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Abstract

We find a sufficient condition that H is not level based on a reduction number. In particular, we prove that a graded Artinian
algebra of codimension 3 with Hilbert function H = (hg, hy,...,hg—1 > hgq = hg41) cannot be level if hy < 2d + 3, and
that there exists a level O-sequence of codimension 3 of type H for hy; > 2d + k for k > 4. Furthermore, we show that H
is not level if By g42(/ lexy — B2.d+2U lex) “and also prove that any codimension 3 Artinian graded algebra A = R/I cannot
be level if By 442(Gin(1)) = B2 442(Gin(1)). In this case, the Hilbert function of A does not have to satisfy the condition
hg—1 > hg =hg41.

Moreover, we show that every codimension n graded Artinian level algebra having the Weak-Lefschetz Property has a strictly
unimodal Hilbert function having a growth condition on (hg_1 — hg) < (n — 1)(hgy — hg41) for every d > 6 where

hy<hy <---<hy=:--=hg>-->hg_1> h;.

In particular, we show that if A is of codimension 3, then (hg_1 —hg) < 2(hg —hgy1) forevery 0 < d < s and hy_1 < 3hg, and
prove that if A is a codimension 3 Artinian algebra with an h-vector (1, 3, hy, ..., hg) such that

hg—1—hg =2(hg —hg41) >0 and soc(A)g_; =0

for some r1(A) < d < s, then (I<411) is (d + 1)-regular and dimy, soc(A)g = hg — hg41.
© 2006 Elsevier B.V. All rights reserved.

MSC: Primary: 13D40; secondary: 14M10

1. Introduction

Let R = k[x1, ..., x,] be an n-variable polynomial ring over an infinite field with characteristic 0. In this article,
we shall study Artinian quotients A = R/I of R where [ is a homogeneous ideal of R. These rings are often referred
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to as standard graded algebras. Since R = ©:° R; (R;: the vector space of dimension <i+n(’i_11)) generated by all the
monomials in R having degree i) and I = @72, I;, gives
A=R/I =®ZH(Ri/1;) = B2 Ai
as a graded ring. The numerical function
H(t) := dimy A; = dimy R, — dimy I;

is called the Hilbert function of the ring A.
Given an O-sequence H = (ho, h1, ...), we define the first difference of H as

AH = (ho, h1 — ho, ha — hy, hs — ha, .. ).

If 7 is a homogeneous ideal of R of height n, then A = R/I is an Artinian k-algebra, and hence dimy A < co. We
associate the graded algebra A with a vector of nonnegative integers which is an (s + 1)-tuple, called the h-vector of
A and denoted by

h(A) = (ho, hy, ..., hy),
where h; = dimy A;. Thus, wecan write A = kP A1 D --- D As; where A; # 0. We call s the socle degree of A. The

socle of A is defined by the annihilator of the maximal homogeneous ideal, namely

N
anng(m) ={a € A|am =0} wherem = ZA,-.
i=1

Moreover, an h-vector (hq, hy, ..., hy) is called
unimodal if hy<---<h;=---=hy>--->hy,
strictly unimodal if hy <---<h;=---=hy > --- > hy.

A graded Artinian k-algebra A = @;_, A; (Ay # 0) is said to have the Weak-Lefschetz Property (WLP for short)
if there is an element L € A; such that the linear transformations

xL .
Ai— Ay, 1<i<s-—1,

which are defined by a multiplication by L, are either injective or surjective. This implies that the linear
transformations have maximal ranks for every i. In this case, we call L a Lefschetz element.
A monomial ideal / in R is stable if the monomial
Xjw

Xm(w)

belongs to I for every monomial w € [ and j < m(w) where
m(u) :=max{j | a; > 0}

foru = xf] ---xp". Let S be a subset of all monomials in R = Di=o Ri of degree i. We call S a Boreal fixed set if

u=xj'--xi"e€S, aj>0, implies % es
J

forevery 1 <i < j <n.

A monomial ideal I of R is called a Borel-fixed ideal or strongly stable ideal if the set of all monomials in /; is
a Borel set for every i. There are two Borel-fixed monomial ideals canonically attached to a homogeneous ideal I of
R: the generic initial ideal Gin(/) with respect to the reverse lexicographic order and the lex-segment ideal /'°*. The
ideal I'®* is defined as follows. For the vector space I; of forms of degree d in I, one defines (I'®*), to be the vector
space generated by the largest, in lexicographical order, dimy (/;) monomials of degree d. By construction, /'** is a
strongly stable ideal and it only depends on the Hilbert function of 1.
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In the case of the generic initial ideal, it has been proved by Galligo [13] that they are Borel-fixed in characteristic
zero, and then by Bayer and Stillman [2] that they are generalized to every characteristic.

In [1], Ahn and Migliore gave some geometric results using generic initial ideals for the degree reverse
lexicographic order, which improved a well-known result of Bigatti, Geramita, and Migliore concerning geometric
consequences of maximal growth of the Hilbert function of the Artinian reduction of a set of points in [6]. In [15],
Geramita, Harima, Migliore, and Shin gave a homological reinterpretation of a level Artinian algebra and explained
the combinatorial notion of Cancellation of Betti numbers of the minimal free resolution of the lex-segment ideal
associated to a given homogeneous ideal. We shall explain the new result when we carry out the analogous result
using the generic initial ideal instead of the lex-segment ideal. We find some new results on the maximal growth of
the difference of Hilbert function in degree d larger than the reduction number r1(A) if there is no socle element in
degree d — 1 using some recent result given by Ahn and Migliore [1]. As an application, we give the condition if some
O-sequences are “either level or non-level sequences of Artinian graded algebras with the WLP.

Let F be the graded minimal resolution of R/, i.e.,

F: 0 — fn N fn—l - . fl - R - R/I — 0.
We can write
Vi
Fi =D R (~aij)
j=1

where o1 < 2 < -+ < &;y,. The numbers «;; are called the shifts associated to R/I, and the numbers f;; are called
the graded Betti numbers of R/I. For I as above, the Betti diagram of R/I is a useful device to encode the graded
Betti numbers of R/I (and hence of I). It is constructed as follows:

0 1 n—1
0 1 0 0 0
0 * * %

t 0 Bor+1 Bz Bn—1,t4n

2| 0 Boa-1 Bra * Pu-td—24n
di-1 | 0 Poa Bra+1 * Pu—td—14n

d 0 * :Bn—l,d+n

Bo.a+1  Pra+2

When we need to emphasize the ideal 1, we shall use g; ; (1) for §; ;.

Recall that if the last free module of the minimal free resolution of a graded ring A with Hilbert function H is
of the form F,, = RP(—s) for some s > 0, then the Hilbert function H and the graded ring A are called level.
For a special case, if 8 = 1, then we call a graded Artinian algebra A Gorenstein. In [32], Stanley proved that any
graded Artinian Gorenstein algebra of codimension 3 is unimodal. In fact, he proved a stronger result than unimodality
using the structure theorem of Buchsbaum and Eisenbud for the Gorenstein algebra of codimension 3 in [8]. Since
then, the graded Artinian Gorenstein algebras of codimension 3 have been much studied (see [9,15,16,20,21,27,28,31,
33]). In [3], Bernstein and larrobino showed how to construct non-unimodal graded Artinian Gorenstein algebras of
codimension higher than or equal to 5. Moreover, in [7], Boij and Laksov showed another method on how to construct
the same graded Artinian Gorenstein algebras. Unfortunately, it is unknown if there exists a graded non-unimodal
Gorenstein algebra of codimension 4. For unimodal Artinian Gorenstein algebras of codimension 4, how to construct
some of them using the link-sum method has been shown by Shin in [31]. It has also been shown by Geramita, Harima,
and Shin [16] and Harima [20] how to obtain some unimodal Artinian Gorenstein algebras of any codimension n (>3).
An SI-sequence is a finite sequence of positive integers which is symmetric, unimodal, and satisfies a certain growth
condition. In [28], Migliore and Nagel showed how to construct a reduced, arithmetically Gorenstein configuration G
of linear varieties of arbitrary dimension whose Artinian reduction has the given SI-sequence as Hilbert function and
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has the Weak Lefschetz Property. For graded Artinian-level algebras, it has been recently studied (see [3,5,7,10,15,17,
27,33,34]). In [15], they proved the following result. Let

H : hy hy -+ hgy hg hg --- (1.1)

with hy_1 > hy. If hy < d + 1 with any codimension /1, then H is not level.
In [33], Zanello constructed a non-unimodal level O-sequence of codimension 3 as follows:

H=(ho,hi,....,hast, 6,6+ 1,6,¢,....t+1,1,1)

where the sequence ¢, ¢, + 1 can be repeated as many times as we want. Thus there exists a graded Artinian-level
algebra of codimension 3 of type in Eq. (1.1) which does not have the WLP.

