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Abstract. Modern telecommunication techniques cas' the problem of traffic hai:..:.g in the
framework of fairly general networks, as applied to traffic without delay but with virtually ar-
bitrary service-time distributions. In this paper we use stochastic integral equations to deal with
the case involving the most general input process and lost calls. For this purpose, Forte1’: equa-
tion, unsolved so far in the general case, is solved to analyze the single trunk group model. The
stationary case is then treated as a special case. Finally we study networks which satisfy a cer-
tain assumption of symmetry. The same general stochastic assumptions are maintained through-
out the paper.

telecommunications traffic stationary case
general input recurrent arrivals

lost calls symrmetrical networks
Fortet’s equation

1. Introduction

In this paper we present an interesting application of stochastic inte-
gral equations to the study of traffic handling in fairly general telecom-
munication networks; more specifically, to traffic without delay but
with arbitrary service time distribution. We establish general theorems
dropping the usual Markovian assumptions. In [3] a full description of
telecommunication networks is given. Here we briefly characterize tele-
communication traffic in the case of the lost-calls model.

The calls occur according to an input process, the random arrival
epochs constituting a point process on a line. The telecommunication
network consists of a set of allowable paths connecting two arbitrary
subscribers. Hereafter, the input process corresponding to a large num-
ber of subscribers is assumed to be independent of the subscriber calls in
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progress. The setting-up of the call is assumed to be quasi-instantaneous.
The call holds one of the possible free paths connecting the caller to

the called subscriber. The holding time of this path is equal to the dura-
tion of ihe call, and is a random variable. Here the hunting rule of the
free paths may also be of some importance. We assume that a call which
cannot be served at its arrival time is refused and leaves the system
(“lost-calls” model). We shall first consider the simple case of a single
trunk group.

Let N(#) be the random number of arrivals in the time interval (0, 7];
we assume that {N(?), > 0} is a point process (on a line) for which the
arrivals occur successively and the simultaneous occurrence of two or
more arrivals is impossible. For such a process N(¢) we may formulate
the following theorem.

Theorem 1.1. If h(u, t) is an algebraic function of real variables u and t,
tiren for a point process N(t) with nonsimultaneous arrivals we have

t .
exp {jﬁ log [1+Ah(u,t)] dN(u)} =

o0 t t
=1+ 2 3 huy, ) dNGy) ... [ B, ANG) L (1)
0 0

n=1
with dN(u;) AN (u) = 0 if u; = u;.

Proof. We note that by our assumption the number of arrivals in an in-
finitesimal interval (¢, #+d¢] isOor 1. Let

0=u0<u1<...<um=t

be a subdivision of the interval (0, 7] such that Au; = u;,; — u; is
sufficiently small to ensure that

AN(u;) =N(u;4) —N@u)=0orl, i=1,2,..,m—-1.
We can write
exp {log[1+/(u;, H] AN(up)} = [ 1+ h(u;, )12V
=1+h(u;, ) AN(u;), 1<i<m-1.

Hence
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m-—1 ‘
exp{ 27 log[1+h(u;, )1 AN(u,) | =

i=1
m—1
=11 [l+h(u,,t)AN(u)]
i=1
m-—1 «—
=1+ 2 2 h(ugy, 1) ANy )-.. By, 1) ANG; ) -

n=l 1<i<..<izp<m-1

This leads to the relation

t
exp{f log [1+h(u, 1)] dN(u)} =
0

o ¢ ul '
+ 20 [ huy, ANy [ hlug, ) dNGuy)..
n=1 0

Up—1

X f h(u,, t) dN(uy,)

with dN(u;) dN(y;) = 0 if u; = u;. This relation being equivalent to the
formula (1), the theorem is proved. O

In particular, if we choose Ay, t) = e? —1, we deduce the following
corollary:

Corollary 1.2. For z such that le? —1| < 1, we have
exp[zN(H] =1+ Z) f dN(uy) .. f dN(u,), (2

with dN(u;) dN(u,-) =0ifu; = Uj.

