The Characteristic Maxpolynomial of a Matrix

R. A. Cuninghame-Green
Department of Mathematics, University of Birmingham, England

Submitted by Kenneth L. Cooke

Abstract

An analog of the characteristic polynomial is defined for a matrix over the algebraic structure $(\mathbb{R}, \max ,+)$ and its properties are discussed.

1. Introduction

The algebraic structure $\mathscr{E}=(\mathscr{E} ; \oplus, \otimes)$, where \mathscr{E} is the real-number set and

$$
\begin{equation*}
x \oplus y=\max (x, y), \quad x \otimes y=x+y \quad(x, y \in \mathscr{E}) \tag{1.1}
\end{equation*}
$$

can mimic a wide range of the algebraic properties of the usual real-number system $\mathbb{R}=(\mathscr{E},+, X)$ and also provides a formulation language for some important classes of applied mathematical problems.

For instance, in [1] we give an extensive account of the matrix algebra constructible over \mathscr{E}, together with its application to certain classes of scheduling, path finding, and Boolean problems; and in [2] polynomial algebra over \mathscr{E} was considered, with application to minimax problems and combinatorial optimisation.

In classical algebra, the link between matrices and polynomials comes through the characteristic polynomial of a matrix, which has the eigenvalues of the matrix as its roots. We shall show that a closely analogous result holds in algebra over \mathscr{E}. The discussion will then be extended from polynomials to infinite series. For the sake of brevity, we shall draw extensively on the results in $[1,2]$.

2. Background Results

Let the notations \sum_{\oplus} and \prod_{\otimes}, respectively, stand for iterated use of the associative "addition" \oplus and the associative "multiplication" \otimes, by analogy with the usual notations Σ ' and I 1 . Let $\mathscr{M}_{m n}$ denote the set of $(m \times n)$ arrays
over \mathscr{E}, and let $\left[a_{i j}\right\}=\mathbf{A} \in \mathscr{M}_{n n} ;\left\{u_{j}\right\}=\mathbf{u} \in \mathscr{M}_{n 1} ; \lambda \in \mathscr{E}$. Then \mathbf{u}, λ are, respectively, an eigenvector and eigenvalue of \mathbf{A} if

$$
\begin{equation*}
\mathbf{A} \otimes \mathbf{u}=\lambda \otimes \mathbf{u} \tag{2.1}
\end{equation*}
$$

where for $\left|b_{i j}\right| \in \mathscr{M}_{m n}$ and $\left[c_{j k} \mid \in \mathscr{M}_{n p}\right.$ the matrix product $\left|d_{i k}\right|=\left|b_{i j}\right| \otimes\left|c_{i k}\right|$ is defined by analogy with traditional linear algebra by

$$
\begin{equation*}
d_{i k}=\sum_{j=1}^{n}\left(b_{i j} \otimes c_{j k}\right) \quad(i=1, \ldots, m ; k=1, \ldots, p) \tag{2.2}
\end{equation*}
$$

Thus (2.2) and (1.1) imply that (2.1) is equivalent to

$$
\begin{equation*}
\lambda+u_{i}=\max _{j=1, \ldots, n}\left(a_{i j}+u_{j}\right) \quad(i=1, \ldots, n) \tag{2.3}
\end{equation*}
$$

Lemma 1. For any $\mathbf{A} \in \mathscr{M}_{n n}$, there exist \mathbf{u} and λ satisfying (2.1). Also, λ is unique and equals $\lambda(\mathbf{A})$, the greatest of the "circuit averages":

$$
\begin{equation*}
a_{i i} ; \quad \frac{a_{i j}+a_{j i}}{2} ; \quad \frac{a_{i j}+a_{j k}+a_{k i}}{3} ; \ldots \quad(i, j, k, \ldots \in\{1, \ldots, n\}) . \tag{2.4}
\end{equation*}
$$

Proof [1, Lemma 23-2 and Theorem 24-9].
Now let x be a variable ranging over \mathscr{E} and for positive integers p define $x^{(p)}=x \otimes \cdots \otimes x$ (p-fold) with $x^{(0)}=0$. Let $\alpha_{0}, \ldots, \alpha_{N} \in \mathscr{E}(N \geqslant 1)$ be given. Then the function $Q(x)$, where

$$
\begin{align*}
Q(x) & =\max _{r=0, \ldots, N}\left(\alpha_{r}+r x\right) \tag{2.5}\\
& =\sum_{r=0}^{N} \oplus \alpha_{r} \otimes x^{(r)} \tag{2.6}
\end{align*}
$$

is called a maxpolynomial. The following analog of the fundamental theorem of algebra holds:

