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Supersymmetry is expected to exist in nature at high energies, but must be spontaneously broken at
ordinary energy scales. The required energy scale in elementary particle physics is currently inaccessible,
but condensed matter could furnish low energy realizations of supersymmetry. In graphene, electrons
behave as ‘relativistic’ massless fermions in 1 + 2 dimensions. Here we propose phenomenologically,
assuming that some microscopic parameters can be fine-tuned in graphene, the existence of a
supersymmetric Wess–Zumino phase. The supersymmetry breaking leads to a superconductor phase,
described by a relativistic Ginzburg–Landau phenomenology.

© 2013 Elsevier B.V. All rights reserved.
Modern quantum field theories are firmly grounded on the con-
cept of symmetry [1]. A fundamental symmetry known as super-
symmetry, yet unobserved, connects particle fields obeying oppo-
site statistics, i.e., transforms bosons into fermions and vice-versa.
It also unifies space–time with gauge symmetries, and is expected
to unify gravity with the other fundamental forces of nature when
properly gauged [1–5]. Supposedly, supersymmetry exists at very
high energies and is spontaneously broken at the scales currently
accessible in the study of elementary particle physics. Fortunately,
condensed matter physics provides a fertile ground for the search
of supersymmetric models that emulate the world of elementary
particles at a much lower energy scale. In recent years, the most
conspicuous example of a solid state system allowing the study of
fundamental aspects of elementary particles is graphene, a genuine
two-dimensional material. Graphene has a peculiar band struc-
ture, in which electrons emulate the behavior of massless Dirac
fermions in a (1 + 2)-D relativistic space–time near the so-called
Dirac points of the Brillouin zone of a honeycomb lattice [6,7],
providing an interesting bridge between condensed matter and rel-
ativistic high-energy physics [8].

Concerning supersymmetry, the simplest theory is provided by
the Wess–Zumino (WZ) model [1–3,5,9], yielding a graded Lie al-
gebra of the Poincaré group that allows the unified description
of a spin-1/2 fermion field and a spin-0 boson field related to
each other by a supersymmetric transformation. Since supersym-
metry implies that both fields, also known as superpartners, must

* Corresponding author. Tel.: +55 41 33 61 32 22; fax: +55 41 33 61 32 28.
E-mail addresses: cadartora@eletrica.ufpr.br (C.A. Dartora),

cabrera@ifi.unicamp.br (G.G. Cabrera).
0375-9601/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.02.008
possess the same mass m, it is difficult to encounter an exam-
ple of this case in nature at low energy scales. We then speculate
that such an example has to be sought in systems of massless
particles. Recently, an optical lattice realization of the WZ model
was proposed, in which a cold atom–molecule mixture provides
the emergence of supersymmetry by fine-tuning the atomic and
molecular interactions [10]. Here we raise the question whether
graphene could furnish another condensed matter prototype of the
WZ model. The breaking of supersymmetry would imply super-
conductivity, as it was conjectured long ago to take into account
the behavior of high-Tc superconductors [11,12]. Earlier studies
show that one of the requirements for the emergence of super-
symmetry is the presence of Dirac points in the Brillouin zone
[13], favoring the formation of Cooper pairs which would act as
Klein–Gordon bosons under special circumstances. Graphene cer-
tainly accomplishes that goal, at least near its Fermi energy. The
Dirac points are located at the corners of the hexagonal Brillouin
zone, with two inequivalent points, which in the literature are
called K and K′ = −K [8]. The emergence of supersymmetry from
a tight-binding model in the honeycomb lattice at a critical point
was demonstrated by Lee for spinless fermions [14] which, possess
fewer degrees of freedom than electrons in graphene. Concern-
ing superconductivity, graphene properties as a superconductor are
still under intense debate [15–18]. There is experimental evidence
for intrinsic superconductivity in doped samples of graphite, which
consists of stacked graphene layers [19]. The precise microscopic
pairing mechanisms providing the superconducting instabilities
are not well understood but a number of possibilities were pro-
posed, such as phonon- and plasmon-mediated interactions [15]
and resonant valence bonds and density waves in lattice mod-
els [20–22]. A detailed analysis of conventional electron–phonon
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mediated superconductivity in doped graphene showed that the
critical temperature is in the range of Tc ∼ 10 K [23]. Theories
dealing with unconventional pairing mechanisms, involving spin
triplet pairing, have also been proposed [24,17,25,26]. Recent ex-
periments suggest that proximity effects induce a supercurrent in
monolayer graphene contacted by superconducting electrodes [27]
and a theoretical calculation showed that the supercurrent can be
tuned with high efficiency at the charge neutrality point through
mechanical strain [28].

