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Abstract

We study the hidden symmetries arising in the dimensional reduction ofd = 5, N = 2 supergravity to three dimension
Extending previous partial results for the bosonic part, we give a derivation that includes fermionic terms, shedding lig
appearance of the local hidden symmetrySO(4) in the reduction.
 2003 Elsevier B.V.
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1. Introduction

Since their role in the greater scheme of M-theory was postulated [1], there has been intense renewe
in the hidden symmetries of supergravity [2–4]. While most work has, understandably, centered on the m
eleven-dimensional theory and its various dimensional reductions, with recent work ranging from the gau
subgroups of the global exceptional groups [5,6] to the identification of new vacua [7] to possibilities for en
the hidden symmetries even further [8], there have also been results of a more general scope; notably
showing in the most systematic manner yet how the hidden symmetries arise in successive dimensional
[9] has been generalized to other dimensional reductions to three dimensions [10].

The present work, whose results form part of the thesis [11], is concerned with the hidden symmetry
from the reduction to three dimensions of (minimal) five-dimensional supergravity [4,12]. Since its inceptio
model, in many ways a “little brother” to the eleven-dimensional theory, has been used time and again
more about its higher-dimensional kin. Recent examples include toy models of the M5 brane [13], cosm
models [14], and methods developed for the study of the U-dualities of M-theory [15]. Concerning the
symmetry in question, there are so far only partial results, namely, a construction [16] of the bosonic pa
model using a decomposition ofG2(+2) with respect toSL(3,R) and a corresponding construction by Cremm
et al. as part of the aforementioned more general study of reductions to three dimensions [10]. The fact
hidden symmetry isG2/SO(4) already follows from results on four-dimensional gravity coupled to approp
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vector and hypermultiplets [17]. What has been missing, so far, is a complete analysis, notably one that
the fermionic sector. The latter is interesting not only as another data point in an area for which, in con
the bosons, no systematic scheme yet exists, namely the relationship between the local extended sym
the dimensional reduction of the spinors, but also for another reason: in maximal supergravity, hidden sym
have been successfully “lifted” to eleven dimensions [18], and recent work has uncovered tantalizing
“exceptional geometric structures” associated with these liftings [19]. The fermionic sector plays a crucial
this type of lifting, and the results of this Letter are thus a prerequisite for a search for such “exceptional ge
in five-dimensional gravity. The present Letter contains a construction of theg2(+2)/so(4) target model in three
dimensions and then proceeds to a dimensional reduction of five-dimensional supergravity, including the fe
sector, in which the emergence of the hidden symmetry is shown.

2. The g2(+2)-model in (2 + 1) dimensions

In this part, we construct theg2(+2)/so(4)-supergravity in 2+ 1 space–time dimensions. For the sigma-mo
part we use the conventions1 (as well as some general formulae) of Marcus and Schwarz [20]. The basic
of our model will be, firstly, scalarsϕi parametrizing the coset; as detailed in [20], they occur in the Lagran
in the form of a Lie-algebra valued fieldPµ and composite connection coefficientsQµ; secondly, a dreibein field
eµ

α ; finally, fermionic superpartners of these bosonic fields: a spin-1/2 field χ and a spin-3/2 (gravitino) field
Ψ , respectively. To match degrees of freedom, we need anN = 4 extended supersymmetry so that, in addition
Lorentz symmetry, the gravitino transforms non-trivially under an additional R-symmetry.

Before the actual construction, we need to assign the different fields to their proper representations with
to the internal symmetries involved, notably the localso(4) symmetry of our model. In parallel with thee8(+8)-
case, one might think that theso(4) R-symmetry would have to be identified with the localso(4) symmetry from
the coset construction; however, the situation is more complicated. If we assign the supersymmetry parε
(and hence the gravitinoΨ ) to the vector representation of the R-symmetryso(4), then from a general analys
of the supercharges as in [21] we must conclude that regarding the representations possible for the (m
matter fields, one chiral subgroup, henceforth denotedso(3)F , acts only on fermionic degrees on freedom,
other,so(3)B , only on bosons. On the other hand, from the group theory literature [22] we know that the
coset decomposition for the14 representation of theg2 is 14 = (1,3)+ (3,1)+ (4,2) (with the usual conventio
of denoting representations by their dimensions, and with the tuples on the right-hand side referring to
chiral so(3) components), so, in particular, the coset scalars transform non-trivially under both of the localso(3).
To resolve the problem, we need to introduce a third algebra, which we shall callso(3)2. This symmetry included
there is indeed an assignment to representations ofso(3)F × so(3)B × so(3)2 that is consistent with the abov
requirements as well as with the form of the supersymmetry transformations (schematically,δSΨ ∼Dε; δSχ ∼ ϕε;
δSϕ ∼ ε̄χ ), namely, withΨ/ε in the representation(2F ,2B,12), theϕ transforming as(1F ,2B,42), and theχ as
(2F ,1B,42).