Lemma 2. Any maxpolynomial (2.6) may be written as a "product of N linear factors"

$$
\begin{equation*}
Q(x)=\alpha_{N} \otimes \theta_{1}(x) \otimes \cdots \otimes \theta_{N}(x) \tag{2.7}
\end{equation*}
$$

where each $\theta_{k}(x)$ is either of the form x, or of the form $\left(x \oplus \beta_{s}\right)$ for some $\beta_{s} \in \mathscr{E}$. Apart from order, factorisation (2.7) is unique.

Proof [2, Theorem 11].
The constants β_{s} in Lemma 2 are called the corners of $Q(x)$.

3. Characteristic Maxpolynomial

Although we cannot define a determinant for $\left[b_{i j}\right] \in \mathscr{M}_{n n}$, we can define the permanent of $\left[b_{i j}\right]$ by

$$
\begin{equation*}
\operatorname{perm}\left[b_{i j}\right]=\sum_{\sigma} \oplus\left(\prod_{t=1}^{n} b_{t \sigma(t)}\right) \tag{3.1}
\end{equation*}
$$

where the "summation" is over all permutations σ in the symmetric group of order n ! Then we may define the characteristic maxpolynomial $\pi_{A}(x)$ of a given square matrix $\mathbf{A} \in \mathscr{M}_{n n}$ by

$$
\begin{equation*}
\pi_{\mathbf{A}}(x)=\operatorname{perm}(\mathbf{A}, x) \tag{3.2}
\end{equation*}
$$

where (\mathbf{A}, x) is a matrix derived from \mathbf{A} by replacing its diagonal elements $a_{i i}$ by $a_{i i} \oplus x(i=1, \ldots, n)$.

Thus, if

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 1 & 4 \tag{3.3}\\
1 & 0 & 1 \\
2 & 2 & 1
\end{array}\right]
$$

then

$$
\begin{align*}
\pi_{\mathrm{A}}(x)= & \operatorname{perm}\left[\begin{array}{lll}
2 \oplus x & 1 & 4 \\
1 & 0 \oplus x & 1 \\
2 & 2 & 1 \oplus x
\end{array}\right] \tag{3.4}\\
= & (2 \oplus x) \otimes(0 \oplus x) \otimes(1 \oplus x) \oplus(2 \oplus x) \otimes 1 \otimes 2 \\
& \oplus 1 \otimes 1 \otimes(1 \oplus x) \oplus 1 \otimes 1 \otimes 2 \\
& \oplus 4 \otimes 1 \otimes 2 \oplus 4 \otimes(0 \oplus x) \otimes 2 \\
= & x^{(3)} \oplus 2 \otimes x^{(2)} \oplus 6 \otimes x \oplus 7 \tag{3.5}
\end{align*}
$$

by use of the usual associative, distributive, and commutative laws [2]. Lemma 2 gives for maxpolynomial (3.5)

$$
\begin{equation*}
\pi_{\Lambda}(x)=(x \oplus 1) \otimes(x \oplus 3)^{(2)} \tag{3.6}
\end{equation*}
$$

Lemma 1 implies for \mathbf{A} in (3.3)
$\lambda(\mathbf{A})=\max \left(2,0,1, \frac{1+1}{2}, \frac{4+2}{2}, \frac{1+2}{2}, \frac{1+1+2}{3}, \frac{4+1+2}{3}\right)=3$.
Then (3.6) and (3.7) illustrate the following new result, which we now prove.

Theorem 3. For any $\mathbf{A} \in \mathscr{M}_{n n}$: the greatest corner of $\pi_{\mathbf{A}}(x)$ is $\lambda(\mathbf{A})$.