Here we will adopt a more phenomenological route to describe
a supersymmetric Wess–Zumino phase in monolayer graphene, as-
suming it exists, regardless of the microscopic mechanisms leading
to the emergence of supersymmetry. The breaking of supersym-
metry imply the existence of a superconducting phase, in which
electrons are paired. Since the electrons near a Dirac point behave
as massless Dirac fermions, we postulate that the Cooper pairs
formed by massless electrons in a singlet state will be described
by relativistic Klein–Gordon scalar bosons in (1 + 2)-D space–time,
where the Fermi velocity v F plays the role of the speed of light c.
Our starting point is the Wess–Zumino Lagrangian density in the
form below:

L = iψ̄γ μ∂μψ + ∂μφ∗∂μφ

− i
g′

2

(
ψ T Γ ψφ∗ + ψ̄Γ ψ̄ T φ

) − g2

8
|φ|4, (1)

where φ is a boson field and ψ = (ξ↑, ξ↓, ζ↑, ζ↓)T is an 8-
component Dirac spinor, ψ̄ = ψ†γ 0 is the adjoint fermion field,
γ μ = (γ 0, γ 1, γ 2) are the Dirac matrices, ∂μ = ∂/∂xμ is the
derivative operator, xμ = (x0 = v F t, x1, x2) are the space–time co-
ordinates in 1 + 2 dimensions, the Fermi velocity v F plays the role
of the speed of light c and the index μ runs from 0 to 2. The
two-component spinor ξs(ζs) describes an electron at the K(K′)
Dirac point with genuine spin s = (↑,↓). Usually one defines an
index known as the valley pseudospin α, corresponding to the
Dirac points K(α = +1) and K′ = −K(α = −1), i.e., the spinors ξ

and ζ correspond to valley pseudospin +1 and −1, respectively.
Besides the genuine spin s and the valley pseudospin α there
is an additional sublattice pseudospin, associated with the Pauli
matrices �τ = (τx, τy, τz), such that for an electron at K we have
τzξs = ±1ξs , where the eigenvalue +1(−1) represents an elec-
tron located at the sublattice A (B). This way, the Dirac matrices
satisfying the anti-commuting relation, γ μγ ν + γ νγ μ = 2gμν ,
where gμν = diag(1,−1,−1) is the Minkowski metric tensor,
can be explicitly represented by γ 0 = diag(τz, τz, τz, τz), γ 1 =
diag(iτx, iτx,−iτx,−iτx) and γ 2 = diag(iτy, iτy, iτy, iτy). Finally,
the parameters g′ and g are effective couplings.