In Section 2, preliminary results and notations on lex-segment ideals and generic initial ideals are introduced. In
Section 3, we show that any codimension n graded Artinian level algebra A having the WLP has the Hilbert function
which is strictly unimodal (see Theorem 3.6). In particular, we prove that if A has the Hilbert function such that

h0<h1 <~-~</’lr|(A)=~--=/’l9>-~->hs_1>h5,

then hy—1 — hg < (n — 1)(hg — hg41) forevery 8 < d < s (see Theorem 3.6). Furthermore, we show that if A is of
codimension 3, then hy_1 — hg < 2(hg — hgy1) forevery @ < d < s and hy_1 < 3h; (see Theorem 3.23). We also
prove that if A is a codimension 3 Artinian graded algebra with socle degree s and

B1.a+2(Gin(1)) = f2,4+2(Gin(1)) > 0

for some d < s, then A cannot be level (see Theorem 3.14). Moreover, if A = R/ is a codimension 3 Artinian graded
algebra with an h-vector (1,3, hy, ..., hy) such that hy_1 — hy = 2(hg — hg4+1) > 0 for some r1(A) < d < s and
soc(A)g—1 = 0, then (I<441) is (d + 1)-regular and dimy soc(A)g = hg — hg+1 (see Theorem 3.19).

One of the main topics of this paper is to study O-sequences of type in Eq. (1.1) and find an answer to the following
question.

Question 1.1. Let H be as in Eq. (1.1) with 2; = 3. What is the minimum value for #; when H is level?

Finally in Section 4, we show that if R/[ is a graded Artinian algebra of codimension 3 having Hilbert function
H in Eq. (1.1) and ,Bl,d+2(llex) = ,Bz,d_kz(llex), then R/I is not level, i.e., H cannot be level (see Theorem 4.5).
Furthermore, we prove that any O-sequence H of codimension 3 in Eq. (1.1) cannot be level when 7; < 2d + 3 and
there exists a level O-sequence of codimension 3 of the type in Eq. (1.1) having hy > 2d + k for every k > 4 (see
Theorem 4.1, Proposition 4.9, and Remark 4.10), which is a complete answer to Question 1.1.

A computer program CoCoA (see [30]) was used for all examples in this article.

2. Some preliminary results

In this section, we introduce some preliminary results and notations on lex-segment ideals and generic initial ideals.
We only consider the degree reverse lexicographic order.

Theorem 2.1 ([1,2,19]). Let L be a general linear form and let J = (I + (L)) /(L) be considered as a homogeneous
ideal of S = k[x1,...,xn—1). Then
Gin(J) = (Gin(I) + (xn)) /(xp).

Let I be a homogeneous ideal of R. For a monomial term ordering t there exists a flat family of ideals I, with
Iy = in; (I) (the initial ideal of I) and /; canonically isomorphic to [ for all + # 0 (this implies that in, (/) has the
same Hilbert function as that of 7). Using this result, gives us the following theorem:

Theorem 2.2 (The Cancelation Principle, [1,19]). For any homogeneous ideal I and any i and d, there is a complex
of k = R/m-modules V& such that

Ve = TorR (in, (1), k)a

H; (V) = TorR (1, k)4.
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Remark 2.3. One way to paraphrase this theorem is to say that the minimal free resolution of / is obtained from that
of in; (1), the initial ideal of I, by canceling some adjacent terms of the same degree.

Theorem 2.4 (Eliahou and Kervaire, [11]). Let I be a stable monomial ideal of R. Denote by G(I) the set of minimal
(monomial) generators of I and G(I)4 the elements of G(I) having degree d. Then

T)—1
Boith= Y (m() )
TeG)i_, q

This theorem gives all the graded Betti numbers of the lex-segment ideal and the generic initial ideal just
from an intimate knowledge of the generators of that ideal. Since the minimal free resolution of the ideal of a k-
configuration in P is extremal [16,18], we may apply this result to those ideals. It is an immediate consequence of
the Eliahou—Kervaire theorem that if 7 is a lex-segment ideal, a generic initial ideal, or the ideal of a k-configuration
in P which has no generators in degree d, then 8,,; = 0 wheneveri — g = d.

Remark 2.5. Let I be any homogeneous ideal of R = k[x1, ..., x,] and J = Gin(/). Then, by Theorem 2.2, we
have

ﬂq,i(l) = ,Bq,i (J)
In particular, if 8, ;(J) = 0, then 8, ; (1) = 0.
Let I be a homogeneous ideal of R = k[x1, ..., x,] such that dim(R/I) = d. In [23], they defined the s-reduction

number rg(R/I) of R/ for s > d and have shown the following theorem.

Theorem 2.6 ([1,23]). For a homogeneous ideal I of R,
rs(R/1) = rg(R/Gin(1)).

If 1 is a Borel-fixed monomial ideal of R = k[xy, ..., x,] with dim(R/I) = n — d, then we know that there
are positive numbers ay, ..., ag such that x,.“" is a minimal generator of /. In [23], they have also proved that if a
monomial ideal [ is strongly stable, then

re(R/I) = min{¢ | x'*! e 13,

n—s
Furthermore, the following useful lemma has been proved in [1].
Lemma 2.7 (Lemma 2.15, [1]). For a homogeneous ideal I of R and for s > dim(R/I), the s-reduction number
rs(R/1) can be given as the following:
rs(R/1) = min{¢ | x‘*! € Gin(1)}

n—s

= min{¢ | Hilbert function of R/(I + J) vanishes in degree £ + 1}
where J is generated by s general linear forms of R.

For a homogeneous ideal I of R = k[xy, ..., x,], we recall that / lex js a lex-segment ideal associated with 7. In
Section 4, we shall use the following two useful lemmas.

Lemma 2.8. Let [ be a homogeneous ideal of R = k[x1, ..., x,] and let I= (I<d+1) for some d > 0. Then,

(@) Bij(I) = B;,j(Gin(I)) =< Bi,j (I'™) for all i, j.
(®) Bo.a+2(I'™) = Bo.a+2(I") = Po.a+2(D),
(©) Bo,a+2(Gin(1)) = Bo,a+2(Gin(1)) — Bo,a+2(1).

Proof. (a) The first inequality can be proved by Theorem 2.2. The second one is directly obtained from the theorem
of Bigatti, Hulett, and Pardue [4,24,29].
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(b) Firstly, note that

Bo.a+2(I") = dimy (I'™) 440 — dimg (Ry (I'™) 441)
= [dimy Rg42 — dimy (Ry (I')g41)] — [dimy Ry12 — dimyg (1) 442]
= HR/Ilex(d + 1)<d+1) - HR/Ilex(d + 2)

= Hgy/(d+ D)"Y —Hg);(d +2) (- Hgyr(t) = Hgpix (1) for every 1). .1
It follows from Eq. (2.1) that

Bo.a+2(I) = dimy(Ig42) — dimy(Ig42)
= [dimg Rg42 — dimg (Ig+2)] — [dimy Ry — dimy (I742)]
=Hy,;(d +2) — Hg/1(d +2)

= (Hgy1(d + 1)V —Hgy1(d +2) — Hgyr(d + DY —Hg 1(d +2))

= (Hgys(d + )TV —Hg)1(d +2) — Hg,;(d + DY —Hy i(d +2))
(- Hgyr(d+1) =Hg,;(d+1)

= Bo.a+2(I"™) = Bo.ar2(I'™) (. (2.1).