4. Proof of Theorem 3

For a circuit C, e.g., $a_{12}, a_{23}, \ldots, a_{r-1 r}, a_{r 1}$, let $|C|$ denote the circuit sum, e.g.,

$$
\begin{equation*}
|C|=a_{12}+\cdots+a_{r 1}=a_{12} \otimes \cdots \otimes a_{r 1} \tag{4.1}
\end{equation*}
$$

and let $\|C\|$ denote the circuit length e.g.,

$$
\begin{equation*}
\|C\|=r \tag{4.2}
\end{equation*}
$$

Thus by (2.4),

$$
\begin{equation*}
\lambda(\mathbf{A})=\max _{\text {circuits } C \text { in } \mathbf{A}}\left(\frac{|C|}{\|C\|}\right) \tag{4.3}
\end{equation*}
$$

Without loss of generality suppose that, after renumbering if necessary, for suitable R

$$
\begin{equation*}
\lambda(\mathbf{A})=\frac{a_{12}+a_{23}+\cdots+a_{R 1}}{R} \tag{4.4}
\end{equation*}
$$

Then

$$
\left.\operatorname{perm}\left[\begin{array}{c}
a_{11}, \ldots, a_{1 R} \tag{4.5}\\
\ldots \\
a_{R 1}, \ldots, a_{R R}
\end{array}\right]=\left(a_{12} \otimes\right) \cdots(\otimes) a_{R 1}\right) \oplus \cdots \geqslant R \lambda(\mathbf{A}) .
$$

But if \mathbf{P} is \mathbf{A} or any principal minor of \mathbf{A}, we have with a self-evident notation

$$
\begin{gather*}
\text { perm } \mathbf{P}=\Sigma_{\oplus}\left(\mid \text { circuit }_{1}|\otimes \cdots \otimes| \text { circuit }_{p} \mid\right), \quad \text { where } \\
\| \text { circuit }_{1}\|+\cdots+\| \text { circuit }_{p} \|=\text { order of } P^{P} . \tag{4.6}
\end{gather*}
$$

But by (4.3), for any circuit in \mathbf{A}

$$
\begin{equation*}
\mid \text { circuit } \mid \leqslant \lambda(\mathbf{A}) \| \text { circuit } \| . \tag{4.7}
\end{equation*}
$$

Also (4.6) and (4.7) give

$$
\begin{equation*}
\text { perm } \mathbf{P} \leqslant \lambda(\mathbf{A}) \text { (order of } \mathbf{P}) . \tag{4.8}
\end{equation*}
$$

Then (4.5) and (4.8) give as \mathbf{P} varies over \mathbf{A} and its principal minors

$$
\begin{equation*}
\lambda(\mathbf{A})=\max _{\mathbf{P}}\left(\frac{\text { perm } \mathbf{P}}{\text { order of } \mathbf{P}}\right) \tag{4.9}
\end{equation*}
$$

Now consider a "monic" maxpolynomial of the form

$$
\begin{equation*}
x^{(n)} \oplus \delta_{1} \otimes x^{(n-1)} \oplus \cdots \oplus \delta_{n-1} \otimes x \oplus \delta_{n} \tag{4.10}
\end{equation*}
$$

Referring to the algorithm in [2, Sect. 9], we see that the greatest corner of the maxpolynomial (4.10) is

$$
\begin{equation*}
\max _{r=1, \ldots, n}\left(\frac{\delta_{r}}{r}\right) \tag{4.11}
\end{equation*}
$$

But evidently, as (3.5) illustrates, $\pi_{A}(x)$ is a maxpolynomial of the form (4.10) in which for $r=1, \ldots, n$

$$
\begin{align*}
\delta_{r} & =\sum_{\oplus}(\text { all }(r \times r) \text { principal minor permanents } \mathbf{P} \text { in } \mathbf{A}) \\
& =\max (\text { perm } \mathbf{P} \mid \text { order of } \mathbf{P}=r) . \tag{4.12}
\end{align*}
$$

The result now follows from (4.9), (4.11), and (4.12).

5. Power Series Convergence

In [3], we defined (scalar) power series

$$
\begin{equation*}
\sum_{r=0}^{\infty} \oplus b_{r} \otimes x^{(r)} \tag{5.1}
\end{equation*}
$$

for a given sequence $\left\{b_{r}\right\}$ of coefficients. Defining

$$
\begin{equation*}
\rho=\lim _{r \rightarrow \infty}\left(-\frac{b_{r}}{r}\right) \tag{5.2}
\end{equation*}
$$

we proved

Lemma 2. Series (5.1) converges if $x<\rho$ and diverges if $x>\rho$.
Thus ρ plays a role analogous to that of a radius of convergence.

