A note on the Mordell-Weil rank modulo n

Tim Dokchitser ${ }^{\text {a,* }}$, Vladimir Dokchitser ${ }^{\text {b }}$
${ }^{\text {a }}$ Robinson College, Cambridge CB3 9AN, United Kingdom
${ }^{\mathrm{b}}$ Emmanuel College, Cambridge CB2 3AP, United Kingdom

ARTICLE INFO

Article history:

Received 3 November 2009
Revised 11 March 2011
Accepted 11 March 2011
Available online 19 May 2011
Communicated by D. Zagier

MSC:

primary 11G05
secondary 11 G 40
Keywords:
Mordell-Weil rank
Elliptic curves

Abstract

Conjecturally, the parity of the Mordell-Weil rank of an elliptic curve over a number field K is determined by its root number. The root number is a product of local root numbers, so the rank modulo 2 is (conjecturally) the sum over all places of K of a function of elliptic curves over local fields. This note shows that there can be no analogue for the rank modulo 3,4 or 5 , or for the rank itself. In fact, standard conjectures for elliptic curves imply that there is no analogue modulo n for any $n>2$, so this is purely a parity phenomenon.

© 2011 Elsevier Inc. All rights reserved.

It is a consequence of the Birch-Swinnerton-Dyer conjecture that the parity of the Mordell-Weil rank of an elliptic curve E over a number field K is determined by its root number, the sign in the functional equation of the L-function. The root number is a product of local root numbers, which leads to a conjectural formula of the form

$$
\operatorname{rk} E / K \equiv \sum_{v} \lambda\left(E / K_{v}\right) \quad \bmod 2
$$

where λ is an invariant of elliptic curves over local fields, and v runs over the places of K. One might ask whether there is a local expression like this for the rank modulo 3 or modulo 4 , or even for the rank itself. The purpose of this note is to show that, unsurprisingly, the answer is 'no'.

The idea is simple: if the rank modulo n were a sum of local $\mathbb{Z} / n \mathbb{Z}$-valued invariants, then rk E / K would be a multiple of n whenever E is defined over \mathbb{Q} and K / \mathbb{Q} is a Galois extension where every

[^0]place of \mathbb{Q} splits into a multiple of n places. However, for small $n>2$ it is easy to find E and K for which this property fails (Theorem 2). In fact, if one believes the standard heuristics concerning ranks of elliptic curves in abelian extensions, it fails for every $n>2$ and every E / \mathbb{Q} (Theorems 9, 13).

This kind of argument can be used to test whether a global invariant has a chance of being a sum of local terms. We will apply it to other standard invariants of elliptic curves and show that the parity of the 2 -Selmer rank, the parity of the rank of the p-torsion and the rank of the 2 -torsion in the Tate-Shafarevich group Ш modulo 4 cannot be expressed as a sum of local terms (Theorem 6). Finally, we will also comment on L-functions all of whose local factors are nth powers and discuss the parity of the analytic rank for non-self-dual twists of elliptic curves (Remarks 4, 7).

Our results only prohibit an expression for the rank as a sum of local terms. Local data does determine the rank, see Remark 15.

1. Mordell-Weil rank is not a sum of local invariants

Definition. Suppose $(K, E) \mapsto \Lambda(E / K)$ is some global invariant of elliptic curves over number fields. ${ }^{1}$ We say it is a sum of local invariants if

$$
\Lambda(E / K)=\sum_{v} \lambda\left(E / K_{v}\right)
$$

where λ is some invariant of elliptic curves over local fields, and the sum is taken over all places of K.

Implicitly, Λ and λ take values in some abelian group A, usually \mathbb{Z} or $\mathbb{Z} / n \mathbb{Z}$ for some $n \geqslant 2$. Moreover $\lambda\left(E / K_{v}\right)$ should be 0 for all but finitely many v.