(c) Note that Gin(/)g+1 = Gin(I_)dH. Hence we have

Bo.a+2(I) = dimy(Ig42) — dimy(Ig42)
= dimy(Gin(I)g+2) — dimy(Gin(I)42)
= [dimg (Gin(1)g+2) — dimg (R1Gin(1) 441)] — [dimg (Gin(1)g42) — dimg (R1Gin(1) 441)]
¢ Gin(1)g41 = Gin(D)g+1)
= o.4+2(Gin(1)) — Bo.a+2(Gin(])),

which completes the proof. O

Lemma 2.9. Let I C R = k[x1, xax3] be a homogeneous ideal and let that A = R/I be a graded Artinian algebra.
Then, for every d > 0,

(@) B1.a(I"™) — Bi.a(I) = [Bo,a(I'™) — Bo.a(D] + [B2,a(I'™*) — Ba.a(D)].
(b) B1,4(Gin(1)) — B1,a(I) = [Bo,a(Gin(1)) — Bo,a(1)] + [B2,4(Gin(1)) — B2,a(1)].

Proof. (a) Recall the Betti diagram of R/ ['®*:

0 1 2
0 1 0 0
0 * * *

Bo.a—2 (1) Bra—1(I')  Bo.a(1')
Bo.a—1(I'™)  Bra(I'™)  Bagr1(I')
Bo.a(I'™)  Bras1(I'™)  Bo gz (I'™)

U
|

andlet y; 4 = ﬂi,d(llex) — Bi.a(I). Then, by Theorem 2.2, we have that

Yi.d = Y0,d + V2.d
I I I
Br.a(I'*) — Br.a(l) [Bo.a(I"™) = Bo.a(D] + [Ba.a(I™™) — Baa(D)],
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as we desired.
(b) In the same way as above, (b) holds immediately. O

3. An h-vector of a graded Artinian-level algebra having the WLP

In this section, we consider h-vectors of a graded Artinian level algebra with the WLP and we prove that some of
graded Artinian O-sequences are not level using generic initial ideals. Moreover, we assume that R = k[x1, ..., x,]
is an n-variable polynomial ring over a field k with characteristic O.

For positive integers & and i, h can be written uniquely in the form

n; n;_— m;
h = hg :=( i’)+(i'_i>+~~+<j’>

where m; > m;_1 > --- > mj > j > 1. This expansion for # is called the i-binomial expansion of h. For such i and
i, we define

m; — 1 mi—1—1 mij—1
(h<,~>):=( g )+< o >+---+< 7 )
i i—1 J
m; +1 mi_1+1 mi+1
hi)T = ' ! / .
()% (i+1>+< i >+ +<j+1

Let H = {h;};>0 be the Hilbert function of a graded ring A. For simplicity in the notation we usually rewrite ((h;)))~
and ((h,»)(i))i as (h;)” and (h,»)]t, respectively. Recall that we sometimes use another simpler notation %) for (h,-)i
and define 0%) = 0.

A well-known result of Macaulay is the following theorem.

Theorem 3.1 (Macaulay). Let H = {h;};>0 be a sequence of non-negative integers such that ho = 1, hy = n, and
hi = 0 for everyi > e. Then H is the h-vector of some standard graded Artinian algebra if and only if, for every
l<d<e-—1,

hap1 < (ha)t =0

We use a generic initial ideal with respect to the reverse lexicographic order to obtain the results in Section 3. Note
that, by Green’s hyperplane restriction theorem (see [12,19]), we have

H(R/(J + x,),d) = (H(R/J, d))", (3.1)

where J is either a generic initial ideal with respect to the reverse lexicographic order, or a lex-segment ideal. The
equality holds when J is a lex-segment ideal of R (see [12]).
The following lemma will be used often in this section.

Lemma 3.2. Let A = R/I be an Artinian k-algebra and let L be a general linear form.
(@) If
dimg(0: L)g > (n — 1) dimg (0 : L)g41

for some d > 0, then A has a socle element in degree d.
(b) Let h(A) = (hg, h1, ..., hg) be the h-vector of A. Then, we have

ha —hgyr <dimg(0: L)g < hg — hgyr + (hgy1)™. (3.2)
In particular, dimg (0 : L)y = hg — hgy1 if and only if d > r1(A).

Proof. (a) Consider amap ¢ : (0 : L)y — @”7](0 : L)441, defined by ¢(F) = (x1F,...,x,—1F). Since L
is a general linear form, we may assume that the kernel of this map is exactly soc(A)y. Since dimg(0 : L)y >
(n — 1) dimg (0 : L)4+1, the map ¢ is not injective and we obtain the desired result.
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(b) Consider the following exact sequence

0= (0:LY)g — Ac" ¥ Aus1 — (A/LA)gs1 — 0.
Then we have
dimg (0 : L)g = hg — hat1 + dimg[A /(L) Alg+1, (3.3)

and thus hg — hg41 < dimg(0 : L)4. The right-hand side of the inequality (3.2) follows from Green’s hyperplane
restriction theorem, i.e., dimg[A/(L)Alg+1 < (ha+1)~.

Moreover, dimg (0 : L)y = hg — hgy1 if and only if dimg[A/(L)A]z+1 = 0O, and it is equivalent to d > r(A) by
the definition of 1 (A). O

Remark 3.3. Let H = (hg, k1, ..., hs) be the h-vector of a graded Artinian-level algebra A = R/I and L is a
general linear form of A. In general, it is not easy to find the reduction number 71 (A) based on its k-vector. However,
if hyp1 <d + 1 then (hy41)” = 0, and thus dimg (0 : L)y = hy — hg+1. Hence d > r1(A) by Lemma 3.2. In other
words,

ri(A) s minfk [ hgyr < k4 1)

Proposition 3.4. Let R = k[x1,...,x,] and let H = (hg, hy, ..., hs) be the h-vector of a graded Artinian-level
algebra A = R/I with socle degree s. Suppose that hg_1 > hg for some d > ri(A). Then

@) hg_1>hg>-+>hs_1>hg >0, and
®) hy—y —hy <(n—1D)(hy — hyy1) foralld <t <s.

Proof. (a) First of all, note that, by Lemma 3.2(b), h; — h;+1 = dimg (0 : L); for every t > r1(A). Hence we have that
ha—1>hg > hgy1 = -+ > hs.

Now assume that there is ¢t > d such that h;_1 > h; = h;1. Since t > r1(A), we know that, by Lemma 3.2(b),
dim;(O0: L);—y > h;—1 —h; >0 and dimg(0:L); =0.

Hence there is a socle element of A in degree ¢ — 1, which is a contradiction as A is level. This means that ; > h;4|
foreveryt >d — 1.
(b) Since A is a level algebra and dimg (0 : L); = h;—1 — hy, the result follows directly from Lemma 3.2(a). O

Remark 3.5. Let I be a homogeneous ideal of R = k[xy, ..., x,] such that R/I has the WLP with a Lefschetz
element L and let H(R/I,d — 1) > H(R/I, d) for some d. Now we consider the following exact sequence
L
(R/Da—1=>(R/Da = (R/(I + (L)))a — 0. (3.4)

Since R/I has the WLP and H(R/I,d — 1) > H(R/I, d), the above multiplication map cannot be injective, but
surjective. In other words, (R/(I 4 (L)))4 = 0. This implies that d > r{(R/I) by Lemma 2.7.

The following theorem shows a useful condition to be a level O-sequence with the WLP.

