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Abstract. Modern telecommunication techniques cas the problem of traffic har;ft.:;sg in the 
framework of fairly general networks, as applied to traffic without delay but with virtually ar- 
bitrary service-time distributions. In this paper we use stochastic integral equations to deal %ith 
the case involving the most general input process and lost calls. For this purpose, Forte I’!: equa- 
tion, unsolved so far in the general case, is solved to analyze the single trunk group model. The 
stationary case is then treated as a special case. Finally we study networks which satisfy a cer- 
tain assumption of symmetry. The same general stochastic assumptions are maintaitjed through- 
out the paper. 
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1. Introduction 

In this paper we present an interesting application of stochastic inte- 
gral equations to the study of traffic handling in fairly general telecom- 
munication networks; more specificall-f, to traffic without delay bu.t 
with arbitrary service time distribution. We establish general theorems 
dropping the usual Markovian assumptions. In [ 31 a full description of 
telecommunication networks is given. Here we briefly charxterize tele- 
communication traffic in the case of the lost-calls model. 

The calls occur according to an input process, the random arrival 
epochs constituting a point process tin a line. The telecommunication 
network consists of a set of allowable paths connecting tvuo ar 
subscribers. ereafter, the input process corresp,,nding to a large num- 

scribers is assumed o be independent e k?:“r @ 
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progress. The setting-up of the call is assumed to be quasi-instantaneous. 
The call holds one of the possible free paths connecting the caller to 
the called subscriber. The holding time of this path is equal to the dura- 
tion of ihe call, and is a random variable. Here the hunting rule of the 
free paths may also be of some importance. We assume that a call which 
cannot be served at its arrival time is refused and leaves the system 
(“lost-calls” model). We shall first consider the simple case of a single 
trunk group. 

Let N(t) be the random number of arrivals in the time interval (0, t] ; 
we assume that {N(t), t 2 0) is a point process (on a line) for which the 
arrivals occur successively and the simultaneous occurrence of two or 
more arrivals is impossible. For such a process N(t) we may formulate 
the following theorem. 

heosem 1 e 1 a If h(u, t) is an algebraic function of real variables u and t, 
t2en for a point process N(t) with nonsimultaneous arrivals we have 

t 

J log [ 1 +h(u, t)] dN(u) = 
ci I 

= J + 8 $1 h(ul, t) dN(ul) **e / h(un, t) dN(un) 3 (1) 
n=l l Q ‘0 

with d N(Ui) dN(uj) = 0 if ui = Uj. 

Proof. We note that by our assumption the number of arrivals in an in- 
finitesimal interval (t, t + dt] is 0 or 1. Let 

0 = u() < Ul < . . . < urn = t 

be a subdivision of the interval (0, t] such that AUi = Ui+l - Ui is 
sufficiently small to ensure that 

AN(ui)=N(Ui+l)-N(Ui)=O or 1, i= lJ,...,m-1 l 

We can write 

exp {log [ 1 + h(uiy t)] N(ui)} = [ 1 +h(ui, t)lAN”‘) 

= 1 + h(Ui, t) 

ence 
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m-l 

=P log [ 1 + h(tri, t) ] 
i=l 

m-l 
= n [ 1 +h(uiy t) AN(ui)] 

i=l 

f 

= l+ mgi ‘Z 

n=l IGil< . ..<i.Gm-l 
h(ui,, t) AN(Uin )**a h(Ui,, t) AN(u,) . 

This leads to the relation 

/ log [ 1+ h(u, t)] JN(u) = 
0 I 

Ul 

= 1 + fi 1 h(ul, t) dN(ul) $ h(_uZ, t) dN&)... 
n=l 0 0 

un-1 xs h(un, t) dN(u,) 
0 

with dN(tli) dN(uj) = 0 if Ui = uj. This relation being equivalent to the 
formula (1), the theorem is proved. 0 

In particular, if we choose h(u, t) = ez - 1, we deduce the following 
corollary: 

Corollary 1.2. For z such that lez - 1 I < I, we have 

exp [z N(t)] = 1 + 2 (ezil)n j dN(u,) . . . 1 dN(u,,) , (2) 
n=l l 0 i) 

With dN(ui) dN(uj) = 0 if Ui = uj. 

