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An analog of the characteristic polynomial is defined for a matrix over the 
algebraic structure (W, max, +) and its properties are discussed. 

1. INTRODUCTION 

The algebraic structure 6p = (8’; 0, a), where 8 is the real-number set and 

x 0 Y = mN-5 y>, xoy=x+y (4 4’ E a, (1.1) 

can mimic a wide range of the algebraic properties of the usual real-number 
system IR = (8, +, X) and also provides a formulation language for some 
important classes of applied mathematical problems. 

For instance, in [l] we give an extensive account of the matrix algebra 
constructible over 8, together with its application to certain classes of 
scheduling, path finding, and Boolean problems; and in [2] polynomial 
algebra over B was considered, with application to minimax problems and 
combinatorial optimisation. 

In classical algebra, the link between matrices and polynomials comes 
through the characteristic polynomial of a matrix, which has the eigenvalues 
of the matrix as its roots. We shall show that a closely analogous result 
holds in algebra over 8. The discussion will then be extended from 
polynomials to infinite series. For the sake of brevity, we shall draw exten- 
sively on the results in [ 1, 21. 

2. BACKGROUND RESULTS 

Let the notations Co and n,, respectively, stand for iterated use of the 
associative “addition” @ and the associative “multiplication” 0, by analogy 
with the usual notations C and n. Let Am, denote the set of (m x n) arrays 
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over 8, and let ]aii]=A~Jn,; (ni]=uE.M”,; ;1EF. Then u. h are. . .I_ 
respectively, an eigenvector and eigenvalue of A if 

A@u=L@u. (2.1 

where for ]bij] EL&,, and [cjk] E An,, the matrix product ]dik] = ]bii] 0 lcik 
is defined by analogy with traditional linear algebra by 

dik = 2 0 (bij O cjk) (i = l...., m; k = l,..., p). (2.2 
j:l 

Thus (2.2) and (1.1) imply that (2.1) is equivalent to 

/1 + Ui = max (ai,j + Uj) (i = l...., n). (2.3) 
J-l.....n 

LEMMA 1. For any A E ~,&, , there exist u and 1 satisfying (2.1). Also, J. 
is unique and equals II(A), the greatest of the “circuit averages”: 

ajj ; 
Uij + Uji 

2 ; 
Uij + ajk + ski 

3 
;... (i,j, k ,... E { I,..., n)). (2.4) 

Proof ] 1, Lemma 23-2 and Theorem 24-9). 
Now let x be a variable ranging over B and for positive integers p define 

x(P) zz x @ . . . @ x (p-fold) with x(O) = 0. Let a0 ,..,, u,,, E X (N > 1) be given. 
Then the function Q(x). where 

(2.6) 

is called a maxpolynomial. The following analog of the fundamental theorem 
of algebra holds: 

LEMMA 2. Any maxpolynomial (2.6) may be written as a “product of N 
linear factors” 

Q(x) = aN 0 @,(x1 0 ... 0 Mx), (2.7) 

where each 6,(x) is either of the form x, or of the form (x @p,) for some 
p, E ip. Apart from order, factorisation (2.7) is unique. 

Proof (2, Theorem 111. 
The constants /3, in Lemma 2 are called the corners of Q(x). 

409/95/l-8 
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3. CHARACTERISTIC MAXPOLYNOMIAL 

Although we cannot define a determinant for [bij] E Mn,, we can define 
the permanent of [b,] by 

(3.1) 

where the “summation” is over all permutations CJ in the symmetric group of 
order n! Then we may define the characteristic maxpolynomial z*(x) of a 
given square matrix A E && by 

71.4~) = perm(A, x), (3.2) 

where (A,x) is a matrix derived from A by replacing its diagonal elements 
a,, by a,, @ x (i = l,..., n). 

Thus, if 

2 1 4 

A= [ 1 0 2 2 1 1 , 
1 

then 

nA(x) = perm 
20x 1 4 
1 00x 1 
2 2 10X 

= (2 0 x) 0 (0 0 x) @ (1 @ x) @ (2 @ x) @ 1 @ 2 

@l@l@(l@x)@1@1@2 

04@102@4@(O@x)@2 

= xc3) @ 2 @ xc*) @ 6 0 x @ 7, 

(3.3) 

(3.4) 

(3.5) 

by use of the usual associative, distributive, and commutative laws (21. 
Lemma 2 gives for maxpolynomial (3.5) 

n,(x) = (x 0 1) @ (x 0 3)‘? (3.6) 

Lemma 1 implies for A in (3.3) 

A(A) = max 2,0, 1, 
l+l 4+2 1+2 1+1+2 4+1+2 

-‘2’2’ 2 3 ) = 3 3. (3.7) 

Then (3.6) and (3.7) illustrate the following new result, which we now prove. 
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THEOREM 3. For any A E A,, : the greatest corner of x*(x) is L(A). 