Taking into account the pseudospin indices (α and τ ) and the
genuine spin (s) the totally anti-symmetric wave function of an
electron pair in graphene can be expressed as a tensor product
Ψpair = ψK ,K ′ ⊗ ψA,B ⊗ ψs,s′ . Conventional pairing imply a spin-
singlet state, allowing only the triplet-triplet or singlet–singlet
product of sublattice and valley isospin functions. Restricting our
attention to the singlet–singlet–singlet pairing, which corresponds
to the scalar boson field of our tight-binding model, we chose the
coupling matrix Γ to be:

Γ =
⎛
⎜⎝

0 0 0 τy

0 0 τy 0
0 −τy 0 0

−τy 0 0 0

⎞
⎟⎠ . (2)

We suppose that the parameters of the above model can be
fine-tuned applying external electric and magnetic fields or by
doping [15]. The quantum critical point g′ = g leads to the emer-
gence of the Wess–Zumino supersymmetric model [5]:
L = iψ̄γ μ∂μψ + ∂μφ∗∂μφ

− i
g

2

(
ψ T Γ ψφ∗ + ψ̄Γ ψ̄ T φ

) − g2

8
|φ|4, (3)

where g = −υ/λ is the effective coupling constant in the super-
symmetric phase. The Lagrangian density (3) is invariant (apart
from a total divergence) under a supersymmetric transformation
of the form:

ψ ′ = ψ − (
γ μ∂μφ

)
η + g

4
Γ η̄T |φ|2, (4)

φ′ = φ + iη̄ψ, (5)

where η is an 8-component constant Majorana spinor and η̄ its
adjoint. Eqs. (4) and (5) are responsible for the mixing of bosons
and fermions. The supersymmetric phase is highly unstable under
de-tuning of the coupling parameters.

Notice that the third and fourth terms in Eq. (3), i.e. ψ T Γ ψφ∗
and ψ̄Γ ψ̄ T φ, represent the coupling between the Dirac massless
electron field ψ and the boson field φ, corresponding to the an-
nihilation (creation) of two electrons and creation (annihilation)
of an excitation of the boson field. Since the fermionic field ψ is
associated with the electrons, it must be charged under the elec-
tromagnetic U (1) gauge group. Consistency between the fermion–
boson interactions and charge conservation imply that if the field
ψ possess electric charge q = −e, the excitation of the field φ must
carry charge Q = −2e. Thus, the field φ is interpreted as the or-
der parameter describing the macroscopic wave function of the
condensate of Cooper pairs. The gauge invariance under the U (1)

symmetry group, for which the fields are transformed according
to ψ ′ = eieΛψ and φ′ = e2ieΛφ, being Λ an arbitrary space–time
function, is achieved replacing ordinary derivatives ∂μ by their co-
variant versions, Dμψ = (∂μ − ie Aμ)ψ and Dμφ = (∂μ − 2ie Aμ)φ,
where Aμ is the electromagnetic potential describing the in-plane
components Ex , E y of the electric field and the perpendicular com-
ponent Bz of the magnetic field, subjected to the gauge transfor-
mations A′

μ = Aμ + ∂μΛ. The U (1) gauge symmetry is responsible
for the breaking of WZ supersymmetry in the massless case, be-
cause the fields ψ and φ carry distinct values of electric charge.
The equations of motion for the field φ, written explicitly below:

DμDμφ + g2

4
|φ|2φ = −i

g

2
ψ T Γ ψ, (6)

is a relativistic version of the Gross–Pitaevskii equation with a
source term −i(g/2)ψ T Γ ψ . Within the mean field approximation,
we make the replacement 〈−iψ T Γ ψ〉 = αφ/g . This procedure de-
couples φ from the fermion field and leads to the following La-
grangian density for φ and Aμ:

L = DμφDμφ∗ + α

2
|φ|2 − g2

8
|φ|4 +Lem. (7)

At this point, we must emphasize the main difference of the
above model of graphene superconductivity from the usual 2D
superconductors. While the former is described by a relativistic
Lagrangian density, meaning that the Cooper pairs behave as rel-
ativistic particles, the later is usually described by non-relativistic
Cooper pairs. The Lagrangian density Lem related to the electro-
magnetic field cannot be given by the usual term − 1

4 Fμν F μν ,
where Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic tensor, because
the photon field lives in a (3 + 1)-D space–time and interacts with
fermions confined on a plane. To get the correct description of
the photon field the starting point is usual action for Aμ in 3 + 1
space–time and the matter current confined to the plane. Integrat-
ing out the z-coordinate perpendicular to the plane one obtains
the Lagrangian density of the electromagnetic field, describing Bz ,
Ex and E y [29,30]:
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Lem = −1

4
Fμν

1√
∂2

F μν, (8)

where ∂2 = ∂μ∂μ is the d’Alembertian operator in 2 + 1 space–
time.