Now for every finite non-negative real number y and z as above, we 

eZy = [ l+(eZ- 

QQ 

(ezjl)n [y(y-l)...(y-f-2+1)1' 

n=l * 
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Consequently, for every stochastic function N(t) of the real variable t, 
taking only real, finite and nonnegative values, we have 

exp [z N(t)] = 1 + 5 (eZ - T)n nl [N(t)(N(t)-l)...(N(t)-n+l)]. (3) 
n=l 

Comparing this with (2), we deduce the important stochastic relation 
for point processes with nonsimultaneous arrivals: 

N(t)fN(t)--11 . . . [N(t)--n+l] =j dN(t$... j dN(t,) 
0 0 

with d N( ti) d N(tj) = 0 if ti = tj. 

The general input process N(t) described above is offered to a group 
of L circuits. When the group is not congested. the call arriving at time 
u is served without delay, its holding time being a random variable Tu. 
For the moment Tu may depend on U, on the input process and on the 
durations of the other communications. On the other hand, when the 
group is congested at time U, this call is rejected and is lost. 

Let us define the stochastic function R(u, t) and the algebraic func- 
tion V(y) by 

1 
R(u, t) = 

if u<t<u+T,, 
(5) 

0 if t<u or t>u+T,, 

1 
Y(Y) = 

if y= f,2,...,L-1 9 

0 otherwise . 
(6) 

The behavior of V(y) outside the positive integers is unimportant. Let 
Y(t) be the stochastic function of t representing the number of occupied 
circuits at the time t. Y(t) is the sum of the calls arriving in the interval 
(0, t], which are being served and which are in progress at time t. For 
simplicity we assume the system to be empty at the epoch 0. The func- 
tion Y(t) satisfies the stochastic integral equation 

y(t) = j WYu))Rlu, 0 dN(u) 3 

0 
(7 3 

and is in fact completely determined by (7), as was shown by Fortet 
[ 11, who solved it only for L = 1 (one circuit). The inherent difficulty 
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nlinearity of this integral equation. In the next section we give 
ion of (7) for arbitrary positive integer L [ 21. 

2. Solution of the stochastic integral equation for L > 1 

We begin by introducing the stochastic function of t, 

w, 0 =$Y(t) [Y(t)-11 . . . [Y(t)-v+l] . 
. (8) 

observe that the integrand in (7) defines an input process: it is related 
to the arrivals of calls served during the interval (0, t] which are still in 
progress at time it. We may therefore apply the stochastic relation (4), 
and write (8) as 

X(v, tj =g 
. V(Y(uljjR(u,,tjdN(ulj... J' UY(u,jjW,,tj dWu,j l 

0 0 (9' 1' 

The function WL(t) defined by 

W,(t) = V( Y(t)) = 1 - X(L, t) (10) 

is a stochastic function, which assumes the value 1 when the group of 
circuits is not congested at the epoch t, and the value 0 othtirwise. _ 
From (7), (9) and ( 10) it follows that 

WL(t) = 1 - j IVL(icl) R(q, t) dN(ul) . . . j W&q) R(z.q, t) dN(uL j , 
0 0 wj 

with dN(ui) dN(ui) = 0 if ui = ui. 
This new multiple integral equation of order L is multilinear. We can 

obtain a series expansion of WL(t) by means of the method of succes- 
sive approximations. With this knowledge of V( Y(t)), Y(t) can be ob- 
tained from (7). 

For L = 1, the solution, alrezdy provided by Fortet [ it 1, is given by 

W,(t) = 1 - 
n=l 

(- I)*+1 j R(zq, t) dN(u,) f ‘0-m 
0 0 

Un-1 

X s 
0 



X 
Un-1 s R(M,, u,_$ [ 1 - wj&@l dN(un) p 

0 

We now derive other relations which will be found useful. For the 
process dN,(t) of served calls, let us set 

dNo(t) = W,(t) dN(t) . (15) 

Note thlat dN,(t) can be considered as t e solution of the following 

stochastic integral equation deduced from (1 l), 



Consequently we have the following stochastic relation, which is more 
ga~eral than ( 16). 

2. We have the stochusttc relution 

dN,(t)X(v-1,t)=dN(t)[X(v-l,t)- pk_l X(L,t)l (181 ( 1 

with X(8, t) = 1, Xv, t) being defined by (8). 

We conclude this section with a brief review of relations involving 
first moments. Set 

PC Y(t) =jI = pu, 0 9 

PWWt) y(t) =il = Q(i, t) p(t) dt 9 (19) 

where Q(j, t) is the conditional probability that when a call arrives at 
the time t it finds j occupied circuits, and p(t) is the densify ofarrivals. 