Now for every finite non-negative real number y and z as above, we
have the relation

ey = [1+(ez — )] = 1+E—(—e—znl,‘—)'-'-[y(y—1)...(y—n+1)1 .
n=1 :
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Consequently, for every stochastic function N(¢) of the real variable ¢,
taking only real, finite and non-negative values, we have

exp[zN(H)] =1+ 2 ﬂ-‘?i;:—,-‘—)—"- NGO (N —1) . (N() —n+1D] . (3)

n=1

Comparing this with (2), we deduce the important stochastic relation
for point processes with nonsimultaneous arrivals:

t t
N IN@® =11 ... IN(®) —n+1] = [ dN(t)) ... [ dN(t,) (4)
0 0

with dN(£)dN(%) =0if ¢; = L.

The general input process N(¢) described above is offered to a group
of L circuits. When the group is not congested. the call arriving at time
u is served without delay, its holding time being a random variable T,.
For the moment T,, may depend on u, on the input process and on the
durations of the other communications. On the other hand, when the
group is congested at time u, this call is rejected and is lost.

Let us define the stochastic function R(x, ¢) and the algebraic func-
tion V(y) by

1 ifu<t<u+T,,
R(u,1) = (3)
0 ift<uortzu+T,,

1 ify=12,.,L-1,
Viy)= (6)

0 otherwise.

The behavior of V() outside the positive integers is unimportant. Let

Y (¢) be the stochastic function of ¢ representing the number of occupied
circuits at the time £. Y (#) is the sum of the calls arriving in the interval
(0, t], which are being served and which are in progress at time ¢. For
simplicity we assume the system to be empty at the epoch 0. The func-
tion Y (7) satisfies the stochastic integral equation

t
Y= [ V(YW) R, 1) dN), (7
0

and is in fact completely determined by (7), as was shown by Fortet
[1]1, who solved it only for L = 1 (one circuit). The inherent difficulty
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is the nonlinearity of this integral equation. In the next section we give
the solution of (7) for arbitrary positive integer L [2].

2. Solution of the stochastic integral equation for L > 1
We begin by introducing the stochastic function of ¢,
X0 = YO [Y(0) ~1] .. [Y() —p+1] . 8)

Observe that the integrand in (7) defines an input process: it is related
to the arrivals of calls served during the interval (0, #] which are still in

progress at time . We may therefore apply the stochastic relation (4),
and write (8) as

t t
X0, 0 =57 [ V(X)) RGuy, 0 ANy .. | V(Y@) R, 0 dNG,) .
"0 0 )

The function W, (¢) defined by
W ()=V(Y(®)=1-X(L,1) (10)

is a stochastic function, which assumes the value 1 when the group of
circuits is not congested at the epoch ¢, and the value 0 othcrwise.
From (7), (9) and (10) it follows that

t t
WL(t) =1- f WL(ul)R(ul, t) dN(ul) .o f WL(uL)R(uL, t)dN(uL) N
0 0 (an

with dN(u;) dN{y;) = 0 if u; = u;.

This new multiple integral equation of order L is multilinear. We can
obtain a series expansion of W, () by means of the method of succes-
sive approximations. With this knowledge of V(Y (¢)), Y (¢) can be ob-
tained from {7).

For L = 1, the solution, alrezdy provided by Fortet [1], is given by

uy

o t
Wy =1-2 (=1 [ R(up, dNGy) [ -
n=1 0 0

Up—1

X [ Rty tt_y) dNGay) - (12)
0
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For L > 1, since direct calculations are very intricate, it is better to pro-
ceed by induction. The functions W, (#), L = 1, 2, ..., can be linked re-
cursively as follows. If in the group of L circuits, the circuits are hunted
in order from the first one, then W, (¢) remains unchanged. But now the
last circuit receives the arrival process

[1=W,_ (D1 dN().

The solution for L = | applies, and (12) provides the expression W(¢)
for this circuit. From the relation

[1=W, (DI [1=W(D]=1=W. (D),

we deduce the recurrence formula for {1 =W (#)] given by the follow-
ing theorem.

Theorem 2.1, The solution of Fortet's stochastic integral equation (7) is
Y(t)= ‘[ Wi (W) R(u, ) dN(u) , (13)
where W (¢) may be deduced by the recurrence formula

L= W =[1-W,_ (0] & (=~ 1)+t (14)
n=1

1
_XfR(ul, t)[l—WL_l(ul)]dN(ul)f
0 0

Un—1
' ‘Of R(up,up_[1- wL—l(u")] AN (up) .