Example. If the Birch-Swinnerton-Dyer conjecture holds (or if $Ш$ is finite, see [4]), then the MordellWeil rank modulo 2 is a sum of local invariants with values in $\mathbb{Z} / 2 \mathbb{Z}$. Specifically, for an elliptic curve E over a local field k write $w(E / k)= \pm 1$ for its local root number, and define λ by $(-1)^{\lambda(E / k)}=w(E / k)$. Then

$$
\mathrm{rk} E / K \equiv \sum_{v} \lambda\left(E / K_{v}\right) \quad \bmod 2
$$

An explicit description of local root numbers can be found in [9] and [4].
Theorem 1. The Mordell-Weil rank is not a sum of local invariants.
This is a consequence of the following stronger statement:
Theorem 2. For $n \in\{3,4,5\}$ the Mordell-Weil rank modulo n is not a sum of local invariants (with values in $\mathbb{Z} / n \mathbb{Z}$).

Lemma 3. Suppose Λ : (number fields) $\rightarrow \mathbb{Z} / n \mathbb{Z}$ satisfies $\Lambda(K)=\sum_{v} \lambda\left(K_{v}\right)$ for some invariant λ : (local fields) $\rightarrow \mathbb{Z} / n \mathbb{Z}$. Then $\Lambda(F)=0$ whenever F / K is a Galois extension of number fields in which the number of places above each place of K is a multiple of n.

Proof. In the local expression for $\Lambda(F)$ each local field occurs a multiple of n times.

[^1]Proof of Theorem 2. Take $E / \mathbb{Q}: y^{2}=x(x+2)(x-3)$, which is 480a1 in Cremona's notation. Writing ζ_{p} for a primitive p th root of unity, let

$$
F_{n}= \begin{cases}\text { the degree } 9 \text { subfield of } \mathbb{Q}\left(\zeta_{13}, \zeta_{103}\right) & \text { if } n=3, \\ \text { the degree } 25 \text { subfield of } \mathbb{Q}\left(\zeta_{11}, \zeta_{241}\right) & \text { if } n=5, \\ \mathbb{Q}(\sqrt{-1}, \sqrt{41}, \sqrt{73}) & \text { if } n=4 .\end{cases}
$$

Because 13 and 103 are cubes modulo one another, and all other primes are unramified in F_{3}, every place of \mathbb{Q} splits into 3 or 9 places in F_{3}. Similarly F_{4} and F_{5} also satisfy the assumptions of Lemma 3 with $n=4,5$. Hence, if the Mordell-Weil rank modulo n were a sum of local invariants, it would be $0 \in \mathbb{Z} / n \mathbb{Z}$ for E / F_{n}. However, 2-descent shows that $\mathrm{rk} E / F_{3}=\mathrm{rk} E / F_{5}=1$ and $\mathrm{rk} E / F_{4}=6$ (e.g. using Magma [1], over all minimal non-trivial subfields of F_{n}).

Remark 4. The L-series of the curve $E=480$ a1 used in the proof over $F=F_{4}=\mathbb{Q}(\sqrt{-1}, \sqrt{41}, \sqrt{73})$ is formally a 4th power, in the sense that each Euler factor is:

$$
L(E / F, s)=\left(\frac{1}{1}\right)^{4}\left(\frac{1}{1-3^{-2 s}}\right)^{4}\left(\frac{1}{1-55^{-2 s}}\right)^{4}\left(\frac{1}{1+14 \cdot 7^{-2 s}+7^{2-45}}\right)^{4}\left(\frac{1}{1+6 \cdot 11^{-2 s}+11^{2-45}}\right)^{4} \cdots .
$$

However, it is not a 4th power of an entire function, as it vanishes to order 6 at $s=1$. Actually, it is not even a square of an entire function: it has a simple zero at $1+2.1565479 \ldots i$.

In fact, by construction of F, for any E / \mathbb{Q} the L-series $L(E / F, s)$ is formally a 4th power and vanishes to even order at $s=1$ by the functional equation. Its square root has analytic continuation to a domain including $\operatorname{Re} s>\frac{3}{2}, \operatorname{Re} s<\frac{1}{2}$ and the real axis, and satisfies a functional equation $s \leftrightarrow 2-s$, but it is not clear whether it has an arithmetic meaning.