It may be convenient to introduce the binomial moments 

E(X(v, t)} = S(v, t) = Fp (I) p(i, t) > -- 

(dN(t) X(v, t)) = T(v, t) dt = B(v, t)p(t) dt , 
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L?(v, t) = 

Here S(L, t) = P(Lt t) is the probability that at time % all circuits are oc- 
cupied, and B[L, t) = Q(L, t) is the conditional probability that at the 
instant t the group of circuits is congested, when a call arrives. 

Relations ( f 9) imply the (well-known) relations 

Finally, if we set 

then the stoehaetic: relation ( i ) yields the equation 
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x/ [l-F(t-u ,,_l)] E(dN&) .a. dI&,(uV_l) dN,(B)I 9 

0 (24) 

From (9) and (20) we obtain 

S(v,o=j [l-F(t-O)]H,(t,8)d~O. 
0 

(25) 

Assume now that we have a stationary limit process, which means 
for all practical purposes that [N(t)/t] and [(N,(t)/t) cUVI:t)l tend ai& 
most certainly to limit stochastic variables, Consequetrtly, we have the 
limits 

lim P(f, 0 = P(f) 9 lim &(I, e) zz Q(O) 3 

t-r@3 t466 

lim T(v, t) = p&v) I 

t-m 

ow applyirl 
limit S(v) is pivea by 
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II r G(u) du , 

0 

where 

U-l 

G(u)=[l-F(u)] i Cl-F(u)]du . u 1 
Megration by parts gives 

e 

s 
0 

G(u)du=$ 

(28) 

(29) 

(30) 

so thd 

vS(v) = lim ?J ’ fH,(B,BfdB . (31) 
t-r- 0 

The relations (23), (26) and (3 1) finally give the important equation 

B(0) = 1 , vS(v) =p B(v-1) [ -(,4 1) B(L)] , v= 1, 2, l -J;z, 

Recall that S(v) and P(j) refer to an arbitrary instant and B(v) and 
Q(j) to the arrival of any call. Then (26) allows us to write (32) in the 
more expressive form 

]P(j)=pQCj--1)) ]= 1,2, .*., L. (33) 

Unfortunately, we lack a relationship between S(v) and B(v), primarily 
because any such relationship is obtained easily only in the case of re- 
current arrival processes. 

4. Recurrent arrivals 

‘We note that until now this case has been solved only for exponential 
holding times. We shall investigate in this section the case of an arbitrary 
holding-time distribution, still assuming stationarity, the existence of 
which is not yet proved. 
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For u1 < . . . < U, C t we can write 

{dN&,) . . . d&-&J &V(t)} = E{dN&Q 0-o dN,,(u,)) p&f -- uV) dt 9 

(34) 

where PO(t) is the density of arrivals at time t given t.hat a call occurs at 
time 0. From (20) and (22) we deduce that 

T(v,t) = j [l-F(t-6)]~~(t-B)H,Ct,8)rde l 

0 
(35) 

Reasoning as in the preceding section, Theorems A. 1 and A-3 give us in 
the limit, 

lim T(v, t) = pB(v) = 
t-b ca 

where 

#- 1 

G(u)=[l-F(ti)] J [I-F(v)]dv’ 1 P&d l 

U 

Finally, the relation (3 1) implies the second imfiortant relation 

s(v) - P B(v) 
c-- 

v r(v) ’ 
v = 1, 2, . . . . L , 

where 

(37) 

If we apply the expression (37) to the relation (32), we get the gen- 
eral equation for the stochastic process 

B(0) = 1 , $+B(V-1) - B(L) , to = 1, 2, . . . . 

The rest of the calct are iden tical 
ponential holding times. nd the gener 
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B(v)=B’-(v)’ (3 B 
h=lJ 

;$j#io 
00 

(;)B,:X,3-1 9 (40) 

with the special case of a group of unlimited size corresponding to 

B,(v) = l-7 r(v) ’ (41) 
i=O 

The call congestion1 is 

The time congestion2 S(L) can be deduced from eq. (37). 
In the case of Poisson arrivals, (38) becomes 

y(v) = P/V ’ (43) 

Observe that F(t) does not appear in the expression (43). On the other 
hand, the expression (38) shows that F(t) does appear when the arrival 
process is no longer Poisson. 

The expression (38) means that, in the case of the stationary limit 
process, everything proceeds as though the arrivals occurred at mutually 
srbitrafy instants, at least from the point of view of the ages of the oc- 
cupanclies at these instants. 