Next, we need the algebra for the coset decomposition. We denote the indices of the two chiral com
so(3)B andso(3)2 of the maximal compactg2 subalgebraso(4) by ā, b̄, . . . andȧ, ḃ, . . . , respectively. Decompose
with respect to representations of that subalgebra, an algebra element can be written as a contraction of co
with generatorsE, with the part inso(3)2 given asMȧ

ḃE
ḃ
ȧ , the so(3)B asNā

b̄E
ā
b̄ and the non-compact pa

asY āȧḃċEāȧḃċ. The commutators can be found in the usual way, by decomposing tensor products and im
Jacobi identities. They are the usual matrix commutators for theMȧ

ḃ andNā
b̄ among themselves plus[M,N] = 0

1 As for space–time conventions,µ,ν, . . . are curved andα,β, . . . flat space–time indices; our metric is “mostly plus”; our gamma matr
are real withγ 0γ 1γ 2 = +1.
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[M,Y ]āȧḃċ = 3Y āḋ(ȧḃMċ)
ḋ , [Y,Y ′]ȧ ḃ = (

Y ′ āȧċḋ Yāḃċḋ − Y āȧċḋY ′
āḃċḋ

)
,

(1)[N,Y ]āȧḃċ =Nā
c̄Y

c̄ȧḃċ, [Y,Y ′]ā b̄ = (
Y ′ āȧḃċYb̄ȧḃċ − Y āȧḃċY ′

b̄ȧḃċ

)
,

where group indices are lowered by contraction with the rightmost index of totally antisymmetricεȧḃ or εāb̄ with

ε12 = +1. Examination of the Killing form 24 Tr(MM ′)+ 8 Tr(NN ′)− 16YāȧḃċY
′ āȧḃċ shows that this defines th

maximally non-compactg2(+2) if the generators are real and the coefficients satisfy symplectic reality cond

(Mȧ
ḃ)

∗ = (M∗)ȧ ḃ = −Mȧḋε
ḋḃ, (Nā

b̄)
∗ = −Nād̄ε

d̄b̄ and(Y āȧḃċ)∗ = −Yāȧḃċ (adopting the convention by whic
conjugation automatically shifts index positions).

Next, for the realization of the differentso(3)-representations. Denoting the fundamental indices ofso(3)F by
i, j, . . . , the assignment of representations leads to an index structureφāȧḃċ for the scalars,Ψ iā for gravitino and
supersymmetry parameter, andχiȧḃċ for the matter fermions. The action of infinitesimalso(3)-transformations is
fixed by linearity and by demanding for each two such transformationsX,Y that [δX, δY ] = δ[Y,X]. To ensure
consistency, both theso(3)F coefficients and the fields inherit the symplectic reality condition,(ϕ∗)ā ȧḃċ =
−ϕā ȧḃċ, (χ

∗)i ȧḃċ = −χi ȧḃċ, (Ψ
∗)iā = −Ψiā . On the fermionic side, this makes fully contracted products

(anticommuting) spinors symmetric, with Clifford conjugation as their adjoint, e.g.,(χ̄i ȧḃċγ
µ1···µmζ i ȧḃċ) =

(−)m(m+1)/2(ζ̄i ȧḃċγ
µ1···µmχi ȧḃċ). Introducing connection coefficients andQµ

ā
b̄ and Qµ

ȧ
ḃ for the so(3)B

and so(3)2, respectively, we can define the action of a derivative covariant under these local symm
(Dµ(Q)Ψ )iā = ∂µΨ

iā +Qµ
ā
b̄Ψ

ib̄ and corresponding expressions for the other fields; replacing∂µ by the Lorentz-
covariantDµ(ω) = ∂µ + 1

4γ
αβωµαβ , we obtain a derivativeDµ(ω,Q) that is gauge- as well as Lorentz-covaria

After these preparations, we can find the Lagrangian. We restrict ourselves to the terms that are n
for the comparison with the dimensional-reduced theory, omitting quartic or higher fermionic terms
Lagrangian. Starting with the fields’ standard kinetic terms and supersymmetry variations, supersymmetry d
the inclusion of a Noether term and fixes ambiguities of the relative constants, with the resulting Lagrangia

L= e

{
− 1

4κ2
R− i

2

(
Ψ̄µiāγ

µνρDν(ω,Q)Ψ iā
ρ

) − 1

2κ2
gµν(Pµ)āȧḃċ(Pν)

āȧḃċ

(2)− i

4

(
χ̄iȧḃċγ

µDµ(ω,Q)χiȧḃċ
) + 1√

2

(
χ̄iȧḃċγ

ργ µΨ ib̄
ρ

)
(Pµ)