Lemma 5. Suppose an invariant $\Lambda \in \mathbb{Z} / 2^{k} \mathbb{Z}$ is a sum of local invariants. Let $F=K\left(\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$ be a multi-quadratic extension in which every prime of K splits into a multiple of 2^{k} primes of F. Then for every elliptic curve E / K,

$$
\Lambda(E / K)+\sum_{D} \Lambda\left(E_{D} / K\right)=0,
$$

where the sum is taken over the quadratic subfields $K(\sqrt{D})$ of F / K, and E_{D} denotes the quadratic twist of E by D.

Proof. In the local expression for the left-hand side of the formula each local term (λ of a given elliptic curve over a given local field) occurs a multiple of 2^{k} times.

Theorem 6. Each of the following is not a sum of local invariants:

- $\operatorname{dim}_{\mathbb{F}_{2}} Ш(E / K)[2] \bmod 4$,
- $\mathrm{rk}(E / K)+\operatorname{dim}_{\mathbb{F}_{2}} Ш(E / K)[2] \bmod 4$,
- $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2} E / K \bmod 2$,
- $\operatorname{dim}_{\mathbb{F}_{p}} E(K)[p] \bmod 2$ for any prime p.

Here $Ш$ is the Tate-Shafarevich group and Sel_{2} is the 2-Selmer group.
Proof. The argument is similar to that of Theorem 2:
For the first two claims, apply Lemma 5 to $E: y^{2}+y=x^{3}-x$ (37a1) with $K=\mathbb{Q}$ and $F=\mathbb{Q}(\sqrt{-1}, \sqrt{17}, \sqrt{89})$. The quadratic twists of E by $1,-17,-89,17 \cdot 89$ have rank 1 , and those by $-1,17,89,-17 \cdot 89$ have rank 0 ; the twist by $-17 \cdot 89$ has $|Ш[2]|=4$ and the other seven have
trivial Ш[2]. The sum over all twists is therefore $2 \bmod 4$ in both cases, so they are not sums of local invariants.

For the parity of the 2-Selmer rank and of dim $E[2]$ apply Lemma 3 to $E: y^{2}+x y+y=x^{3}+4 x-6$ (14a1) with $K=\mathbb{Q}, F=\mathbb{Q}(\sqrt{-1}, \sqrt{17})$ and $n=2$. The 2-torsion subgroup of E / F is of order 2 and its 2 -Selmer group over F is of order 8 .

Finally, for $\operatorname{dim}_{\mathbb{F}_{p}} E[p] \bmod 2$ for $p>2$ take any elliptic curve E / \mathbb{Q} with $\operatorname{Gal}(\mathbb{Q}(E[p]) / \mathbb{Q}) \cong$ $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, e.g. $E: y^{2}=x^{3}-x^{2}+x(24 \mathrm{a} 4)$, see $[10,5.7 .2]$. Let K be the field obtained by adjoining to \mathbb{Q} the coordinates of one p-torsion point and $F=K(\sqrt{-1}, \sqrt{17})$. Because F does not contain the p th roots of unity, $\operatorname{dim}_{\mathbb{F}_{p}} E(F)[p]=1$. So, by Lemma 3 the parity of this dimension is not a sum of local invariants.

Remark 7. The functional equation expresses the parity of the analytic rank as a sum of local invariants not only for elliptic curves (or abelian varieties), but also for their twists by self-dual Artin representations. However, for the parity of the rank of non-self-dual twists there is presumably no such expression.

For example, let χ be a non-trivial Dirichlet character of $(\mathbb{Z} / 7 \mathbb{Z})^{\times}$of order 3. Then there is no function $(k, E) \mapsto \lambda(E / k) \in \mathbb{Z}$ defined for elliptic curves over local fields k, such that for all elliptic curves E / \mathbb{Q},

$$
\operatorname{ord}_{s=1} L(E, \chi, s) \equiv \sum_{v} \lambda\left(E / \mathbb{Q}_{v}\right) \quad \bmod 2
$$

To see this, take

$$
E / \mathbb{Q}: y^{2}+y=x^{3}+x^{2}+x(19 \mathrm{a} 3), \quad K=\mathbb{Q}, \quad F=\mathbb{Q}(\sqrt{-1}, \sqrt{17})
$$

and apply Lemma 5 . The twists of E, E_{-1} and E_{17} by χ have analytic rank 0 , and that of E_{-17} has analytic rank 1, adding up to an odd number.