We now derive other relations which will be found useful. For the
process dN(?) of served calls, let us set

dNy(t) = W, (1) dAN() . (15)

Noete that d Ny(¢) can be considered as the solution of the following
stochastic integral equation deduced from (11),
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dNy(t) =dN(1) = Zl"“f R(uy, ) dNg(uy) ..
0

X f RGug, ) dNg(u ) AN . (16)
0

A more general relation is obtained in the following way. Suppose that,
at time £, Y(¢) assumes the value . From (8) we get

Xw-1 t)-=(’ ) X(L t)ﬁ{o i”ﬂ". (17)
w1 Tl gL
Moreover,
AINDXw=1,0 if j<L
0 if j=L.

Consequently we have the following stochastic relation, which is more
general than (16).

dNo(t)X(V=l.t)= [

Corollary 2.2. We have the stochastic relation
dNy(O X -1, =dN@®) [X(»-1,0) —(VL_‘ ]) X(L.n1 (18)

with X0, = 1, X(», 1) being defined by (8).

We conclude this section with a brief review of relations involving
first moments, Set

PlY(®)=jl=P(.1),
PIAN() Y () =j1=Q(, D p(n)dt, %))
where Q(j, #) is the conditional probability that when a call arrives at

the time ¢ it finds j occupied circuits, and p(#) is the densiry of arrivals.
It may be convenient to introduce the binomial moments

L .
E(XX(, 0} =SS0 =2 ({,) PG.Y),

=v (20)
E{dN(H) X(», 0} = T(v, ) dt = B@w, ) p(1) dt
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with

80,0 =5 (7)edn.

j=v

Here S(L, t) = P(L, t) is the probability that at time ¢ all circuits are oc-

cupied, and B{L, t) = Q(L, t) is the conditional probability that at the

instant ¢ the group of circuits is congested, when a call arrives.
Relations (19) imply the (well-known) relations

L
PG = 2 (;f)(— 1y~ S, 1) ,

»

vz
| 1)
L
0G.0= 2 (;’)(—- Ly~ B, 1) .
vef
Finally, if we set

&
H,(t,0)d0 = f J [(v = 1)1=1 E{R(uy, ) dNg(uy) ..
0

X R(u,_y, t) ANg(u,_y) dNo(G)}(zz)
for t 2 8, then the stochastic relation (18) yields the equation
Hy(tH=Tw-1,b =(viil) T, (23)

where 7(0,¢) = p(2).

3. The stationary limit process

We now turn to the study of stationary limit processes. We shall as-
sume that the call durations are random variables which are mutually in-
dependent, independent of the input process, and have the same ar-
bitrary distribution function F(#). Thus (22) can now be written
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17
H,(t,0)do -mof [1=F(t—up)] ...

0
X [ [1=F(t—u, )] E{dNy(u;) ... dNy(u,_)) dNo(9)} .
0

(24)
From (9) and (20) we obtain
t
Sw,0= [ [1=F(t—0)] H,(1,0)do . (25)
0

Assume now that we have a stationary limit process, which means
for all practical purposes that [N(#)/t] and [(Ny(8)/t) dN(£)] tend al-
most certainly to limit stochastic variables. Consequently, we have the
limits

lim P(j,0) = P()), lim @(j,1) = Q(}),

=68 t=>00

lim S(v,H))=SW), lim B(y,t) = B(v) . (26)
t=>08 =06

lim T(v,t)=pB®).

t=s>08

The density p is called the density of arrivals at any instant of the limit
process.