āȧḃċεāb̄

}
,

invariant under the supersymmetry variations

δSeµ
α = iκ2(ε̄iāγ αΨ iā

µ

)
,

δSΨµ
iā = −(

Dµ(ω,Q)ε
)iā − (ΣS)

ā
b̄Ψ

ib̄,

δSχ
iȧḃċ = √

2 iγ µ(Pµ)
āȧḃċεāb̄ε

ib̄ − 3χiḋ(ȧḃ(ΣS)
ċ)
ḋ ,

δS(Pµ)
āȧḃċ = − κ2

√
2
εāb̄Dµ(Q)

(
ε̄ib̄χ

iȧḃċ
) − 3(Pµ)

āḋ(ȧḃ(ΣS)
ċ)
ḋ − (ΣS)

ā
b̄(Pµ)

b̄ȧḃċ,

δS(Qµ)
ȧ
ḃ =Dµ(Q)ΣS

ȧ
ḃ − κ2

√
2
(Pµ)āḟ ċḋ

(
2δȧė δ

ḟ

ḃ
− δȧ

ḃ
δ
ḟ
ė

)
εāb̄

(
ε̄ib̄χ

iėċḋ
)
,

(3)δS(Qµ)
ā
b̄ =Dµ(Q)ΣS

ā
b̄ − κ2

√
2
(Pµ)ēȧḃċ

(
2δē

b̄
εād̄ − δā

b̄
εēd̄

)(
ε̄id̄χ

iȧḃċ
)
,

whereΣS is the highly non-linear expressionΣS = − tanh((1/2)adϕ)ϕ that is a consequence of describing
variation of group-valued objects in terms of algebra-valued objects [20, Section 2]. The coset-specific pr
come into play in that the variation of the Rarita–Schwinger term contains[Dµ(Q),Dν(Q)], to be cancelled by a
term proportional to[Pµ,Pν] arising from the variation of the Noether term with respect toχ .
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3. The dimensional reduction from five to three dimensions

The stage is now set for the dimensional reduction from which we mean to recover the model found
previous section. Starting point is the minimalN = 2 supergravity in five dimensions [4,12]. We choose a “mo
minus” metric with the gravitini symplectic-Majorana spinors, denote curved indices byM,N,P, . . . and flat
indices byA,B,C, . . . and define tensorial epsilon symbols, obtained from an all-flatε12345= +1 by applications
of vielbein and metric. The fields in question are vielbeinsEM

A, gravitini Ψ i
M and a one-form fieldAM ; the

Lagrangian is

L5|2 = − 1

4κ2ER− 1

4
EF 2 − ε3

1

6
√

3

(
EεMNPQR

)
κAMFNP FQR

+ i

2
E

(
Ψ̄MiΓ

MNPDN(ω)Ψ
i
P

) +
√

3

8
iκEFMN

[
2
(
Ψ̄ M
i Ψ Ni

) + (
Ψ̄P iΓ

MNPQΨ i
Q

)]
(with quartic fermionic terms omitted and withFMN := 2∂[MAN] the field strength), and it is invariant und
supersymmetry variations

(4)δEM
A = iκ2(ε̄iΓ AΨ i

M

)
, δΨ i = D̂(ω,F )εi and δA =

√
3

2
iκ

(
ε̄iΨ

i
)
,

where the supercovariant derivativeD̂ is defined by

(5)D̂M(ω,F )ε :=DM(ω)ε + 1

4
√

3
κ(ΓABC + 4ηBCΓA)F

ABEM
Cε.

The initial steps of the dimensional reduction to three dimensions are fairly generic [2,4,23]: exploiting par
Lorentz gauge freedom, certain vielbein components can be gauged to zero, allowing the decomposition

(6)EM
A =

(
∆−1e′

µ
α Bµ

mem
a

0 em
a

)
,

where∆ = detema is a Weyl scaling factor. Here and in the following, curved indices are decomposed
mannerM = (µ,m), with µ a three-dimensional space–time index andm an index in the two-dimensional intern
space; flat indices are split analogously asA = (α, a). We adopt the convention of splitting fields such asF or the
gravitino starting from their (all-lowered) flat-indexed form; curved-index versions are then obtained by appl
of the component vielbeinse′

µ
α andema .

The dimensional split of the anholonomy coefficients leads to non-zero expressions

(7)Ωαβ
γ =∆

[
Ω ′

αβ
γ + 2e′[αµδ

γ
β](∂µ ln∆)

]
, Ωαβ

c =∆2Ω ′
αβ

c, Ωaβ
c =∆Ω ′

aβ
c,

using∆-independent primed coefficients defined as

(8)Ω ′
αβ

γ := −2e′[αµe′
β]ν∂µ

(
e′
ν
γ
)
, Ω ′

αβ
c := −e′

α
µe′

β
νGn

µνen
c, Ω ′

aβ
c := e′

β
νea

m
(
∂νem

c
)
,

whereGn
µν := ∂µBν

n − ∂νBµ
n is the field strength of the Kaluza–Klein vector field.