Theorem 3.6. Let R = k[x1,...,x,], n > 3 and let H = (hg, h1, ..., hs) be the Hilbert function of a graded
Artinian-level algebra A = R /I having the WLP. Then,

(a) the Hilbert function H is a strictly unimodal O-sequence
/’l0<h1 < - <hr1(A) =-~-=h9 > e >hs_1 >hs

such that the positive part of the first difference AH is an O-sequence, and
() hg—1 —hg < (n—1)(hg — hay1) fors >d > 6.
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Proof. (a) First, note that, by Proposition 3.5 in [22], H is a unimodal O-sequence such that the positive part of the
first difference is an O-sequence. Hence it suffices to show that H is strictly unimodal.

If d < r1(A), then Hg/(j41)(d) # O by the definition of 71 (A), and so the multiplication map x L is not surjective
in Eq. (3.4). In other words, the multiplication map x L is injective since A has the WLP. Thus, we have a short exact
sequence as follows

0— (R/1)g-1 X—5(1?/1)d - (R/( + (L)))a — 0.
Hence we obtain that
Ha(d) = Ha(d — 1) + Hg/(1+1)(d)
> Had—1) (-Hgya+n)(d) #0),

and so the Hilbert function of A is strictly increasing up to rq(A).
Moreover, by Proposition 3.4(a), H is strictly decreasing in degrees d > 6, where

0 :=min{t | hy > hyy1}.

(b) The result follows directly from Proposition 3.4(b). [

Remark 3.7. Theorem 3.6 gives us a necessary condition when a numerical sequence becomes a level O-sequence
with the WLP. In general, this condition is not sufficient. One can find many non-level sequences satisfying the
inequality of Theorem 3.6 in [15].

In [15], they gave some ‘non-level sequences’ using the homological method, which is the combinatorial notion
of the cancellation of shifts in the minimal free resolutions of the lex-segment ideals associated with the given
homogeneous ideals.

In this section, we use generic initial ideals, instead of the lex-segment ideals. Firstly, note that, by the Bigatti-
Hulett-Pardue theorem, the worst minimal free resolution of a homogeneous ideal I depends on only the Hilbert
function of /. Unfortunately, we cannot apply their theorem to obtain the minimal free resolutions of the generic
initial ideals. However, we can find Betti numbers §; 44, (Gin(/)) ford > r;(A) and i > 0, which depend on only the
given Hilbert function (see Corollary 3.10).

For the remainder of this section, we need the following useful results.

Lemma 3.8. Let J be a stable ideal of R and let Ti,...,T, be the monomials which form a k-basis for
((J 2 x0)/ ) g1, then

{xnTh, ..., x, T} ={T € G(J)a | x divides T'}.
In particular,
dimy ((J : x,)/)g—1 = HT € G(J)q | xn divides T}] .

Proof. For every T = x,T' € G(J)y4, we have that x,T" € J; C J,ie, T € (J : xy)d—1, and thus

T ¢ J : x)/Dd—1 = (71, . ..,Tr). However, since T’ and T; are all monomials of (J : x,)s_1 in degree
d — 1, we have that T’ = T; for some i, and hence T = x, T’ € {x,T1, ..., x,T,}.
Conversely, note that 7; & Jy—1 and x,T; € Jg foreveryi = 1,...,r. If x,T; & G(J)qg forsomei = 1,...,r,

then x,T; € R1Jg—1. Since T; ¢ J;_1, we see that
xpT; = x;U

for some monomial U € J;_1 and j < n. Hence, we have that
x, | U.

Moreover, since J is a stable monomial ideal, for every ¢ < n,

X
—U € Jg—1.
Xn
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In particular, we have

X
Ii = =U € Ja-,

Xn

which is a contradiction. Therefore, x,T; € G(J)4, foreveryi =1, ...,r, as we desired. [

Using the previous lemma, we obtain the following proposition, where we know the difference between s, and
hat1 whend > ri(A).

Proposition 3.9. Ler A = R/I be a graded Artinian algebra with Hilbert function H = (hg, h1, ..., hs) and let
J =Gin(1). If d > r1(A) then,

T € G(J)a+1 | xp divides T} = ha — hay1.
Moreover, if d > r1(A),
IG(Na+1l = KT € G(J)a+1 | xp divides T}| = ha — hay1.

Proof. Consider the following exact sequence:

XXp

0= ((J:x)/ g —> (R/D)a —>(R/Da+1 = (R/J + (xp))a+1 — 0.
Note that H(R/I,t) = H(R/J, t) for every t > 0. Therefore,

dimy ((J 2 xp)/J)g + dimg(R/J) g1 = dimg(R/J)a + dimig(R/J + (Xn))d+1,

. . (3.5)
< dimg ((J 2 x0)/D)g + hay1 = hg + dimg (R/J + (X)) d+1-
Moreover, by Theorems 2.1, 2.6, and Lemma 2.7, we have

ri(R/1) =ri(R/J)
min{¢ | H(R/J + (x,), £ + 1) = 0},

which means H(R/J + (x,),d + 1) = 0 for every d > r1(R/I). Hence, from Eq. (3.5), we obtain

dimy ((J : x2)/ g = {T € G(N)a41 | xp divides T} = hg — hay1. (3.6)
Now suppose that d > r1(A). Then it is obvious that
[T € G(Day1 | %y divides T} € G(J)ay1- 3.7)

Conversely, note that ngl € J from the first equality of Lemma 2.7. Since J is a strongly stable ideal, J; has to
contain all monomials U of degree d such that

supp(U) :={i | x; dividesU} C {1,...,n — 1}.
This implies my € J; where m = (x1, ..., Xn—1)%. Thus we have
Rimy C Jyy1.

Therefore, for every T € G(J)4+1, we have x,, | T, and so

G(Da+1 AT € G(J)a+1 | x, divides T'}. (3-8)
It follows from Egs. (3.7) and (3.8) that

G(WNa+1 =1{T € G(J)a+1 | x,, divides T}, (3.9)
and hence

1G(Dav1] = dimg ((J 2 x0)/T)g = ha — hay1,

as we hoped. 0O
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Corollary 3.10. Let A = R/I be a graded Artinian algebra with Hilbert function H = (hg, hy, ..., hg). If d > r1(A)
then, for all i > 0,

-1
Bi.i+@s1)(GIn(1) = (hg — hay1) (" l. ) .

Proof. By Proposition 3.9,
|G(Gin(1))a+1| = HT € G(GIn(I))g+1 | xn divides T} = hg — hg+1
for every d > r1(A), and thus the result follows from Theorem 2.4. O

Recall that a homogeneous ideal I is m-regular if, in the minimal free resolution of I, for all p > 0, every pth
syzygy has degree < m + p. The regularity of I, reg([), is the smallest such m.

In [2,19], it was proved that the regularity of Gin(7) is the largest degree of a generator of Gin(/). Moreover, Bayer
and Stillman [2] showed the regularity of I to be equal to the regularity of Gin(7).

Theorem 3.11 (/2,19]). For any homogeneous ideal I, using the reverse lexicographic order,

reg(l) = reg(Gin([)).

Theorem 3.12 (Crystallization Principle, [1,19]). Let I be a homogeneous ideal generated in degrees < d. Assume
that there is a monomial order t such that Gin, (I) has no generator in degree d + 1. Then Gin (1) is generated in
degrees < d and I is d-regular.

Lemma 3.13. Let R = k[x1, x2, x3] and let A = R/I be an Artinian algebra and let H = (ho, hy, ..., hs) be the
Hilbert function of A = R/I. Suppose that, for t > 0,

(a) soc(A)—2 =0,

(®) B1,1+1(Gin(1)) = B2, 141(Gin(1)).

Then (I<;) is t-regular and

hi—1 — h; < dimy soc(A);—1 < hi—y — hy + (h) ™. (3.10)

In particular, if t > r1(A) then
dimy (soc(A);—1) = hy—1 — hy.