We seek to evaluate the limif (as ¢ => o) of the expression (23) for
S(v, t). It we take as time unit the mean duration of a call, then we get

[ =Fwide=1. (27)
0

By Theorem A.3, for a fixed value of (£ — 6) the expression (24) of
H,(t,0) converges (as t = o), with

H,(0,0) [ [ 0-Fan du] v-1
t-6

Now applying Theorem A.1 to the integral (25), we deduce that the
limit S(v) is given by
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t o0
56) = lim {l [ H,(e,o)do} |/ cwau, (28)
- \ T 0
where
oo v—1
G(u) = [1— F(u)] [f [I—F(v)]dv] . (29)
u
Integration by parts gives
[ Gayau=1, (30)
0 vy
so that
1 t
»S(w) = lim {— [ H,(0,0) de} : (31)
t—»o0 to

The relations (23), (26) and (31) finally give the important equation

B(0)=1, vS(v)=p[B(v—l)—(,,£1) B(L)] , v=1,2,..,L.
. (32)
Recall that S(v) and P(j) refer to an arbitrary instant and B(v) and

Q(j) to the arrival of any call. Then (26) allows us to write (32) in the
more expressive form

PG =pQG-1, j=12,.,L. (33)

Unfortunately, we lack a relationship between S(v) and B(v), primarily
because any such relationship is obtained easily only in the case of re-
current arrival processes.

4. Recurrent arrivals

We note that until now this case has been soived only for exponential
holding times. We shall investigate in this section the case of an arbitrary
holding-time distribution, still assuming stationarity, the existence of
which is not yet proved.
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Foru; <...<u, < t we can write

E{dN(uy) ... dNg(u,) AN(0)} = E{dNg(u,) ... dNy(u,)} polt —u,) dt ,
' (34)

where py(#) is the density of arrivals at time ¢ given that a call occurs at
time 0. From (20) and (22) we deduce that

t
Tw,0)= [ [1-F(t—6)]po(t—0) H,(1,6)d6 . (35)
0

Reasoning as in the preceding section, Theorems A.1 and A.3 give us in
the limit,

lim T(v,t) =pB(v) =

t—>oco
1/ i
=[1im {TfH,(a,o)da}] f G(u)du, . (36)
0 ' o

{—>oo

where

Gu) = [1- Fu)] [f

u

"i.'—l
[1-F()] dv] po(u) .

Finally, the relation (31) implies the second imgortant relation

=pBMV) _
S) Ok v=12,..,L, 37)

where

o v—1
W)=1, = [1—F(u)1[ f [I—F(.J)ldv] po(u) du .
0 u (38)

If we apply the eapression (37) to the relation (32), we get the gen-
eral equation for the stochastic process

Bo=1, BD.p,_p_ (L,

)B(L), v=1,2,.,L. (39
¥(v)

The rest of the calculations are identical with those in the case of ex-
ponential holding times. We find the general exg-2ssion
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B®) = B () ;\f;p ( {') E;T]'(Xi[f

-l
A=0

Biwl - @

with the special case of a group of unlimited size corresponding to

B.w)= I‘(I) Y) . (41)
i=
The call congestion! is
L 1 -1
B(L) = [g (%) B.,,O\)] : (42)

The time congestion2 S(L) can be deduced from eq. (37).
In the case of Poisson arrivals, (38) becomes

Yw)=p/v. (43)

Observe that F(¢) does not appear in the expression (43). On the other
hand, the expression (38) shows that F(¢) does appear when the arrival
process is no longer Poisson.

The expression (38) means that, in the case of the stationary limit
process, everything proceeds as though the arrivals occurred at mutually
erbitrayy instants, at least from the point of view of the ages of the oc-
cupancies at these instants.

5. Networks

The connecting networks in exchanges satisfy a certain assumption of
symmetry which results from connecting the successive selectors by
means of a regular trunking diagram and from the random hurnting rule
concerning the search for free paths. Then the state probabilities depend
only on the number of calls in progress in the various traffic streams. In
this section wc describe the laws for handling the most general traffic,

! The call congestion is the conditional probability that when a call arrives it finds the group
of circuits congested. Alternatively, in the case of stationary limit processes it is the ratio of
the number of calls lost to the numter of calls offered, during a long period.

2 The time conges'ion is the ratio of time during which the congestion occurs to the total
time of a long observation. Alternatively, in the case of stationary limit processes, it is the prob-
ability that at any time the congestion occurs.
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taking into account the stochastic dependence between various parts of
the network, while maintaining a symmetry assumption which is partic-
ularly useful in the case of connecting networks in the exchanges. W¢
shall see that it is then possible to dissociate the geometric and com-
binatorial characteristics of the network from the laws of traffic handi-
ing in a simple group, whether stationary or not. In other words, the
stochastic aspect is as already discussed in the preceding sections.

