eq. (9).

The Hall viscosity in our charged black brane background takes
the same form as the case of the neutral black brane back-
ground [12], that is

ηA = − 1

8πG N

λ

4

r4 f ′(r)θ ′(r)
H(r)2

∣∣∣∣
r=rH

. (16)

The dimensionless and scale invariant combination yields

ηA

s
= − λ

8π

r4 f ′(r)θ ′(r)
H(r)2

∣∣∣∣
r=rH

. (17)

In Eq. (17), ηA/s vanishes when the solution of θ is trivial
(θ(r) = 0), which happened in the symmetric phase, or when θ is a
constant field. In the former case, parity is not broken in the bulk.
Then by the correspondence, it will not be broken at the bound-
ary either. Likewise, in the latter case, when θ is a constant, the
∗R R term is just a surface term in the action which has no effect
to the bulk equations of motion. Hence it does not contribute to
ηA either. Therefore, it should not be a surprise that the phase di-
agram for ηA/s is very similar to that with the neutral scalar hair
of Ref. [17] with just one difference—ηA/s vanishes when T = 0.
This comes from the factor f ′(rH ) ∝ T . One peculiar feature of this
model is that the entropy of the charged black hole does not van-
ish at zero temperature. Perhaps in models with zero entropy at
zero temperature, ηA/s stays finite at zero temperature. We show
ηA/sλL as a function of T /μ and m2L2 in Fig. 2. These three quan-
tities are all scale invariant and dimensionless.

In Fig. 3, the dependence of the scale invariant, dimensionless
quantities ηA/sλL and T /μ is shown for m2L2 = −2. ηA/s ∝ T as
T → 0 due to f ′(rH ) ∝ T in Eq. (16). When T → Tc , ηA/s vanishes.
The analytic approximation performed in Appendix B suggests that
critical exponent is of mean field value: ηA/s ∝ (1 − T /Tc)

1/2 as
T → Tc . One can also see that ηA → 0 as we take μ → 0 and the
black hole becomes charge neutral.

In Fig. 4, ηA/sλL vs. m2L2 is plotted for T /μ = 7.55 × 10−6.
The critical m2L2 is smaller than the critical value m2L2 = −1.5 at
zero T because it is harder to form the condensate at higher T .

4 For −9/4 < m2 L2 < −5/4, J and O are both renormalizable and one is free to
choose either one as source and the other as condensate [18].
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Fig. 2. ηA/sλL as a function of T /μ and m2 L2.

Fig. 3. ηA/sλL vs. T /μ for m2 L2 = −2.

Fig. 4. ηA/sλL vs. m2 L2 for T /μ = 7.55 × 10−6.

In our model, the non-zero Hall viscosity arises because par-
ity is broken spontaneously. The non-zero classical solution (or
equivalently, vacuum expectation value) of θ yields a pseudo scalar
condensate at the boundary which is a necessary condition to have
non-zero Hall viscosity.
5. Conclusion

We have modified the holographic model of Saremi and
Son [12] by using a charged black brane, instead of a neutral one,
such that when the bulk pseudo scalar (θ ) potential is made of
θ2 and θ4 terms, parity can still be broken spontaneously in the
boundary theory. In our model, the 3 + 1 dimensional bulk has a
pseudo scalar coupled to the gravitational Chern–Simons term in
the anti de Sitter charged black brane back ground. Parity could
be broken spontaneously in the bulk by the pseudo scalar hairy
solution and give rise to non-zero Hall viscosity at the boundary
theory.

This study does not exclude a non-vanishing Hall viscosity
in Saremi and Son’s model be found with a more general po-
tential. It is interesting to investigate the Hall viscosity in other
parity-broken holographic condensed matter systems, such as the
D-wave superconductors [19,20]. We will report it in a future
project.
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Appendix A. Derivation of Hall viscosity

Here we detail the Hall viscosity derivation with the charged
black brane solution. The hydrodynamics of charged fluid has been
extensively studied in the holographic set up [21]. The general
procedure to calculate the holographic hydrodynamic transport co-
efficients has been given in [11]. We largely follow the procedures
adopted in [11,12] with the neutral black brane solution. The equa-
tions of motion by varying the action (4) with respect to the met-
ric, the scalar and the gauge field are as