4. PROOF OF THEOREM 3 

For a circuit C, e.g., a,,, az3 ,..., a,- ,rr a,, , let / Cl denote the circuit sum 
e.g.. 

(4.1) 

and let llC\l denote the circuit length e.g., 

IICII = r. 

Thus by (2.4). 

(4.2) 

L(A) = (4.3) 

Without loss of generality suppose that, after renumbering if necessary. for 
suitable R 

L(A) = 
aI2 + az3 + ... + aR, 

R 
(4.4) 

Then 

a , 1 ,..., a 1R 
perm i ... 1 =(a,,O...Oa,,)O...~R~(A). (4.5) 

aR, ,...1 aRR 

But if P is A or any principal minor of A, we have with a self-evident 
notation 

perm P = ‘\7 o (I circuit, / @ . . . @ 1 circuit,/), where 

/(circuit, 11 + . . . + I/ circuit, I( = order of P. 

But by (4.3), for any circuit in A 

( circuit / < L(A) II circuit II. 

Also (4.6) and (4.7) give 

(4.6) 

(4.7) 

perm P < L(A) (order of P). (4.8) 
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Then (4.5) and (4.8) give as P varies over A and its principal minors 

L(A) = mp”x (4.9) 

Now consider a “manic” maxpolynomial of the form 

XC”) @ 6, @ XC” - ‘) @*a. @a,-,@x@d,. (4.10) 

Referring to the algorithm in [2, Sect. 91, we see that the greatest corner of 
the maxpolynomial (4.10) is 

(4.11) 

But evidently, as (3.5) illustrates, rrA(x) is a maxpolynomial of the form 
(4.10) in which for Y = l,..., n 

6, = s o (all (r X r) principal minor permanents P in A) 

= max(perm P ) order of P = r). (4.12) 

The result now follows from (4.9), (4.1 l), and (4.12). 

5. POWER SERIES CONVERGENCE 

In [3], we defined (scalar) power series 

f@b@X”’ 
r=O 

for a given sequence {b,} of coefficients. Defining 

p = lim 
rz 

we proved 

(5.1) 

(5.2) 

LEMMA 2. Series (5.1) converges if x < p and diverges if x > p. 

Thus p plays a role analogous to that of a radius of convergence. 



MAXPOLYNOMIALOF AMATRIX 115 

Furthermore, introducing the matrix power series for a given square 
matrix A 

TBbr @ A(‘), (5.3) 
r=0 

where A”’ = A @ . . . @ A (r-fold), we proved 

LEMMA 5. Series (5.3) converges if I(A) < p and diverges if A(A) > p. 

Let us now define the sequence (#,} of maxpolynomials by 

G,(x)= $@b,@X”’ (n = 1. 2,...). (5.4) 
r-0 

Let /I, be the greatest corner of 4, and define 

p= I;m 8,. (5.5) 
n -‘x 

We shall prove the following new result: 

THEOREM 6. With the foregoing notation: /I = p. 

Proof From 12, Sect. 9 1, the greatest corner of 4, is given by 

P,= y; s ( i (n = 1, 2,...). (5.6) 

Taking j = 0 in (5.6) 

p,>+-* (n = 1, 2,...). 

whence from (5.2) and (5.5) p > p. On the other hand, from (5.5) and (5.6) 

if c > 0, 3V such that 

max ( 1 
bj - bn >p-+ for n > IV. 

jcn n-j 

i.e., if c > 0, 3N such that 

if TV > N, Zln’ < n such that 

b,,. - bn 
n - n’ >p+, i.e.. b,,.-b,,:,(n-n’)jli-tcj. (5.7) 
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And if n’ is not less than N, we may apply (5.7) again to get 

3Fr” < n’ such that b,,, - b,, > (n’ - n”)Q3 - +E). (5.7’) 

Sincen>n’>n”>..., we may develop (5.7) and (5.7’) and so on until we 
find n”’ = m (say) < N. Then adding (5.7), (5.7’)... we get 

if E > 0, 3N such that: if n > N, 3m < N such that (b, -b,) > 
(n - m)Go - $9, 

i.e., 

> do-&) as nTco. (5.8) 

Clearly (5.2), (5.5), and (5.8) imply p > p and the result follows. 
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