Suppose we have x {raffic streams, where x is a very large number for
real networks. Stream i receives the arrival process dN;(¢). The various
processes dN;(¢) are assumed to be mutually rmndependent. Each traffic
stream may follow one or more possible paths, all of which may, if
necessary, be tried when a new call is to be placed in the respective
traffic stream. In general, these networks serve outgoing trunkgroups
for which ali cases of occupation are possible. Each one of these out-
going trunkgroups serves one or more traffic streams, which are inde-
pendent of those served by the other groups. We therefore impose vir-
tually no restrictions if we make the foilowing assumptions.

Assumption 1 (independence between outgoing trunkgroups).

(a) Each outgoing trunkgroup carries a traffic corresponding to one or
more arrival processes dN,(¢) which are independent of those served by
the other outgoing trunkgroups.

(b) It is possible to find states of internal occupation causing all out-
going trunkgroups to be congested simultaneously.

Now it remains to define carefully the assumption of symmetry. A
great simplification in the calculations results from the equality of *he
probabilities of possibie states for a given number of calls going on in
the considered traffic stream. Under these conditions, this traffic stream
can be represented by a simple stochastic function Y () giving the num-
ber of calls existing at the epoch ¢ as in Section 1 in the case of a simple
trunkgroup. But this equality between states also assumes an equal
chance of reaching the various higher states that are accessible from the
considered state by letting a new cail arrive. To this end, the cabling of
the circuits should be symmetric and the selection of free circuits should
be made at random. |

Assumption 2 (symmetry). (a) All occupation states (j;... .} that
correspond to a given number j; of calls going on in the traffic stream i
(i=1,...,x) are assumed to have an equal chance of occurring.

(b) The assumption formulated in {a) puts conditions on the cabling
of the circuits as well as on the rule of hunting for a free path, a new
call having to be placed at random on one of the free paths.



274 P. le Gall, Telecommunications traffic wichout deley

For simplicity, we also assume the network to be empty at the epoch
0. Let us denote by Ry(j;...j,) the ﬂumber of vpward “‘trajectories”
that are strictly permittec for placing the (j;... ) calls arriving in the
interval (0, ¢] in a determined order. Indeed, there is good reason for
remarking that the order is important, for the paths may or may not
exist, according to the respective sequences of call arrivals of the differ-
ent traffic streams. The order within a traffic stream is, however, of very
little importance. We also observe that, if several paths exist for one and
the same order, they do not count for more than one.

More precisely, if for a given number j; +... +j, we select at random
each call with a probability 1/N; for the i*h traffic stream, then the
probability of selecting the distribution (jj,...,7,) is

_ X 01y Gyttt X 1V
R( ,""’.) (—‘) =R(., *) [-—-—-—'—-—————‘«-—«a- _) ]’ 44
ol ) [T Mol |7 rr Y L (N- (44

where

i .
L Ro(fys s dy)
@1 N =1, R(,l, ,]x) (] + .. ]x)!/jl! ...jx'

Here R(jy, ...,J,) is the reduction factor of the number of possible states.
If we decide to place the calls according to the impressed distribution
(j1» ---»Ji), the paths being chosen at random according to this distribu-
tion, then R(j,, ..., J,) is the probability of placing all these cails.

Now we consider the simple assumption of Poisson arrivals under
stationarity. If the system is in the state (j,, ...,/,) and a new call arrives
in the traffic stream i, then, according to Assumption 2, the probability
of placing it is

TN OSTRENY FENTY il Y FIOTRNY )
R(jp'“a.ix) h

We assume a traffic g; offered to the traffic stream i. The general equa-
tions for statistical equilibrium (33) may now be written

Gr D PG ensfi—todi Y dists voerdy) =

R(il, ---aji—-l,ji + ] 3ji+13 --w]x

=4a.; . 5
] R(]l, .“,]-x) P( 19 ’]x (43)
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After a few successive calculations we get

X a!i
Py wesfi) = PO, s O RG oi) [ o). (46)
i=1 Jj*

We extend the relation (46) to the case of a procuss of general arrivals
dN;(?), the holding-time distribution F(¢) being assumed arbitrary and
identical for all traffic streams. According to Assumption 2, it is suffi-
cient to characterize the stochastic evolution of the traffic stream i by
the stochastic function Y;(#) which represents the number of existing
calls at the epoch ¢ in this traffic stream. The evolution of the total sys-
tem is thus represented by the random vector