2. Expectations

We expect the Mordell-Weil rank modulo n not to be a sum of local terms for any $n>2$ and any class of elliptic curves. Theorems 9 and 13 below show that this is a consequence of modularity of elliptic curves, the known cases of the Birch-Swinnerton-Dyer conjecture and standard conjectures for analytic ranks of elliptic curves.

Notation. For a prime p we write Σ_{p} for the set of all Dirichlet characters of order p. We say that $S \subset \Sigma_{p}$ has density α if

$$
\lim _{\chi \rightarrow \infty} \frac{\{\chi: \chi \in S \mid N(\chi)<\chi\}}{\left\{\chi: \chi \in \Sigma_{p} \mid N(\chi)<\chi\right\}}=\alpha,
$$

where $N(\chi)$ denotes the conductor of χ.
Conjecture 8 (Weak form of [3, Conj. 1.2]). For $p>2$ and every elliptic curve E / \mathbb{Q}, those $\chi \in \Sigma_{p}$ for which $L(E, \chi, 1)=0$ have density 0 in Σ_{p}.

Theorem 9. Let E / \mathbb{Q} be an elliptic curve and p an odd prime. Assuming Conjecture 8, there is no function $k \mapsto \lambda(E / k) \in \mathbb{Z} / p \mathbb{Z}$ defined for local fields k of characteristic 0 , such that for every number field K,

$$
\operatorname{rk} E / K \equiv \sum_{v} \lambda\left(E / K_{v}\right) \quad \bmod p
$$

Lemma 10. Let p be a prime number and $S \subset \Sigma_{p}$ a set of characters of density 0 in Σ_{p}. For every $d \geqslant 1$ there is an abelian extension F_{d} / \mathbb{Q} with Galois group $G \cong \mathbb{F}_{p}^{d}$, such that no characters of G are in S.

Proof. Without loss of generality, we may assume that if $\chi \in S$ then $\chi^{n} \in S$ for $1 \leqslant n<p$. When $d=1$, take F_{1} to be the kernel of any $\chi \in \Sigma_{p} \backslash S$. Now proceed by induction, supposing that F_{d-1} is constructed. Writing Ψ for the set of characters of $\operatorname{Gal}\left(F_{d-1} / \mathbb{Q}\right)$, the set

$$
S_{d}=\bigcup_{\psi \in \Psi}\{\phi \psi: \phi \in S\}
$$

still has density 0 . Pick any $\chi \in \Sigma_{p} \backslash S_{d}$, and set F_{d} to be the compositum of F_{d-1} and the degree p extension of \mathbb{Q} cut out by χ. It is easy to check that no character of $\operatorname{Gal}\left(F_{d} / \mathbb{Q}\right)$ lies in S.

Proof of Theorem 9. Pick a quadratic field $\mathbb{Q}(\sqrt{D})$ such that the quadratic twist E_{D} of E by D has analytic rank 1 , which is possible by [2,8,11]. By Conjecture 8, the set S of Dirichlet characters χ of order p such that $L\left(E_{D}, \chi, 1\right)=0$ has density 0 . Apply Lemma 10 to S with $d=3$. Every place of \mathbb{Q} splits in the resulting field $F=F_{3}$ into a multiple of p places $\left(\mathbb{Q}_{l}\right.$ has no \mathbb{F}_{p}^{3}-extensions, so every prime has to split).

Arguing by contradiction, suppose the rank of $E \bmod p$ is a sum of local invariants. Because in F / \mathbb{Q} and therefore also in $F(\sqrt{D}) / \mathbb{Q}$ every place splits into a multiple of p places,

$$
\mathrm{rk} E / F \equiv 0 \quad \bmod p \quad \text { and } \quad \operatorname{rk} E / F(\sqrt{D}) \equiv 0 \quad \bmod p
$$

by Lemma 3. Therefore $\operatorname{rk} E_{D} / F=\operatorname{rk} E / F(\sqrt{D})-\operatorname{rk} E / F$ is a multiple of p. On the other hand,

$$
L\left(E_{D} / F, s\right)=\prod_{\chi} L\left(E_{D}, \chi, s\right),
$$

the product taken over the characters of $\operatorname{Gal}(F / \mathbb{Q})$. By construction, it has a simple zero at $s=1$. Because F is totally real of odd degree over \mathbb{Q}, by Zhang's theorem [12, Thm. A], E_{D} / F has MordellWeil rank $1 \not \equiv 0 \bmod p$, a contradiction.