Proof. Let I = (I<). Note that B; ;11(Gin(I)) = B;,41(Gin(1)) for i = 1,2 and By ;41 (I) = 0. Furthermore, since
I and I agree in degree < f and soc(A);—> = 0, we see that 8> ;+1(I) = B2,1+1(I) = 0.
Applying Lemma 2.9(b) the ideal 7, we have that

B1i+1(Gin(1)) — B r+1(1) = (Bo,+1(Gin(D)) — Bo,+1(D) + (Ba,i4+1(Gin(D)) — B2, i4+1(1))

= —Brir1(D) = (Bo+1(Gin(D)) — Bo+1(D) — Bris1 (1) €. B1,1+1(Gin(1)) = B, 1+1(Gin(1)))
= —Brir1(D) = Po+1(Gin(D)) . Bo+1(I) = Pos1(D) = 0)

= Po,+1(Gin(1)) = 0.

Thus, by Theorem 3.12, the ideal I = (I;) is ¢-regular.
Let A = R/I. For a general linear form L, consider the following exact sequence

0— (0:5L), | — (R/1)i—1 25 (R/D) — (RJT + (L)), — O. (3.11)

After we replace Iand A by Gin(l) and A = R /Gin(), respectively, we can rewrite Eq. (3.11) as

0— (0:5x3), , > (R/Gin(])), B (R/Gin(I)); — (R/Gin(]) + (x3)); — O. (3.12)
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Then, by Theorem 2.1, we know that

= dim ((Gin(J) : x3)/Gin(I));—1

= hy—1 — hy + dimg(R/Gin(1) + (x3));
= hy—1 — hy +dimg(R/T + (L)),

= dimg(0: 5 L);—1.

dimy (O i X3)I_l

On the other hand, by Lemma 3.8,
dimy ((Gin([) : x3)/Gin(1)),—1 = |{T € G(Gin(])), | x3 divides T}
= Ba.142(Gin(])),
and by Lemma 3.2(b)

hi—y —hy = dimg((0: 5 L);—1) < hi—y — hy + (o). (3.13)

Note that, by Theorem 3.12, 81 ;42 (GiI_l(I_ )) = 0 since I = (1<) is t-regular. Moreover, since / and I agree in degree
<t, we have that 8 ;42(I) = f2.;+2(1). Hence, by Theorem 2.2,

dimg soc(A);—1 = B2, 1+2(1)
= :82,t+2(1_)
= Ba,1+2(Gin(I)) (.- B1,1+2(Gin(1)) = 0)
= dimg(0: 5 L),—1. (3.14)

Hence it follows from Eqs. (3.13) and (3.14), that we obtain the inequality (3.10). Moreover, by Lemma 3.2(b), we
have

dimg (soc(A);—1) = h;—1 — h;y fort > ri(A),

as we anticipated. [

Theorem 3.14. Let A = R/I be an Artinian algebra of codimension 3 with socle degree s. If

B1,d+2(Gin(1)) = B2, 4+2(Gin(1)) > 0 (3.15)
for some d < s, then A is not level.

Proof. Assume A is level. Then B 4+2(1) = soc(A)g—1 = 0, and hence, by Lemma 3.13, I= (I<dg+1)is (d + 1)-
regular.
Let A = R/I. Note that soc(A)g = soc(A)y since A and A agree in degree < d + 1, i.e.

dimy soc(A)g = Br.a43(1) = Br.a3(I) = dimy soc(A).
For a general linear form L, by Lemmas 3.2(a) and 3.8, we have that
0 < B2.442(Gin(1)) (-~ by assumption)
N - 2
TeG(Gin(1))q
= dimy [(Gin([) : x3)/Gin(/)];,_; (. by Lemma 3.8)
= dimy [(1 : L)/T14_,
< 2dimy [({ : L)/I]; (. by Lemma 3.2(a) and soc(A)y—1 = 0).

Note that, in the similar way, we have 8> 443(Gin(/)) = dimy [({ : L)/I],. Hence

B2, a+3(Gin(1)) > 0.
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Since I = (I<g+1) is (d 4 1)-regular and reg(I_) = reg(Gin(I_)) by Theorem 3.11, we have that

Bo,a+3(Gin(1)) = B1,4+3(Gin(1)) = 0,
Bo,a+3(1) = Bi,a+3(I) = 0.
Thus, by Lemma 2.9(b),

Ba.a+3(I) = Pa.a+3(Gin(1)) > 0,

whereby it follows that as R/ I has a socle element in degree d, so does R/I. This is a contradiction, and thus we
complete the proof. [

Remark 3.15. Now we shall show that there is a level O-sequence satisfying Theorem 3.6(a) and (b), but it cannot be
the Hilbert function of an Artinian algebra with the WLP.

Consider an h-vector H = (1, 3, 6, 10, 8, 7), which was given in [15]. Furthermore, it has been shown that there
is a level algebra of codimension 3 with Hilbert function H in [15]. They also raised a question if there exists a
codimension 3 graded level algebra having the WLP with Hilbert function H. Note that this is a codimension 3 level
O-sequence which satisfies the condition in Theorem 3.6.

Now suppose that there is an Artinian-level algebra A = R/I having the WLP with Hilbert function H. In [15],
they gave several results about level or non-level sequences of graded Artinian algebras. One of the tools they used
was the fact that Betti numbers of a homogeneous ideal I can be obtained by cancellation of the Betti numbers of 1'%,
However, in this case, it is not available if H can be the Hilbert function of an Artinian-level algebra having the WLP
based on the Betti numbers of 7'°%.

In fact, the Betti diagram of R/1 lex g

Total: 1

A W= O
SO O O
[\CEEN e R R
A~ O O O |
N WO O |

and thus we cannot decide if there is a socle element of R/I in degree 3.
Note that, by Theorem 3.6, r1 (A) = 3 since A has the WLP. Hence, by Corollary 3.10,

B2,6(Gin(1)) = (hg — hs) <;) =2-1=2, and

2
B1,6(Gin(1)) = (hs — he) (1) =1.-2=2.

Therefore, by Theorem 3.14, there is a socle element in A in degree 3, which is a contradiction. In other words, any
Artinian-level algebra A with Hilbert function H does not have the WLP.

Remark 3.16. In general, Theorem 3.14 is not true if Eq. (3.15) holds in the socle degree. For example, we consider
a Gorenstein sequence

d |0
1

2 3 4
hd | 6 3 1

1
3
By Remark 3.3, 71 (A) < 2. Hence
2 2
B1,6(Gin(1)) = (hg — hs) <1) =1-2=2, and pBr6(Gin({)) = (h3 — ha4) <2> =2.1=2.

Note that this satisfies the condition of Theorem 3.14 in the socle degree, but it is a level sequence.
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Remark 3.17. Let A = R/I be an Artinian algebra and let H = (hg, k1, ..., hy) be the Hilbert functionof A = R/I.
Then an ideal (/<4+1) is (d + 1)-regular, if the Hilbert function H of A has the maximal growth in degree d > 0,
ie. hgyr = h;‘”. In particular, if hy = hgy1 = £ < d, then we know that (/<441) is (d + 1)-regular. Recently, this
result was improved in [1], that is, (I<4+1) is (d + 1)-regular if hy = hg41 and r1(A) < d.

Note that, by Lemma 3.2, the k-vector space dimension of (0 : L)y in degree d > ri(A) is hg — hg4+1. By
Proposition 3.4, we have a bound for the growth of the Hilbert function of (0 : L) in degree d > r1(A) if an Artinian
algebra A has no socle elements in degree d. Theorem 3.19 shows that a similar result still holds on the maximal
growth of the Hilbert function of (0 : L) in codimension three case.

Lemma 3.18. Let R = k[x1,...,x,] and let A = R/I be an Artinian algebra with an h-vector H =
(1,3, hy, ..., hg). If hy—1 — hg = (n — 1)(hg — hgy1) for ri(A) <d < s, then

Bu—1),ti—n+a(GIn(1)) = B—2),(n—1)+a(Gin(1)).
Proof. Let J = Gin(I). By Proposition 3.9, we have that

T)—1
Bu-n.o-n+a()) = Y (mill )

TeG(J)a
= hd—l — hy.