5. Networks 

The connecting networks in exchanges satisfy a certain assumption of 
symmetry which results from connecting the successive selectors by 
means of a regular trunkin!; diagram and from the random hunting rule 
concerning the search for free paths. Then the state probabilities depend 
only on the number of calls in progress in the various traffic streams. In 
this section WC describe the laws for handling the most general traffic, 

’ The call congestion is the conditional probability that when a call arrives it finds the group 
of circuits congested. Alternatively, in the case of stationary limit processes it is the ratio of 
the number of calls lost to the numtxr of calls offered, during a long period. 

2 The time congesion is the ratio of time during which the congestion occurs to the total 
time of a long observation. Alternatively, in the case of stationary limit processes, it is the prob- 
ability that at any time the congestion occurs, 
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taking into account the stochastic dependma: between various pasts of 
the network, while maintaining a symmetry assumption which is partic- 
ularly useful in the case of connecting networks in the exchanges. WC 
shall see that it is then possible to dissocialte the geometric and com- 
binatorial characteristics of the network from the laws of traffic handi- 
ing in a simple group, whether stationary [or not. In other words, the 
stochastic aspect is as already discussed in the preceding sections. 

Suppose we have x traffic streams, where x is a very large number for 
real networks. Stream 1 receives the arrival process dIVj(t). The various 
processes d&(t) are assumed to be mutually rndependent. Each traffic 
stream may follow one or more possible paths, all of which may, if 
necessary, be tried when a new call is to ble pluced in the respective 
traFfic stream. In general, these networks serve outgoing trunkgroups 
for Iwhich al? cases of occupation are possible. Each one of these out- 
going trunkgroups serves one or more traffic streams, which are inde- 
pendent of those serve3 by the other groups. We therefore impose vir- 
tually no restrictions if we make the followin,a assumptions. 

Assumption 1 (independence between outgoing trunkgroups). 
(a) Each outgoing trunkgroup carries a traffic corresponding to one or 
more arrival processes dNj(t) which are independent of those served by 
the other outgoing trunkgroups. 

(b) It is possible to find states of internal occupation causisrg all out- 
going trunkgroups to be congested simultalneously. 

Now it remains to define carefully the assumption of symmetry. A 
great simplification in the calculations results from the equality of ‘the 
probabilities of possible states for a given number of calls going on in 
the considered traffic stream. Under these conditions, this traffic stream 
can be represented by a simple stochastic function Y(t) giving the num- 
ber of calls existing at the epoch t as in Section 1 in the case of a simple 
trunkgroup. But this equality between states also assumes an equal 
chance of reaching the various higher states that are accessible from the 
considered state by letting a new call arrive. To this end, the cabling of 

the circuits should be symmetric and the selection eC free circuits shod 

be made at random. 
Assumption 2 (symmetry). (a) All occupat on states (jl l .* ix> that 

correspond to a given numberjj of calls going on in the traffic stream i 
(i= 1, . . . . x) are assumed to have an equal chance of occurri 

(b) The assumption formulated in (a) puts conditions o 
of the circuits as well s on the rule of hunting for a free 
call having to be placed at random on one of 
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For simplicity, we also assume the network to be empty at the epoch 
0. Let us denote by Ro(jl... j,) the number of ttpward ‘Yraject3ries” 
that are strictly permitted for placing the (il... &) calls arriving in the 
interval (0, t] in a determined order. Indeed, thl,:re is good reason for 
remarking that the order is important, for the paths may or may not 
exist, according to the respective sequences of call arrivals of the differ- 
ent traffic streams. The order within a traffic stIrearn is, however, of very 
little importance. We also observe that, if several paths exist for one and 
the same order, they do not count for more than one. 

More precisely, if for a given number jl + . . . + jX we select at random 
each call with a probability 1 /A/i for the ifh traffic stream, then the 
probability of selecting the distribution (jl, ,.., i,) is 

R&l, **.9 ’ 
‘i 

= R(jl, . . . . j,) ii], (44) 

where 

x 1 zi R & 9 .-JJ -= 
Ni I9 Wl, 

i=l 
l 4x) =( jl +...+j,)!/jl? . ..jx! ’ 

Here Rijl, . . . . jx) is the reduction factor of the number of possible states. 
If wedecide to place the calls according to the impressed distribution 
(1 '1 , . . . . jx), the pat s being chosen at random according to this distribu- 
tion, then R(j,, . . . . jx) is the probability of placing all these calls. 