Conjecture 11. (See Goldfeld [6].) For every elliptic curve E / \mathbb{Q}, those $\chi \in \Sigma_{2}$ for which $\operatorname{ord}_{s=1} L(E, \chi, s)>1$ have density 0 in Σ_{2}.

Conjecture 12. Every elliptic curve E / \mathbb{Q} has a quadratic twist of Mordell-Weil rank 2.
Theorem 13. Let E / \mathbb{Q} be an elliptic curve. Assuming Conjectures 11 and 12, there is no function $k \mapsto \lambda(E / k) \in \mathbb{Z} / 4 \mathbb{Z}$ defined for local fields k of characteristic 0 , such that for every number field K,

$$
\mathrm{rk} E / K \equiv \sum_{v} \lambda\left(E / K_{v}\right) \quad \bmod 4
$$

Proof. Let $\mathbb{Q}(\sqrt{D})$ be a quadratic field such that the quadratic twist $E^{\prime}=E_{D}$ of E by D has MordellWeil rank 2 (Conjecture 12). The set S of those $\chi \in \Sigma_{2}$ for which $\operatorname{ord}_{s=1} L\left(E^{\prime}, \chi, s\right)>1$ has density 0 (Conjecture 11). Let P be the set of primes where E^{\prime} has bad reduction union $\{\infty\}$, and apply Lemma 10 to S with $d=5+3|P|$. The resulting field F_{d} has a subfield F of degree 2^{5} over \mathbb{Q}, where all places in P split completely: \mathbb{Q}_{l} has no \mathbb{F}_{2}^{4}-extensions, so the condition that a given place in P splits completely drops the dimension by at most 3 . By the same argument, every place of \mathbb{Q} splits in F into a multiple of 4 places.

Arguing by contradiction, suppose the rank of $E \bmod 4$ is a sum of local invariants. Because in F / \mathbb{Q} and therefore also in $F(\sqrt{D}) / \mathbb{Q}$ every place splits into a multiple of 4 places,

$$
\mathrm{rk} E / F \equiv 0 \quad \bmod 4 \quad \text { and } \quad \mathrm{rk} E / F(\sqrt{D}) \equiv 0 \quad \bmod 4
$$

by Lemma 3. Therefore $\mathrm{rk} E^{\prime} / F=\operatorname{rk} E / F(\sqrt{D})-\mathrm{rk} E / F$ is a multiple of 4. Now we claim that E^{\prime} / F has rank 2 or 33 , yielding a contradiction.

Let $\mathbb{Q}(\sqrt{m}) \subset F$ be a quadratic subfield. The root number of E^{\prime} over $\mathbb{Q}(\sqrt{m})$ is 1 , because the root number is a product of local root numbers and the places in P split in $\mathbb{Q}(\sqrt{m})$. (The local root number is +1 at primes of good reduction.) So

$$
L\left(E^{\prime} / \mathbb{Q}(\sqrt{m}), s\right)=L\left(E^{\prime} / \mathbb{Q}, s\right) L\left(E_{m}^{\prime} / \mathbb{Q}, s\right)
$$

vanishes to even order at $s=1$. Hence the 31 twists of E^{\prime} by the non-trivial characters of $\operatorname{Gal}(F / \mathbb{Q})$ have the same analytic rank 0 or 1, by the choice of F. By Kolyvagin's theorem [7], their Mordell-Weil ranks are the same as their analytic ranks, and so $\mathrm{rk} E^{\prime} / F$ is either $2+0$ or $2+31$.