Moreover, by Corollary 3.10,

Bin-2),—1+d(J) = Bwu—-2),i-2)+@d+1)(J)

1
= (ha — has1) (Z_2>

= (n—D(hg — hgt1)
= hg—1 — hg (.© by given condition)
= Bu-1),n=1)+d(J),

as we desired. O

Theorem 3.19. Let R = k[x1,x2,x3] and let A = R/I be an Artinian algebra with an h-vector H =
(1,3, ha, ..., hg). If soc(A)g—1 = 0 and the Hilbert function of (0 : L) has a maximal growth in degree d for
ri(A) <d < s, ie, hy_1 —hg = 2(hg — hq+1), for a general linear form L, then

(@) (I<g+1) is (d 4 1)-regular, and
(b) dimk SOC(A)d = hd — hd+1.

Proof. By Lemma 3.18, we have

B1.a+2(Gin(1)) = B2,4+2(Gin(1)), (3.16)

for r1(A) < d < s, and the result immediately follows from Lemma 3.13. O

Corollary 3.20. Let R = k[x1,x2,x3] and let A = R/I be an Artinian algebra with an h-vector H =
(1,3, ha, ..., hg). If hgy—1 — hg =2(hg — hgt1) > 0 for ri(A) < d < s, then A is not level.

Proof. By Lemma 3.18, we have

B2,4+2(Gin(1)) = B1,4+2(Gin(1)) > 0,

and hence, by Theorem 3.14, A cannot be level, as we wanted. [

Remark 3.21. Remark 3.16 shows Corollary 3.20 is not true if d = s. However, we know hys_; < 3hg by
Theorem 3.6.
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Example 3.22. Let A = R/I be a codimension 3 Artinian algebra and let rj(A) < d < s. If A has the Hilbert
function

d |-~ d=1 d d+1

hd‘ a+3k a+k a

such that a > 0 and k > 0, then by Corollary 3.20 A cannot be level since
ha—1 —ha =2k = 2(hg — ha+1) < B2,a+2(Gin(1)) = B1,442(Gin(1)) > 0.

For the codimension 3 case, we have the following theorem, which follows from Theorems 3.6 and 3.19 and
Corollary 3.20, and so we shall omit the proof here.

Theorem 3.23. Let A = R/I be a graded Artinian-level algebra of codimension 3 with the WLP and let H =
(ho, h1, ..., hy) be the Hilbert function of A. Then,

(a) the Hilbert function H is a strictly unimodal O-sequence
ho<hy <---<hyay=-=hg>->hs_1>h

such that the positive part of the first difference AH is an O-sequence, and
(b) l’ld—l — hd < 2(hd — hd+1)f0rs >d > 0.
(¢) hs—1 < 3h;.

One may ask if the converse of Theorem 3.23 holds. Before the end of this section, we give the following Question.

Question 3.24. Suppose that H = (1,3, hy, ..., hy) is the h-vector of a level algebra A = R/I where R =
k[x1, x2, x3]. Is there a level algebra A with the WLP such that H is the Hilbert function of A if H = (1, 3, ha, ..., hy)
satisfies the conditions (a), (b), and (c¢) in Theorem 3.23?

4. The lex-segment ideals and graded non-level artinian algebras
In this section, we shall find an answer to Question 1.1.

Theorem 4.1. Let R = k[x1, x2,x3] and let H = (hg, hy, ..., hs) be the h-vector of a graded Artinian algebra
A = R/I with socle degree s. If

hg—1 > hg and hg =hgy1 <2d+ 3,
then H is not level.

Before we prove this theorem, we consider the following lemmas and theorems.
Lemma 4.2. Let J be a lex-segment ideal in R = k[x1, x2, x3] such that
H(R/J,i) =h;
for everyi > 0. Then
dimy ((J 2 x3)/J); = hi — hi1 + (hix1)™ (4.1)
for such an i.
Proof. First of all, we consider the following exact sequence:
0= ((J :x3)/J); = (R/D)i =3 (R/J)is1 = R/(J + (x3))is1 — 0. (4.2)
Using Eq. (3.1) and the exact sequence (4.2), we see that
dimy ((J 1 x3)/J); = hi — hig1+ (hiv1)™ (4.3)

for every i > 0 as we desired. [
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Since the following lemma is obtained easily from the property of the lex-segment ideal, we shall omit the proof
here.

Lemma 4.3. Let I be the lex-segment ideal in R = k[x1, x2, x3] with Hilbert function H = (ho, hy, ..., hs) where
hig=d+iandl <i < dzTer. Then the last monomial of 1 is

xlx{lxgl*’, forl <i<d,

x%xé_(dﬂ)xém_l)_i, ford+1<i<2d-1,

. o d’yd—4  dP4d—2 d>4+d—4 d2+d—-2
xf_lx; . g f0r+— <i< +—
2 2
d*>+d
d .
xy, fori= 7
Theorem 4.4. Let R = k[x1, x2, x3] and let H = (hg, hy, ..., hs) be the h-vector of an Artinian algebra with socle

degree s and

hg =hgr1 =d +1, hg—1 > hg, and j:=hg_1—hy

fori=1,2,...,d27+d. Then,
k(k -3 k(k—3
2k — 1, for(k—l)d—%5i§(k—1)d—¥+(k—l),
Bld+2 =
’ k(k -3 k— Dk
2k, for(k—l)d—%—i—kfifkd—%.
. =2 -1 (£ —-1¢
Bra+2 =] +¢, for(E—l)d—f<z§Ed—T.

Proof. Since hy; = d + i, the monomials not in I; are the last d + i monomials of R;. By Lemma 4.3, the last
monomial of Ry1; is

xlxé_lx_ﬁf_’ﬂ, fori=1,...,d,

P T2 for i —d - 1,...,2d — 1,

. o d24d-4 d’id d24+d—4 d>+d-2
xfflx; oxyt " fori = + , + ,
2 2
d*>+d
xfxg, fori = ;— .

In what follows, the first monomial of /541 — R4 is

-x2d+1v fori =1,
x1x§—2x§d+2)_i, fori =2,...,d,
“4.4)
d-1 L rd-2
x| xox3, fori= 5
d—1_2 d2 td

x| xy, fori= 5
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Note that
k(k —3)
2

_k(k—1)

d+D)D =d+i)+k, fori=k—1)d— .. kd ,andk=1,....d. 4.5)

We now calculate the Betti number

T)-1
Bratr= Y (m(; )

TeG(a+1
Based on Eq. (4.4), we shall find this Betti number of each two cases for i as follows.
Case 1.1.i = (k — )d — "€ and k = 1,2,... . d.
By Eq. (4.5), 1541 has k-generators, which are

xk—lx(d+2)—k xk_1x§d+l)_kx

k—1_(d+3)—2k k—1
) ) 2 X X7 x X5 .

By eeny 1 2 3

By the similar argument, /51 has k-generators including the element x{‘_lxédH) K fori = (k—1)d — @ +
1,...,(k—1)d — k(k2_3) + (k — 1). Hence we have that

Bravz= Y, (m(T3_1>:2x(k—l)+l:2k—1.

TeG(as1

Case 1.2.i = (k — Dd = *&D 4 k= (k — Dd = "2 kd — "D andk = 1,2,... .4,
By Eq. (4.5), 1541 has k-generators, which are

2 _ _
if((kfl)dfik *3’(*2) kd— k=t _; if((kfl)df@) (kd*@#»])*i
xkx X 2 xKx x

12 3 s ey AAY 3 .

Hence we have that
m(T)—1
= =2 x k =2k.
Br.d+2 > ( 1 > X
TeG(Das1
Now we move on to the Betti number:
m(T) — 1
Bravz= ( 5 ) :
TeG)y

Recall hy =d +i and j := hy_1 — hy. The computation of the Betti number of this case is much more complicated,
and thus we shall find the Betti number of each four cases based on i and j.