Expression (7) is reminiscent of the Ginzburg–Landau theory
and the sign of the parameter α determines whether the vac-
uum spontaneously breaks a gauge symmetry or not. Directly from
Noether’s theorem we get an expression for the conserved current:

Jμ = −2ie
[
φ∗(∂μφ) − (

∂μφ∗)φ] − 8e2|φ|2 Aμ. (9)

The absence of an explicit mass parameter in the definition of the
current Jμ is a consequence of the fact that Cooper pairs described
by the field φ behave as “relativistic” particles with speed v F . In
the superconducting phase we assume that α and g2 appearing
in (7) are both positive definite, such that the potential energy
V (φ) = −α|φ|2/2 + g2|φ|4/8 has a minimum at |φ| �= 0, meaning
that the macroscopic density of condensed Cooper pairs is non-
vanishing. The vacuum expectation value of the field φ, which
minimizes the potential V (φ), is given by |φ0| = √

2α/g2, allow-
ing us to expand the field about the minimum through new field
variables ϕ and θ in the form φ(xμ) = [|φ0| + ϕ(xμ)]eiθ(xμ) . It
can be straightforwardly shown that the field ϕ picks up a mass
m2

ϕ = α, which is directly related to the superconductor energy gap
� = √

α. In the superconducting state φ = |φ0|, the supercurrent
turns out to be Jμ = −8e2|φ0|2 Aμ , which results in the break-
ing of the U (1) gauge symmetry, since ∂μ Jμ = 0 → ∂μ Aμ = 0 the
photon field Aμ acquires mass, m2 = 8e2|φ0|2. From the London
equations describing the electrodynamics of a superconductor, we
obtain a relation between the photon mass and the London pene-
tration depth:

λL = 1

m
= 1√

8e|φ0|
. (10)

A measurement of the London penetration depth λL and indepen-
dently the superconductor gap �, provides knowledge of parame-
ters α, g and |φ0|:
α = �2, (11)

g2 = 16e2λ2
L�

2, (12)

|φ0| = 1√
8eλL

. (13)

For pure graphene the chemical potential μ is located exactly at
the Dirac points in the Brillouin zone. Therefore, in pure and unbi-
ased graphene the value of |φ|2 should be zero, since the elec-
tronic density of states vanishes at those points. To be precise,
the density of states of massless relativistic particles of energy ε
in two space dimensions, including spin degeneracy, is given by
ρ(ε) = |ε|/(π v2

F ), where ε = 0 denotes the Dirac point. However,
we can finely tune the chemical potential by doping graphene,
in order to locate the Fermi level above (electron-like) or below
(hole-like) the Dirac points. A critical issue in doing so, is not dis-
turbing the dispersion relation of Dirac electrons. If, for instance,
the chemical potential can be moved slightly above the Dirac point
and assuming that all the occupied electron states condense, the
macroscopic density of Cooper pairs will be given approximately
by |φ0|2 ∝ μ2/(2π v2

F ).
In summary, we discussed from a phenomenological standpoint

the existence of a supersymmetric phase in monolayer graphene
at a critical point, described by the Wess–Zumino model for mass-
less Dirac fermions in 1 + 2 space–time dimensions. In graphene,
it is supposed that the coexistence of nearly free fermions and
Cooper pairs acting as bosons are allowed. The usual spin-singlet
bound pair was assumed for simplicity. Finally, we interpret the
possible existence of graphene superconductivity, described by a
‘relativistic’ Ginzburg–Landau phenomenological model, as a result
of supersymmetry breaking.
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