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An analog of the characteristic polynomial is defined for a matrix over the
algebraic structure (R, max, +) and its properties are discussed.

1. INTRODUCTION

The algebraic structure & = (£; @, ®), where & is the real-number set and
x @y = max(x, p), X@®y=x+y (x,y€ &), (1.1)

can mimic a wide range of the algebraic properties of the usual real-number
system R = (&, +, X) and also provides a formulation language for some
important classes of applied mathematical problems.

For instance, in [1] we give an extensive account of the matrix algebra
constructible over &, together with its application to certain classes of
scheduling, path finding, and Boolean problems; and in [2] polynomial
algebra over & was considered, with application to minimax problems and
combinatorial optimisation.

In classical algebra, the link between matrices and polynomials comes
through the characteristic polynomial of a matrix, which has the eigenvalues
of the matrix as its roots. We shall show that a closely analogous resuit
holds in algebra over &. The discussion will then be extended from
polynomials to infinite series. For the sake of brevity, we shall draw exten-
sively on the results in |1, 2].

2. BACKGROUND RESULTS

Let the notations ) . and [ [, respectively, stand for iterated use of the
associative “addition” @ and the associative “multiplication” &, by analogy
with the usual notations }_ and [ ]. Let .#,, denote the set of (m X n) arrays
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over &, and let {a;|=A€E€ A, (uj=u€.#,; L€&. Then u, 4 are.
respectively, an eigenvector and eigenvalue of A if

ARQu=i®u, (2.1)
where for |b,,| € #,, and [c; | € #,, the matrix product |d; | = [b;| & [ ]
is defined by analogy with traditional linear algebra by

dik: \‘_:@(bu®cjk) (i: 1.-.., m;k: l....,p). (2.2)
=1

J

Thus (2.2) and (1.1) imply that (2.1) is equivalent to

A+u,= max (a; +u;) (i = L,...,n). (2.3)

J=1o.

LEmMMA 1. For any A € #,,, there exist u and A satisfying (2.1). Also, A
is unique and equals A(A), the greatest of the “circuit averages™:

Coaytay  aptaptag
a; 5 3 foee

(i e € (Lo n}). (2.4)

Proof |1, Lemma 23-2 and Theorem 24-9|.

Now let x be a variable ranging over & and for positive integers p define
xP =x® - ®x (p-fold) with x'© = 0. Let ag,.... ay € £ (N > 1) be given.
Then the function Q(x), where

Q(x)= 7r(r)1axv(a,+rx) (2.5)
xY

= YNeoa,®x" (2.6)
r=0

is called a maxpolynomial. The following analog of the fundamental theorem
of algebra holds:

LEMMA 2. Any maxpolynomial (2.6) may be written as a “product of N
linear factors”

0x)=ay®0,(x)® - ® Oy(x), (2.7)

where each 6,(x) is either of the form x, or of the form (x ® f,) for some
B, € &. Apart from order, factorisation (2.7) is unique.

Proof |2, Theorem 11].
The constants §, in Lemma 2 are called the corners of Q(x).
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3. CHARACTERISTIC MAXPOLYNOMIAL

Although we cannot define a determinant for [b;] € #, , we can define
the permanent of [b;;] by

perm|b,] 2@( e wm) 3.1)
fod t=1

where the “summation” is over all permutations ¢ in the symmetric group of
order n! Then we may define the characteristic maxpolynomial n,(x) of a
given square matrix A € _#,, by

Ta(x) = perm(A, x), (3.2)

where (A, x) is a matrix derived from A by replacing its diagonal elements
a; by a;®x (i=1,.,n).

Thus, if
2 1 4
A=|1 0 1], (3.3)
2 2 1
then
2®x 1 4
Zalx)=perm | 1 0®x 1 (3.4)
2 2 1®x
=2exNR0dx)(1dXx)P2®X)®1®2
PIRNIXUEXN)OI®I®?2
PIR®IR®ZIDI®O0DX)®2
=xYP2x?060x® 17, (3.5)

by use of the usual associative, distributive, and commutative laws [2].
Lemma 2 gives for maxpolynomial (3.5)

TAX)=(x®)® (x® 3)2. (3.6)
Lemma 1 implies for A in (3.3)

I+1 442 142 14142 441+2
2 2 27 3 ’ 3

A(A) = max (2, o1, ) — 3. (3.7)

Then (3.6) and (3.7) illustrate the following new result, which we now prove.
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THEOREM 3. For any A € _#,,: the greatest corner of mA(x) is A(A).