Remark 14. In some cases, it may seem reasonable to try and write some global invariant in $\mathbb{Z} / n \mathbb{Z}$ as a sum of local invariants in $\frac{1}{m} \mathbb{Z} / n \mathbb{Z}$, i.e. to allow denominators in the local terms. For instance, one could ask whether the parity of the rank of a cubic twist (as in Remark 7) can be written as a sum of local invariants of the form $\frac{a}{3} \bmod 2 \mathbb{Z}$.

However, introducing a denominator does not appear to help. First, the prime-to-n part m^{\prime} of m adds no flexibility, as can be seen by multiplying the formula by m^{\prime}. (For instance, if there were a formula for the parity of the rank of a cubic twist as a sum of local terms in $\frac{a}{3} \bmod 2 \mathbb{Z}$, then multiplying it by 3 would yield a formula for the same parity with local terms in $\mathbb{Z} / 2 \mathbb{Z}$.) As for the non-prime-to-n part, e.g. the proofs of Theorems 9 and 13 immediately adapt to local invariants in $\frac{1}{p^{k}} \mathbb{Z} / p \mathbb{Z}$ and $\frac{1}{2^{k}} \mathbb{Z} / 4 \mathbb{Z}$, by increasing d by k.

Remark 15. The negative results in this paper rely essentially on the fact that we allow only additive formulae for global invariants in terms of local invariants. Although Theorem 1 shows that there is no formula of the form

$$
\mathrm{rk} E / K=\sum_{v} \lambda\left(E / K_{v}\right)
$$

the Mordell-Weil rank is determined by the set $\left\{E / K_{v}\right\}_{v}$ of curves over local fields. In other words,

$$
\operatorname{rk} E / K=\text { function }\left(\left\{E / K_{v}\right\}_{v}\right) .
$$

In fact, for any abelian variety A / K the set $\left\{A / K_{v}\right\}_{v}$ determines the L-function $L(A / K, s)$ which is the same as $L(W / \mathbb{Q}, s)$ where W is the Weil restriction of A to \mathbb{Q}. By Faltings' theorem [5] the L-function recovers W up to isogeny, and hence also recovers the $\operatorname{rank} \operatorname{rk} A / K(=\operatorname{rk} W / \mathbb{Q})$.

Acknowledgments

The first author is supported by a Royal Society University Research Fellowship. The second author would like to thank Gonville \& Caius College, Cambridge.

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: The user language, J. Symbolic Comput. 24 (3-4) (1997) 235-265.
[2] D. Bump, S. Friedberg, J. Hoffstein, Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990) 543-618.
[3] C. David, J. Fearnley, H. Kisilevsky, Vanishing of L-functions of elliptic curves over number fields, in: Ranks of Elliptic Curves and Random Matrix Theory, in: London Math. Soc. Lecture Note Ser., vol. 341, Cambridge University Press, 2007, pp. 247-259.
[4] T. Dokchitser, V. Dokchitser, Root numbers and parity of ranks of elliptic curves, arXiv:0906.1815, 2009.
[5] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (3) (1983) 349-366.
[6] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, Springer Lect. Notes 751 (1979) 108-118.
[7] V.A. Kolyvagin, Euler systems, in: The Grothendieck Festschrift, in: Progr. Math., Birkhäuser, Boston, 1990.
[8] M.R. Murty, V.K. Murty, Mean values of derivatives of modular L-series, Ann. of Math. 133 (1991) 447-475.
[9] D. Rohrlich, Galois theory, elliptic curves, and root numbers, Compos. Math. 100 (1996) 311-349.
[10] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (4) (1972) 259-331.
[11] J.-L. Waldspurger, Correspondences de Shimura et quaternions, Forum Math. 3 (1991) 219-307.
[12] S. Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. 153 (2001) 27-147.

[^0]: * Corresponding author.

 E-mail addresses: t.dokchitser@dpmms.cam.ac.uk (T. Dokchitser), v.dokchitser@dpmms.cam.ac.uk (V. Dokchitser).

[^1]: ${ }^{1}$ Meaning that if $K \cong K^{\prime}$ and E / K and E^{\prime} / K^{\prime} are isomorphic elliptic curves (identifying K with K^{\prime}), then $\Lambda(E / K)=\Lambda\left(E^{\prime} / K^{\prime}\right)$.