Z(@) = {Y (D), ... Y (D)} . (47)

Consider first the special case of call occupancies that do not terminate
or that have durations longer than ¢. Using Assumption 1 and eq. (7),

' t t :
Yi0 = [ V(Y 1@, ..., V) dN;w) = [ Vi(Z(w)) dN;(u) , (48)
0 0

where V; depends on the structure of the network. This case is in fact
similar to that one considered for formula (44) provided that we replace
the term (I/N,-)f i by the probability P;(j;, t) of having j; calls in stream
i. We thus have

PQ 20D g, ,;x)n PG 1) . (49)

P(ji,.cesjyst) =
Tl P00

When the call durations have distribution function F(¢), (48) gives, ac-
cording to (7),

Y,()=| V(Y (), ..., Y () R;(u, t) AN; (1)

fb\“

t
[ V@) R, ) dN,@w) . (50)
0

We note that for a given ¢, R;(u, t) dN;(u) is analogous to the arrival
process made up of arrivals in the stream i giving occupancies not ter-
minating at ¢. The formula (49) is thus still valid, where P;(j;, f) refers to
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the case of a simpie trunkgroup that receives the process d/NV/(¢) and

has the maximu:n capacity L; according to Assumption 1. If the con-
sidered outgoing trunkgroup receives more than one traffic stream,
then the process d NV;(#) should be replaced by the sum of correspond-
ing processes in (50). Quite generally, (50) applies equally to an arbi-
trary instant as well as to an instant of arrival in a certain traffic stream.
We can now state the following theorem (which is very convenient to
apply).

Theorem 5.1 (symmetrical networks). We consider the case of a net-
work in which x traffic streams pass (under stationarity or not). The
network is assumed tc be empty at epoch 0 and to comply with Assump-
tions 1 and 2. Then the probability of finding j; calls going on in the
traffic streamn i (i =1, ..., x) at the arbitrary instant t or at the epoch of
an arrival is given by

2O, B0 pgjy, . ,zx)ﬂ PGnD, (51

P(O 1)

P(jls "-ij;t) =

where P;{j;, t) corresponds to the case where the outgoing trunk group
is considered as isolated (carrying one or more traffic streams). The

quantity R(jy,...,}, ) is the reduction factor for the number of possible
states defined by (44).

The following remarks will clarify the value of this theorem.

(a) The structural and combinatorial aspect of the network, repre-
sented by R(jy, ..., /) has been dissociated from the random aspect re-
presented by P;(j;, t) for a single trunkgroup.

(b) The theorem holds both under stationarity and under nonstation-
arity. Assuming the network empty at zero time is practically no restric-
tion, for the effect of the initial conditions is smoothed down after
some time.

(¢) The theorem holds for the most general assumpticns on the arrival
processes. The theorem also holds for arbitrary distributrion functions
F(¢#). It does not assume the independence of call durations and the in-
put process.

(d) The calculation of R(jy, ..., Jx) can therefore be made by consider-
ing the Markovian case, or by a combinztorial—analytical study not in-
volving probabilistic calculations.
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(e) With regard to (14), Theorem 5.1 also shows that, even for the
random aspect, it is possible to separate the effect of the arrival process
from that of the holding-time distribution.

Moreover, with regard to the contents of Theorem 5.1 we can under-
stand the importance of presenting in Section 2, in the most general
form, the rules for traffic handling in a fully available group of circuits,
now that the mathematical tools have led us in a simple way to the
formulation of this theorem.

Since

E . P(jl9-"9jx;t)= ] ’

Ttseeeslx

we can write (51), for an arbitrary instant ¢, as

X X
PGy o3 D) =Ry i) T PG| 2 Rk k) [T Py, n] '

i=1 LK poennsky i=1

(52)

Thus this general formula (52) shows us that it is sufficient to know the
nonrandom terms R(jy, ..., jy) in order to deduce the random properties
of the traffic flow in the network. In [2] we have described a simulation
method allowing estimation of the quantities R(j, ..., j, ). It has the fol-
lowing features:

(1) The suggested simulation makes it possible to study in one run,
with the aid of formulae given, the effect of all cases of traffic values
and traffic nature that can be envisaged, under stationarity as well as
under nonstationarity. This latter case is particularly useful for studies
of resistance against overloads due to traffic fluctuations.