4. PROOF OF THEOREM 3

For a circuit C, e.g., a,,,053...,a,_,,,4,,, let |C| denote the circuit sum,
...

Cl=a,+ - +a,=a,® - Ra, (4.1)
and let || C|| denote the circuit length e.g.,
ICll=r. (4.2)

Thus by (2.4),

A(A) = LCL) (4.3)

circattag in A (ncn

Without loss of generality suppose that, after renumbering if necessary, for
suitable R

d;, +ay + -+ ag,

A(A) = R (4.4)
Then
Ay Aig
perm =@, ® - ag)® - 2 RIA). (4.5)
Ay e Qg

But if P is A or any principal minor of A, we have with a self-evident
notation

perm P =\ (|circuit,| ® --- ® [circuit,|),  where

||circuit, || + -+ + ||circuit, || = order of P. (4.6)

But by (4.3), for any circuit in A
|circuit| < A(A) || circuit||. 4.7)
Also (4.6) and (4.7) give

perm P  A(A) (order of P). (4.8)
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Then (4.5) and (4.8) give as P varies over A and its principal minors

perm P
= ). 4,
AA) X (order of P) (4.9)

Now consider a “monic” maxpolynomial of the form

"D Rx" VD@6, , ®xDI,. (4.10)

Referring to the algorithm in [2, Sect. 9], we see that the greatest corner of
the maxpolynomial (4.10) is

max (—’) 4.11)
But evidently, as (3.5) illustrates, m,(x) is a maxpolynomial of the form
(4.10) in which for r=1,..,n
0,= Z @ (all (r X r) principal minor permanents P in A)

= max(perm P | order of P = r). _ (4.12)

The result now follows from (4.9), (4.11), and (4.12).

5. POWER SERIES CONVERGENCE

In [3], we defined (scalar) power series
a

N ob,®x® (5.1)

r=0

for a given sequence {b,} of coefficients. Defining

p=lim (- %) (5.2)

r—oo r

we proved

LEMMA 2. Series (5.1) converges if x < p and diverges if x > p.

Thus p plays a role analogous to that of a radius of convergence.
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Furthermore, introducing the matrix power series for a given square
matrix A
o0
Neb, @AM, (5.3)

r=0

where AV = A® .- ® A (r-fold), we proved

LEMMA 5. Series (5.3) converges if A(A) < p and diverges iff A(A) > p.
Let us now define the sequence {¢,} of maxpolynomials by

p,(x)= N b, ®x" (n=1,2,..) (5.4)

r=0

Let B, be the greatest corner of ¢, and define

B= lim §,. (5.5)

h—oC

We shall prove the following new result:

THEOREM 6. With the foregoing notation: § = p.

Proof. From |2, Sect. 9], the greatest corner of ¢, is given by
B, = max (—bJ—T—b'i) (n=1.2..). (5.6)
Taking j =0 in (5.6)
B.>——-L (n=12..).

whence from (5.2) and (5.5) § > p. On the other hand, from (5.5) and (5.6)
if ¢ > 0, 3N such that

j<n f

b,—b 1
max (ﬁ) >ﬁ~—§—s for n>:N,

Le., if ¢ > 0, 3N such that
if n >N, 3dn’ < n such that

b, . —~b I

'

n—n
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And if #’ is not less than N, we may apply (5.7) again to get
In" < n' such that by —b, > (n' —n")B—4e). (5.7

Since n > n’ > n” > -.., we may develop (5.7) and (5.7') and so on until we
find n"” = m (say) < N. Then adding (5.7), (5.7')... we get

if £> 0, AN such that: if n > N, 3m < N such that (b, —b,) >
(n —m)(B — 1¢),

>@B—¢) as n] . (5.8)

Clearly (5.2), (5.5), and (5.8) imply p > f and the result follows.
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