RMN − 1

2
gMN R + ΛgMN − λCMN = T MN (θ) + T MN(A),

∇2θ = dV

dθ
+ λ

4
∗R R,

∇M F MN = 0, (18)

where

T MN (θ) = 1

2
∂Mθ∂Nθ − 1

4
gMN(∂θ)2 − 1

2
gMN V (θ),

T MN (A) = 1

2
F M

A F N A − 1

8
gMN F AB F AB ,

and CMN is called Cotton tensor coming from the gravitational
Chern–Simons term

C MN = 1

2

[
∂Aθ

(
ε AM BC ∇B RN

C + ε AN BC∇B RM
C

)
+ ∇A∂Bθ

(∗R AM BN + ∗R AN BM)]
,

where ε AM BC is the usual four dimensional Levi-Civita tensor.
An ansatz satisfying the equations of motion is

ds2 = −2H(r,b,q)uμ dxμ dr − r2 f (r,b,q)uμuν dxμ dxν

+ r2 Pμν dxμ dxν,

θ = θ(r,b,q),

A = A(r,b,q)uμ dxμ. (19)

This ansatz describes a boosted black brane solution alone the
boundary coordinates. Then following the standard procedure of
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the fluid/gravity correspondence, we perturb the system away from
equilibrium by promoting the velocity uμ , mass b and charge q to
vary slowly with respect to the boundary coordinates. In the co-
moving frame where the fluid two-velocity is zero at the origin
of the boundary coordinates (xμ = 0), we Taylor expand quantities
near the origin to the first derivative order:

uμ = (
1, xμ∂μβ i),

b = b0 + xμ∂μb,

q = q0 + xμ∂μq,

f (r,b,q) = f (r) + ∂ f

∂b
xμ∂μb + ∂ f

∂q
xμ∂μq = f (r) + δ f ,

H(r,b,q) = H(r) + ∂ H

∂b
xμ∂μb + ∂ H

∂q
xμ∂μq = H(r) + δH,

A(r,b,q) = A(r) + ∂ A

∂b
xμ∂μb + ∂ A

∂q
xμ∂μq = A(r) + δA,

θ(r,b,q) = θ(r) + ∂θ

∂b
xμ∂μb + ∂θ

∂q
xμ∂μq = θ(r) + δθ. (20)

Substitute these into the ansatz, we get

ds2 = 2H(r)dv dr − r2 f (r)dv2 + r2 dxi dxi

+ ε
[
2δH dv dr − r2δ f dv2 − 2H(r)xμ∂μβ i dxi dr

− 2r2(1 − f (r)
)
xμ∂μβ i dxi dv

]
, (21)

θ = θ(r) + εδθ,

A = −A(r)dv + ε
(−δA dv + A(r)xμ∂μβ i dxi), (22)

where we have added the parameter ε to keep track of how many
derivatives on the boundary coordinates each term has.

Note that after we promote the parameter to be dependent on
the boundary coordinates, the ansatz no longer satisfies the equa-
tions of motion. Hence we add corrections order by order to the
metric, scalar and gauge fields such that, order by order, the whole
metric, scalar and gauge fields still satisfy the equations of motion.
To calculate the Hall viscosity, it suffices to consider the symmetric
traceless part of the correction to the metric:

ds2 = ε

(
k(r)

r2
dv2 + 2h(r)dv dr − r2h(r)dxi dxi + 2

r
ai(r)dv dxi

+ r2αi j(r)dxi dx j
)

,

θ = εθcor,

A = ε
(

Av
cor(r)dv + Ax

cor(r)dx + A y
cor(r)dy

)
. (23)

In this case, the trace-reversed form of the Einstein equations
is more convenient, which is given by

EMN = RMN − ΛgMN − λCMN − dMN = 0, (24)

where

dMN = dMN(θ) + dMN(A) = T MN − 1

2
gMN T ,

dMN(θ) = 1

2
∂Mθ∂Nθ + 1

2
gMN V (θ),

dMN(A) = −1

2
F M

A F AN − 1

8
gMN F AB F AB . (25)

Substitute all into the Einstein equations and collect the first
order term from the xy-component of the trace-reversed Einstein
equation, we get
1

H

d

dr

[
−1

2

r4 f

H

d

dr
αxy

]

+
[

r3 H ′ f

H3
− r3 f ′

H2
− 3r2 f

H2
+ 3r2 − r2

2
V (θ) − r2 A′2

4H2

]
αxy

= r

H
(∂xβy + ∂yβx) + λ

4H

d

dr

(
r4 f ′θ ′

H2

)
(∂xβx − ∂yβy). (26)