Furthermore, introducing the matrix power series for a given square matrix \mathbf{A}

$$
\begin{equation*}
\underline{\Gamma}_{r=0}^{\infty} \oplus b_{r} \otimes \mathbf{A}^{(r)} \tag{5.3}
\end{equation*}
$$

where $\mathbf{A}^{(r)}=\mathbf{A} \otimes \cdots \otimes \mathbf{A}(r$-fold $)$, we proved

Lemma 5. Series (5.3) converges if $\lambda(\mathbf{A})<\rho$ and diverges if $\lambda(\mathbf{A})>\rho$.
Let us now define the sequence $\left\{\phi_{n}\right\}$ of maxpolynomials by

$$
\begin{equation*}
\phi_{n}(x)={\underset{r=0}{n} \oplus b_{r} \otimes x^{(r)} \quad(n=1,2, \ldots) ~}_{n} \tag{5.4}
\end{equation*}
$$

Let β_{n} be the greatest corner of ϕ_{n} and define

$$
\begin{equation*}
\beta=\lim _{n \rightarrow \infty} \beta_{n} . \tag{5.5}
\end{equation*}
$$

We shall prove the following new result:

Theorem 6. With the foregoing notation: $\beta=\rho$.
Proof. From $\mid 2$, Sect. 9|, the greatest corner of ϕ_{n} is given by

$$
\begin{equation*}
\beta_{n}=\max _{j<n}\left(\frac{b_{j}-b_{n}}{n-j}\right) \quad(n=1,2 \ldots) \tag{5.6}
\end{equation*}
$$

Taking $j=0$ in (5.6)

$$
\beta_{n} \geqslant \frac{b_{0}}{n}-\frac{b_{n}}{n} \quad(n=1,2, \ldots)
$$

whence from (5.2) and (5.5) $\beta \geqslant \rho$. On the other hand, from (5.5) and (5.6)
if $\varepsilon>0, \exists N$ such that

$$
\max _{j<n}\left(\frac{b_{j}-b_{n}}{n-j}\right)>\beta-\frac{1}{2} \varepsilon \quad \text { for } \quad n \geqslant N
$$

i.e., if $\varepsilon>0, \exists N$ such that
if $n \geqslant N, \exists n^{\prime}<n$ such that

$$
\begin{equation*}
\frac{b_{n^{\prime}}-b_{n}}{n-n^{\prime}}>\beta-\frac{1}{2} \varepsilon, \quad \text { i.e., } \quad b_{n^{\prime}}-b_{n}>\left(n-n^{\prime}\right)\left(\beta-\frac{1}{2} \varepsilon\right) . \tag{5.7}
\end{equation*}
$$

And if n^{\prime} is not less than N, we may apply (5.7) again to get

$$
\exists n^{\prime \prime}<n^{\prime} \quad \text { such that } \quad b_{n^{\prime \prime}}-b_{n^{\prime}}>\left(n^{\prime}-n^{\prime \prime}\right)\left(\beta-\frac{1}{2} \varepsilon\right)
$$

Since $n>n^{\prime}>n^{\prime \prime}>\cdots$, we may develop (5.7) and (5.7') and so on until we find $n^{\prime \prime \prime}=m$ (say) $<N$. Then adding (5.7), (5.7')... we get

$$
\begin{aligned}
& \text { if } \varepsilon>0, \exists N \text { such that: if } n \geqslant N, \exists m<N \text { such that }\left(b_{m}-b_{n}\right)> \\
& (n-m)\left(\beta-\frac{1}{2} \varepsilon\right) \text {, }
\end{aligned}
$$

i.e.,

$$
\begin{align*}
-\frac{b_{n}}{n} & >\left(1-\frac{m}{n}\right)\left(\beta-\frac{1}{2} \varepsilon\right)-\frac{b_{m}}{n} \\
& >(\beta-\varepsilon) \quad \text { as } n \uparrow \infty . \tag{5.8}
\end{align*}
$$

Clearly (5.2), (5.5), and (5.8) imply $\rho \geqslant \beta$ and the result follows.

References

1. R. A. Cuninghame-Green, "Minimax Algebra," Lecture Notes in Economics and Mathematical Systems, No. 166, Springer-Verlag, Berlin/New York, 1979.
2. R. A. Cuninghame-Green and P. F. J. Meier, An algebra for piecewise-linear minimax problems, Discrete Appl. Math. 2 (1980), 267-294.
3. R. A. Cuninghame-Green and F. Huisman, Convergence problems in minimax algebra. J. Math. Anal. Appl. 88 (1982), 196-203.