Case2.1. (¢ — )d — EBAED o < g — EDEand g =1,2,...,d.
The last monomial of I; for this case is

i—(—1)d L(L=3) Edi(l—l)li-
xfx;( )+2x3 LA
Case2.1.1. (k — 1)d — $5D% i j < kg — X&) andk = ¢, 0+ 1,....4d.
Since the first monomial of I; — R11;_1 is

. (i+j)—((k—l)d— (k—2)2(k+1)) (kd— (k—])2(k+2))_(i+j)
x1x2 x3 )

we have (j + k)-generators in I as follows:
o (g k=2 kD) CG=DEAD\ i
PG ((k hd 2 ) (kd 2 ) i+ k_d—k
X[ X, X3 e X[X3

x;k—l)xg—(k—l)’ x](k—l)xéd—l)—(k—l)xL o ’x](k—l)xg—(k—l)7

xf-Hx;dfl)fﬁ’ xf-l,-]xéde)fo xZ-Hx(dfl)fﬁ

3500 X 3
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. £(t=3) e=ne -
¢ d— ¢ i—U=Dd+=F5= ld— i
X1X5 e, XX, X3

and thus
m(T) — 1
B2.d+2 E ( ) ) J+
TeG)y

Case212.i+j=(k—Dd—EX andk =0 +1,...,d.
The first monomial of I; — R{1;_1 is

k—1_d—(—1)
X1 X )

and hence we have (j + k)-generators in I as follows:

k d—(k—1) k—lx(d—l)—(k—l)x3
2

-1 k—1_d—(k—1)
X1x, ) X ce XX ,

s

xf“xéd_l)_g, xf“xéd_z)_em, .. ,xf“xéd_l)_g

_ i—(0—1)d+ 853 gDt
xfxg Z,...,xfx;( Ya+73 X z !
and thus
m(T) — 1 .
Br.d+2 = E < 5 =j+L

TeG(Da

Case22.i=1td — S and ¢ =1,2,...,4d.
The last monomial of 1; is

L d—t
xlxz .

Case2.2.1. (k — 1)d — $5D% <y j < kd —*ED andk = ¢+ 1,..., d.
Since the first monomial of I; — Ry1;_; is

k (i+j)—((k—1)d—(k_2>2(k+l>) (kd_(k—1)2(k+2))_(i+j)
X1X .X3 s

we have (j + k)-generators in I; as follows:

(i+j)—((k—1)d— (k—2)2(k+l)) (kd7<k—1)2<k+2)>7(i+j) B

k k. d—k

X1y X3 e X1X3
(k=1) _d—(k—1) _(k=1) (d—1)—(k—1) (k—1) d—(k—1)

X X, ) Xy Xy X3, s X X3 ,

(d—-1)—¢

—1)— —2)—
.XZ—H.X(d )= .Xe—ngd ) ZX3,...,xf+1x3

1 2 v A
L. d—¢t
xixy

and thus

T)—-1
Prata= ) (m(z) )zj—l—ﬁ.

TeG(I)a
Case222.i+j=(k—Dd—EX andk =0 +1,...,d.
The first monomial of I; — Ry1;_1 is

(k=1) _d—(k=1)
X X )

and hence we have (j + k)-generators in I as follows:
xikfl)xézf(kfl)’ xfkf1))C§¢171)7(1<71)x3 x{kfl)x’;‘if(kfl)’

g ey
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x£+1x(d—1)—5 x@+1x£d—2)—@ xl+1x(d—1)—5

) » X X3y eeen Xy X3
xfxg_z,
and thus
m(T) — 1 ,
pran= > ("7 =

TeG(a

as we desired. [

Theorem 4.5. Let H be as in Eq. (1.1) and A = R/I be an algebra with Hilbert function H such that By 442(I'*) =
,32’d+2(llex) for some d < s. Then A is not level.

Proof. Let L be a general linear form of A. By Lemma 3.2(b), note that if d > r{(A), then
dimg(0: L)y—1 > hg—1 —hg >0 and dimg(0: L)y =hg —hg+1 =0,

and thus, by Lemma 3.2(a), R/I is not level. Hence we assume thatd < r1(A) and A is a graded-level algebra having
Hilbert function H. Let I = (I<4+1)-

Claim. B 443(Gin(I)) = 0 and B».4+3(Gin(1)) > 0.
Proof of Claim. First we shall show that 81 443 (Gin(1)) = 0. By assumption,
Br.a+2(I') = Bo.asa(I'),

and, by Lemma 2.9(a), we have that

Blas2(I'™) = Brasa(D) = [Bo.a+2(I"™) = Bo.a+2 (D] + [Br.a+2(I') = Ba.gs2(D)]
= —Br.a+2(D) = [Bo.a+2(I'™) = Bo.ar2 (D] = Brara (D).

Moreover, since A = R/I is level, we know that 82 44+2(I) = 0, and hence rewrite Eq. (4.6) as
0 < [Bo.a+2(I'™) = Bo.a+2(D] = =Bras2(D) <0,

which follows from Lemma 2.8(b) that
Bo.a+2('™) = Poara(D) = Po.ar2(I') = 0.

Also, by Lemma 2.8(a), we have
Bo.a+2(Gin(D)) < o.ar2a(I'™) =0, ie., Poa+2(Gin(])) =0.

Since Gin(I_ ) is a Borel-fixed monomial ideal, by Theorem 2.4,
B1.a+3(Gin(I)) = 0.

Now we shall prove that 85 443 (Gin(1)) > 0. Let J = Gin(I). Consider the following exact sequence

(4.6)

0—((J:x3)/J)g = (R/J)a “B(R/Das1 = (R)T + (x3))ar1 — O.
Since d < r1(A), we know that
dimyg ((J 1 x3)/J)g = ha — hay1 + dimg ((R/J + (x3))a+1)
= dimg((R/J + (x3))a+1) (. ha = ha+1)
£ 0.
By Lemma 3.8,

G(Nar1 = GGin(1))ar1 # 2,
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Table 1
Betti diagram of R/I'€X

Total: 1 - - -

0: 1 - - -
1: - - - -

d—1: - * * 3
d: - * 4 ®
d+1: - * 4

*
*

and so there is a monomial 7 € G (Gin(I_ ))a+1 such that x3 | T. In other words,

Ba.4+3(Gin(1)) > 0,

as we desired. _
By the above claim and a cancellation principle, R/ has a socle element in degree d, and thus R/ has such a socle
element in degree d since R/I and R/I agree in degrees < d + 1, and hence A cannot be level, as we desired. O

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let H and j be as in Theorem 4.4 andlethy =d +i for—(d — 1) <i <d + 3.
By the proposition in [15], this theorem holds for —(d — 1) < i < 1. It suffices, therefore, to prove this theorem
for 2 <i <d + 3. By Theorem 4.4, we have

2, fori=2,...,d,
Brap(I™) =13, fori=d+1,d+2, and
4, fori=d+3, 4.7
j+1, fori=2,...,d,

lexy __
Pran(l )—{j+2, fori=d+1,d+2,d+3.

Note that if either j > 3and2 < i < d+3o0orj = 2and2 < i < d + 2, then H is not level since
Bra2(I'™) > Brasa(I'™).
Now suppose either j = land2 <i <d+2or j=2andi =d + 3. By Eq. (4.7), we have
2, forj=1andi =2,...,d,
Blas2(I'™) = Bogia(1'™) =13, forj=1landi=d+1,d+2,
4, forj=2andi=d+3.

Thus, by Theorem 4.5, H cannot be level.
It is enough, therefore, to show the case j = 1 and i = d + 3. Assume there exists a level algebra R /I with Hilbert
function H. Applying Eq. (4.7) again, we have

Bras2(I"™) = Brara(I'™) +1 =4, (4.8)

Note that hy_1 = 2d + 4 and hy = hg+1 = 2d + 3 in this case. By Eq. (4.8), the Betti diagram of R/I'* is given
in Table 1.
Moreover, by Lemmas 3.8 and 4.2,

dimg (1'% 1 x3)/ 1"y = (T € GU'")g411x31 T}
= hg — hgy1 + (hay1)™
= (hg+1)~
_ <<d+2> N (d+ 1))
d+1 d

2. (4.9)
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Total:

0:
1:

d—1:
d:
d+1:

Table 3
Betti diagram of R/J

Total:

0:
1:

d—1:
d:
d+1:

Hence, using Eq. (4.9), we can rewrite Table 1 as Table 2.
Let J = (I<44+1)'*. Note /'™ and J agree in degree < d + 1. Hence we can write the Betti diagram of R/.J

(Table 3).