However, the zeroth order of the xx-component of the trace-
reversed Einstein equation yields

r3 H ′ f

H3
− r3 f ′

H2
− 3r2 f

H2
+ 3r2 − r2

2
V (θ) − r2 A′2

4H2
= 0. (27)

Therefore we obtain a differential equation for αxy ,

d

dr

[
−1

2

r4 f

H

d

dr
αxy

]
= r(∂xβy + ∂yβx)

+ λ

4

d

dr

(
r4 f ′θ ′

H2

)
(∂xβx − ∂yβy). (28)

And hence

αxy(r) =
∞∫

r

2H(t)dt

t4 f (t)

t∫
rH

dz

[
z(∂xβy + ∂yβx)

+ λ

4

d

dz

(
z4 f ′θ ′

H2

)
(∂xβx − ∂yβy)

]
. (29)

As in [12], we use the following formula to compute the asymp-
totic form,

rnαxy(r) → − rn+1

n

d

dr
αxy(r) as r → ∞. (30)

And from [22], the boundary energy momentum tensor for odd
boundary dimension is given by

〈Tij〉 = d

16πG N
g(d)i j, (31)

where

g
(
xμ, r

) = g(0) + 1

r2
g(2) + · · · + 1

rd
g(d) + · · · . (32)

Therefore, all we have to do is to find the constant part of r3αxy .
Hence

r3αxy(r) → − r4

3

d

dr
αxy(r)

= − r4

3

d

dr

∞∫
r

2H(t)dt

t4 f (t)

t∫
rH

dz

[
z(∂xβy + ∂yβx)

+ λ

4

d

dz

(
r4 f ′θ ′

H2

)
(∂xβx − ∂yβy)

]

= r4

3

2H(r)

r4 f (r)

r∫
rH

dz

[
z(∂xβy + ∂yβx)

+ λ

4

d

dz

(
r4 f ′θ ′

H2

)
(∂xβx − ∂yβy)

]

= 2H

3 f

[
z2

2
(∂xβy + ∂yβx)

+ λ

4

(
r4 f ′θ ′

H2

)
(∂xβx − ∂yβy)

]r

.

rH
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Since f and H asymptotically approach 1 and we shift the hori-
zon to rH = 1, we get the xy-component of the boundary energy
momentum tensor as

〈Txy〉 = 3

16πG N
g(3)xy

= − 1

16πG N
(∂xβy + ∂yβx)

− 1

8πG N

[
λ

4

(
r4 f ′θ ′

H2

)
(∂xβx − ∂yβy)

]
r=rH

.

The first term is the usual shear mode with

η = 1

16πG N
(33)

which recovers

η

s
= 1

4π
. (34)

The second term is proportional to the Hall viscosity which
yields

ηA = − 1

8πG N

λ

4

r4 f ′(r)θ ′(r)
H(r)2

∣∣∣∣
r=rH

. (35)

The dimensionless combination

ηA

s
= − λ

8π

r4 f ′(r)θ ′(r)
H(r)2

∣∣∣∣
r=rH

(36)

is independent of the scaling.

Appendix B. Analytic approximation

Here we will apply an approximation to obtain an analytic ex-
pression for Hall viscosity in terms of the condensate in the bound-
ary theory. We use the new coordinate z = 1/r for convenience.
Near the horizon z = 1, we can expand θ(z) as

θ(z) � θ(1) − m2

3(1 − κ)
θ(1)(1 − z). (37)

On the other hand, near the boundary z = 0, one has

θ(z) � Oz�+ . (38)
By matching above expressions in the middle z = 1/2, one can
identify approximately

θ(1) � O
1 − m2

6(1−κ)

2−�+ . (39)

Therefore one can express the Hall viscosity as a function of tem-
perature and the condensate O:

ηA = − λ

32πG4

m2O
1 − m2

8π T

2−�+ . (40)

Near the critical Tc , the condensate has the mean field T depen-
dence for a second order phase transition [23]:

O ∝ T �+
c

(
1 − T

Tc

)1/2

θ(Tc − T ), (41)

hence near Tc one has

ηA ∝
(

1 − T

Tc

)1/2

θ(Tc − T ). (42)
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