Now we consider the simple assumption of Poisson arrivals under 
stationarity. If the system is in the state (jr, . . . . jJ and a new call arrives 
in the traffic stream i, then, according to Assumption 2, the probability 
of placing it is 

R(ia 9 l , ji-1, ii + I,&-+19 . . ..i.) _ 
R(jl, . . . . jx) -* 

We assume a traffic ai offered to the traffic stream i. The general equa- 
tions for statistical equilibrium (33) may no’w be written 

(jl + 1)&j,, . . . . ji_1, ji + L&+19 l ,i,;) = 

Nil 
ai - 

, . . . . ji_1, ji 3- 1 Ji+19 4 ) 
= 

RC jl, . . . ..iJ 
-P( jl, . . ..i.) . (45) 
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After a few successive calculations we get 

JYil, . . . . j,) = P(0, . . . . 0) R(j,, . . . . i,) (46) 

We extend the relation (46) to the case of a proce:ss of general arrivals 
dN,( t), the holding-time distribution F(t) being assumed arbitrary and 
identical for all traffic streams. According to Assumption 2, it is suffi- 
cient to characterize the stochastic evolution of the traffic stream i by 
the stochastic function Yi(t) which represents the number of existing 
calls at the epoch t in this traffic stream. The evolution of the total sys- 
tem is thus represented by the random vector 

at) = U,(t), l *a9 ~yol l (47) 

Ceslsider first the special case of call occupancies that do not terminate 
or that have durations longer than t. Using Assumption 1 and eq. (7), 

Yi(t) = j Vi[Yl(U), l may Y,(u)) dMi(u) = i Vi(z(u)) dNi(.u) 9 (48) 
0 0 

where Vi depends on the structure of the network. This case is in fact 
similar to that one considered for formula (44) provided that we replace 
the term (l/N# by the probability Pi(ji, t) of having& calls in stream 
i. We thus have 

P(il, . . ..jx. t) = . . . ..iJ fi p,(ji, t) . 
i=l 

When the call durations have distribution function F(t), (48) gives, ac- 
cording to (7), 

t 

Vi AR, (up dlV, 
0 

note that a given R&I, t) dNi(U) 
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the case of a simple trunkgroup that receives the process dNi(t) and 
has the maximum capacity Lz according to Assumption 1. If the con- 
sidered outgoing trunkgroup receives more than one traffic stream, 
then the process dNi(t) should be replaced by the sum of correspond- 
ing processes in (SO). Quite generally, (SO) applies equally to an arbi- 
trary instant as well as to an instant of arrival i a certain traffic stream. 
We can now state the following theorem (which is very convenient to 

apply)* 

Theorem 5.1 (symmetrical net;vorks). IVe consider the case of a net- 
work in which x traffic streams pass (under stationarity or not). The 
network is assumed to be empry at epoch 0 and to comply with Assump- 
tions 1 and 2. Then the prob/lbiltty of finding ii calls going on in the 
traffic stream i (i = 1 , . . . . x) at the arbitracy instant t or at the epoch of 
an arrival is given by 

P(il, ,,.,i,; t) =pIO,**” O’ t, R(jl, l m., i,> I7 Pi(ji, t) ) (51) 
nix=, pi(O, t) i=l 

where Pi (ii, t) corresponds to the case where the outgoing trunk group 
is considered as isolated (carrying one or more traffic streams). The 
quantity R( jl , . . . . jX j is the reduction factor for the number of possible 
states defined by (44). 

The following remarks will clarify the value of this theorem. 
(a) The structural and combinatorial aspect of the network, repre- 

sented by R( jl, . . . . jJ has been dissociated from the random aspect re- 
presented by Pi( ji, t) for a single trunkgroup. 

(b) The theo rem holds both under stationarity and under nonstation- 
arity. Assuming the network empty at zero time is practically no restric- 
tion, for the effect of the initial conditions is smoothed down after 
some time. 

(c) The theorem holds for the most general assumpticns on the arrival 
processes. The theorem also holds for arbitrary distriburion functions 
F(t). It does not assume the independence of call durat&>ns and the in- 
put process. 

(d) The calculation of R(jn, . . . . i,) ca.n therefore be made by consider- 
ing the Markovian case, or by a combinatorial-analytical study not in- 
volving probabilistic calculations. 
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(e) With regard to (14), Theorem 5.1 also shows that, even for the 
random aspect, it is possible to separate the effect of the arrival process 
from that of the holding-time distribution. 

Moreover, with regard to the contents of Theorem 5.1 we can under- 
stand the importance of presenting in Section 2, in the most general 
form, the rules for traffic handling in a fully available group of circuits, 
now that the mathematical tools have led-us in a simple way to the 
formulation of this theorem. 