Since R/1 is level and (/<441) has no generators in degree d + 2, we have

Bo,d+2U<a+1) = B2,a+2(I<q+1) = 0.

By Lemma 2.9(a),

a = Bo,a+2(J)

= Bra+2(J) — Br,a+2U<a+1) — B2,a+2(J)
< Bra2(J) — B2av2(J)

= 1.

Hence, we have a = O or 1.

Case 1. Let a = 0. Then, by Theorem 2.4, we have b = 0. Moreover, by Lemma 2.9(a) again,

B2,a+3(J) — B2,a+3((U<a+1)) < Br,a+3(J) — B1a+3((U<a+1))

and hence,

< Bra+3(J)
=b
= 0’

B2.a+3(J) = Brar3(U<ay1) = 2.

This means that R/(/<4+1) has two-dimensional socle elements in degree d, as does R/, which is a contradiction.

Case 2. Let a = 1, then J has one generator in degree d + 2. By Lemmas 3.8 and 4.2,
dimg ((J : x3)/Na+1 = HT € G()a42 1x31 T}

= hg+1 — hay2 + (ha2)™

(4.10)

@.11)

(4.12)
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where hgo = H(R/J, d+2) = b1 —1 = (2d+3)+D —1 = 2d+4. Hence, we obtain (h442)” = (2d+4) = 1,
and by Eq. (4.12)

dimg((J : x3)/ Va1 = O,

Applying Theorem 2.4 again, we find

m(T) —1
b=prana)= ( | >=1
TeG(J)i+a
since xj”z & G(J)a+2. Thus R/J has at least one socle element in degree d, and so does R/(I<4+1). Since R/I and

R/(I<q+1) agree in degree < d + 1, R/I has such a socle element, a contradiction, which completes the proof. O

The following example shows a case where j = 1 and iy = 2d + 3 in Theorem 4.1.

Example 4.6. Let [ be the lex-segment ideal in R = k[x1, x», x3] with Hilbert function
H : 1 3 6 10 15 21 18 17 17 0 —.

Note that h7 = 17 = 2 x7+3 = 2d 4+ 3, which satisfies the condition in Theorem 4.1, and j = hg—h7 = 18—17 = 1.
Hence, any Artinian algebra having Hilbert function H cannot be level.

Inverse systems can also be used to produce new level algebras from known level algebras. This method is based on
the idea of Macaulay’s Inverse Systems (see [14,26] for details). We want to recall some results from [25]. Actually,
Tarrobino shows an even stronger result and the application to level algebras is:

Theorem 4.7 (Theorem 4.8A, [25]). Let R = k[x1,...,x,] and H = (hg, h1, ..., he) be the h-vector of a level
algebra A = R/Ann(M). Then, if F is a generic form of degree e, the level algebra R/Ann({M, F)) has h-vector
H = (Hy, Hy, ..., H,), where, fori = 1,...,e,

Hi=min{h,~+<(r_1)+ge_i)>’((V—.l)—i-i)}.
(e—1) i

The following example is another case of a level O-sequence of codimension 3 of type in Eq. (1.1) satisfying
hg =2d + 4.

Example 4.8. Consider a level O-sequence (1, 3,5,7,9, 11, 13) of codimension 3. By Theorem 4.7, we obtain the
following level O-sequence:

(1, 3,6, 10, 15, 14, 14).

Then 14 = 2 x 5 4 4, which shows there exists a level O-sequence of codimension 3 of type in Eq. (1.1) when
hg =2d + 4.

In general, we can construct a level O-sequence of codimension 3 of type in Eq. (1.1) satisfying hy = 2d + 4 for
every d > 5 as follows.

Proposition 4.9. There exists a level O-sequence of codimension 3 of type in Eq. (1.1) satisfying hy = 2d + 4 for
everyd > 5.

Proof. Note that, from Example 4.8, this proposition holds for d = 5.
d-th  (d+1)-st
Now assume d > 6. Consider a level O-sequence h = (1,3,5,7,...,2d + 1,2d + 3) where d > 6. Since

<h5+<d+3_l:)>—(i_’._2> _ <2i+1+(d+3—i)(d+2—i)>_(i+1)(i+2)
d+1—i i 2 B
Q+d)3+d—2i)

) >

O,
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foreveryi =0,1,...,d — 3, we have

. d+3—i i+2
el (4527).( 1)

d+3—-i)d+2—i i+ D@ +2
— min 2i+1+(+ i)(d + l)’(l+)(l+)
2 2
G+ D +2)
= 5 .
Hence, by Theorem 4.7, we obtain a level O-sequence H = (Hy, Hi, ..., Hy, Hj4+1) as follows:
Hy =1,
H, =3,
H — (i+1)2(i+2),

. 5 . d-1d

H;_ z_mln{hd 2—{-(3) < )}:mln{2d+7,T}=2d+7,
Hy_ 1—m1n{hd 1—|—<4) ( _ )}:min{2d+5,@}:2d+5,
Hdzmin{hd—i—(l), d;r )} mm{zd+4,W}=zd+4,

. 2 d—+ . (d+2)(d+3)
Hyy = h = 2d +4, ————————~ 1 =2d +4
d+1 mln{ d+1+<0> <d+ )} mm{ + 4, > } +4,

[\

as we desired. 0O

Remark 4.10. As with the proof of Proposition 4.9, we can construct a level O-sequence of codimension 3 of type in
Eq. (1.1) satisfying

2d+(k+1)=Hy_ > H; = Hjy1 =2d +k, <5§k<

For example, if we use

(d—1)-st (d+1)-st
h=(1,3,6,.. 2d+(k 5)2d+(k—3)2d+(k—1))

then we construct a level O-sequence of codimension 3 of type in Eq. (1.1) satisfying

H; | = min{hd_l—}- <3>(Cdli—1>} :min{2d+(k+1),&2+l)} =2d+ (k+ 1),

2_13g—
(.,,Kw),
=T 2

Hd=min{hd+<i’),<d;2>} =min{zd+k,W} = 2d +k,

o 2\ (d+3\| _ @+2)@+3)) _
Hd+1_mln{hd+1+<0),(d+l)}_mm{Zd—l—k,f}_2d+k,

as we desired.

Using Theorem 4.1, we know that some non-unimodal O-sequence of codimension 3 cannot be level as follows.
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Corollary 4.11. Let H = {h;};>0 be an O-sequence with hy = 3. If
hg_1 > hy, hg <2d+3, and hgs1 = hg
for some degree d, then H is not level.

Proof. Note that, by the proof of Theorem 4.1, any graded ring with Hilbert function
H : hy hy - hg_1 hg hg —

has a socle element in degree d — 1.
Now let A = @izo A; be a graded ring with Hilbert function H. If Agr1 = (f1, f2,..., fn,y) and I =
(fha+1s -+ fngpr) Djsay2 Aj, then a graded ring B = A/1 has Hilbert function

ho hy -+ hg—1 hg hg.

Hence B has a socle element in degree d — 1 or d by Theorem 4.1. Since A; = B; for every i < d, A also has the
same socle element in degree d — 1 or d as B, and thus H is not level as we desired. O

The following is an example of a non-level and non-unimodal O-sequence of codimension 3 satisfying the condition
of Corollary 4.11.

Example 4.12. Consider an O-sequence

H : 1 3 6 10 15 20 18 17 hg

There are only three possible O-sequences such that g > h7 = 17 since hg < h§7> = 177 = 19. By Theorem 4.1,
H is not level if hg = h7 = 17. Neither can the other two non-unimodal O-sequences, by Corollary 4.11,

1 3 6 10 15 20 18 17 18 --- and
1 3 6 10 15 20 18 17 19

be level.
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