(2) A single run is sufficient to produce a table of permissible traific
values, in accordance with a list of specified probabilities of blocking.
So this same simulation in one run can produce the complete traffic
tables for use in operation and planning.

Appendix

The following three theorems, proved in [ 2], arz useful in the study
of stationary limit processes. We assume the existence of the limits.
Theorem 2 in { 2] permits us to state:
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Theorem A.1 (key theorem). Let Q(¢y, ..., t,,,) be a nonnegative function
of each positive variable t; such that the integral

[ o [ @ty ty) dty . dty, (A.1)
0 0

exists. If the limit

lim —1—-
to>oo M

14 4
[ ... | E{dN@y .. dNG )} = gy, (A.2)
0 0

exists, then as t — oo,

4 t
Hm(f)Ef ---fQ(t—vl,...,t—vm)E{dN(vl) ..dN(v,)} (A.3)
¢ 0
=>4y f f a(ty, ...ty dty ... dt, (A.4)
D 0

whenever this limit exists.

Here E denotes the expectation operator. Applied to the relation (4)
we get the mth factorial moment of N(#). Finallv the expression (A.2)
is the limit of the mth factoriat moment of [N(#)/t]. Note that in view
of (2) the condition (A.2) is certainly satisfied if [N(¢)/t] tends “al-
most certainly” to a limit stochastic variable as ¢t -+ o. (In fact, conver-
gence in distribution is sufficient.)

This theorem provides a generalization of Smith’s “key theorem” for
renewal processes. If we apply this theorem to the function
Q(ty tuy, ..., t, tu,), where (1,,..., t,,) are given and positive, we get

f .es f Q(t1+u1,...,tm+um)dul...dum=f ...f Q(Ul,...,vm)dvl...dvm
0 0 n I'm

Theorem A.1 now allows us to formulate the following theorem (cf.
{2, Theorem 3]).

Theerem A.2. Let Q(ty, ..., t,,) be 2 nonnegative function of each positive
variable t; for which the integral (A.1) exists. If the limits (A.2) and
(A.4) exist, then for iy positive and fixed, the function
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t t
Hy(tp) = [ o [ QU+ t—vy,.tg+1—0,) E{AN(v)) ... AN(0,,)}
0 ¢

(A.5)
> H (o, 1) = Hyp () K (29)

as t > o, where H,, (=) is the limit (A.4) and

K(t0)=f f Q(ztl,...,um)dul...dum/f f Quy, ...y ttyy) duy... du,, .
to to 0 0 (A.6)

In the same way, in the case of an arrival in the interval (¢, ¢ +d¢),
[2, Theorem 3.A] permits us to state the following theorem.

Theorem A.3. Let Q(ty, ..., t,,) be a nonnegative function, which is
moreover assumed symmetrical with respect to the positive variables t;
such that the integral (A.1) exists. If the limit

t t
lim { ‘ 1 [ ... [ E{dNGy) ... ANipp_p) AN} = by (A.7)
0 o

f—roo tm
exists, then as t = oo, for fixed positive t,
Gm—l(t’ tO) =

]

t t
[ [ QUo*t =0y to 1=y, E)
5 D

X E{dN(vy)...dN(v,,_;) AN(N} (A:8)

> Gy (1) = by [ o [ Qg eersthyy g, to) dity dikyy
fo o (A.9)

whenever this limit exists.

References

[1] R. Fortet, Random distributions with an application to telephone engineering, in: Proc.
31¢ Berkeley Symp. on Mathematica! Statistics and Probability 2 (1956) 81-88.



280 P. le Gall, Telecommunications traffic without delay

[2]} P. le Gall, Random processes applied to traffic theory and engineering, 7th Intern. Tele-
traffic Congr., Stockholm, June 1973; published in: Commutation et Electronique
(SOCOTEL, Paris, October 1973) no. 43.

[3] R. Syski, Introduction to Congestion Theory in Telephone Systems (Oliver and Boyd,
London, 1960).