Since 

we can write (5 l), for an arbitrary instant t, as 

P(il, . . . . jx; t) = R(j,, . . . . jJ I? Pi(ji, t)[ C R(kl, . . . . k,) fi Pi(ki*, t) -1* 
i=l Lkl*...,kX i=l 1 cm 

Thus this general formula (52) shows us t-hat it is sufficient to know the .,.’ 
nonrandom terms R(jl, . . . . jJ in order to deduce the random properties 
of the traffic flow in the network. In [ 21 we have described a simulation 
method allowing estimation of the quantities R(j,, . . . . j,). It has the fol- 
lowing features: 

(1) The suggested simulation makes it possible to study in one run, 
with the aid of formulae given, the effectof all cases of traffic values 
and traffic nature that can be envisaged, under stationarity as well as 
under nonstationarity. This latter case is particularly useful for studies 
of resistance against overloads due to traffic fluctuations. 

(2) A single run is sufficient to produce a table of permissible traffic 
values, in accordance with a list of specified probabilities of hloc~:ing. 
So this same simulation in one run can produce the complete traffic 
tables for use in operation and planning. 

Appendix 

The following three theorems, proved in 121, are usePd1 in the stu 
of stationary limit processes. We assume the existe 

heorem 2 in 121 permits us to state: 
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Theorem A.1 (key theorem). Let Q(t,, . . . . tm) be u nonnegative function 
of each positive variable ti such rhat the integral 

exists. If thz limit 

1’ t 
lim - J J . . . 
t+@J tm 0 

E(dN(tl) l .a dN(tm)} = U, 
0 

exists, then as t + 00, 

Hm(t) z 1 .a. 1 Q(t- ~1, . . . . t- Um) E{dN(U,) .a. dN(Um)) 
b 0 

w W 

+ a, f . . . J Q(t,, .m.y tm) dt, l . . dtm , 
0 0 

W.2) 

(A.3 

(A-4) 

whenever this limit exists. 

Here E denotes the expectation operator. Applied to the relation (4) 
we get the rnth factorial moment of N(t). Finallv the expression (A.2) 
is the limit of the mth factorial moment of [N(tj/t]. IVote that in view 
of (2) the condition (A.2) is certainly satisfied if [N( t)Jt] tends “al- 
most certainly” to a limit stochastic variable as t + 00. (In fact, conver- 
gence in distribution is sufficient.) 

This theorem provides a generalization of Smith’s “key theorem” for 
renewal processes. If we apply th.is theorem to the function 
Q(tl + q, . ..y tm + Urn), where (tl, . . ., tm) are given and positive, we get 

Q(t,+q 9 l e*, tm ‘Um) dU1 l ** dum = 
0 0 

J ..a J Q(ur, ..., Um) dur**. dum 
tl tm 

Theorem A. 1 now allows us to formulate the following theorem (cf. 
[ 2, Theorem 31). 

2. Let Q(tl, . . . . nonnegative function of each positive 
varia.bZe ti for which the in .l) exists, If the limits (A.2) and 
(A.4) exist, then for to positive and fixed, the function 



I? le Gall, Telecommunications traffic without delay 279 

Hm(t, to) s i l e- S Q(to + t- ~1, .**I) t* + t- Vm) {dN(v,) . . . dN(v,)) 
0 @ 

(A.9 

us t + -, where H,(-) is the limit (A.4) and 

In the same way, in the case of an arrival in the interval (t, t + dt), 
[Z, Theorem 3.A] permits us to state the following theorem. 

Theorem A.3. Let Q(tl, . . . . tm) be a nonnegative function, which is 
moreover assumed symmetrical with respect to the positive variables fi 
such that the integral (A.l) exists. If the limit 

lim 
1 t t 

- 
s s 

l *. 
tm-I 

E{d2\r(ul) .** dN(um_l)dN(t)} 
t-,c*, 0 0 

(A.7) 

exists, then as t + 00, for fixed positive to, 

G m_14t, tOI E 

t t 
.- =s s . . . Q(to + t - Vl, warn, to f t - Vm_lg to) 

0 0 

X E(dN(vl) ..- dN(vm_1) dN( C)) ._ (A:8) 

00 00 

+ C,-1 (00, to) = 4bm-l J ..a J Q(ul, l a*) urn-13 to) dulm** du,-1 
t0 t0 

W.9) 

whenever this limit exists. 
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