On the fermionic side, the split is dimension-specific. The five-dimensional gamma matricesΓ A are split into
Γ α = γ αΓ̂ v andΓ a = Γ̂ a , with γ α the three-dimensional matrices andΓ̂ a those of the two-dimensional intern
space with signature(−,−); for concreteness, we chooseγ 0 = iε3σ2, γ 1 = σ1, γ 2 = σ3, Γ̂ 1 = iσ1, Γ̂ 2 = iσ3 and
use the abbreviation̂Γ v := Γ̂ 1Γ̂ 2. The internal matriceŝΓ a areso(2)-gamma matrices, but it is straightforwa
to use them to generateso(3): the generatorŝΓ r , r = 1,2,3, whereΓ̂ r = (Γ̂ a, Γ̂ v), satisfyΓ̂ r Γ̂ s = εrst Γ̂t − δrs,

with ε123 = −1, thesu(2) algebra. In addition, the reality condition((Γ̂ r )ā b̄)
∗ = −εāc̄(Γ̂

r )c̄d̄ ε
d̄b̄ (with SO(2)-

spinor indicesā, b̄, . . .) which these matrices inherit is the same that is needed for theso(3)-generators in the
g2(+2) decomposition introduced above. From Fierz identities for theΓ̂ ’s Clifford algebra, one can derive usef
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relations such as
(
Γ̂ r

)ā
b̄

(
Γ̂r

)c̄
d̄ = 2δā

d̄
δc̄
b̄
− δā

b̄
δc̄
d̄
, εrst

(
Γ̂ s

)ā
b̄

(
Γ̂ t

)c̄
d̄ = δā

d̄

(
Γ̂r

)c̄
b̄ − δc̄

b̄

(
Γ̂r

)ā
d̄ ,

(9)
(
Γ̂ a

)ē
[b̄

(
Γ̂ v

)d̄
ḡ] = (

Γ̂ vΓ̂ a
)ē

[b̄δ
d̄
ḡ],

to be exploited later on. Let us note one consequence of these relations, namely that, using a flatSpin(2)-invariant
metricδāb̄ to lower indices, one can derive

(10)
(
Γ̂ a

)
āb̄

(
Γ̂a

)
c̄d̄

+ (
Γ̂ a

)
d̄ b̄

(
Γ̂a

)
c̄ā

= 2δād̄ δb̄c̄.

This is a Clifford relation, but with contraction over vector instead of spinorial indices, corresponding to ide
relations forSO(8) which are associated with the triality property of that group and are used in the construc
theE8(+8)/SO(16)model.

As for the five-dimensional gravitino, and adopting the convention to suppress (five- and three-dimen
space–time spinor indices, the first decomposition is ofΨ i

A into a three-dimensional spin-3/2 fermion Ψiā
α and a

spin-1/2 fermion Ψiā
a . ā can be promoted to ansu(2)� so(3)-index: as far as internal spinor indices are concern

the spinor product’s adjoint is Hermitian conjugation, with an invariance groupU(2). The symplectic reality
condition restricts this toSU(2). However, there are problems: this decomposition leads both to a non-sta
form for the threebein’s supersymmetry variations and to mixed first-derivative terms between spin-3/2 and spin-
1/2 degrees of freedom. The remedy is a redefinitionΨ ′iā

µ = ∆−1/2[γβ(Γ̂ vΓ̂ a)ā b̄Ψ
ib̄
a − Ψ iā

β ]e′
µ
β ; with this field

as the three-dimensional gravitino ande′
µ
β as vielbein, the dimensional reduction reproduces both the grav

kinetic term (with the mixed terms now absent) and the vielbein supersymmetry variation given in (2) a
respectively. From this, it is tempting to identify the gravitino’s indexā as an index ofso(3)B . However, matters
are more complicated, which can be seen by considering the spin-1/2 fields. To start with, they have the inde
structureΨ iā

a , whereā can be promoted to anso(3) index, as before. However, from the construction in Sectio
we know that the matter fermions transform non-trivially only with respect toso(3)2 andso(3)F . This apparen
problem can be resolved once it is realized that in similar situations, notably in theE8 case, dimensional reductio
leads to models in which the enhanced local symmetry is gauge-fixed, with expressions, e.g., for thePµ andQµ

that are not explicitly covariant under that symmetry. Our case is analogous in that, apparently, the dimen
reduced model “sees” only the diagonalso(3) subgroup ofso(3)B × so(3)F . To restore the enhanced symmet
that diagonal group needs to be disentangled into itsso(3)B ×so(3)F parts, using the model developed in Sectio
as a guide. This promotes theā index ofΨ ′iā

µ to anso(3)B index, and the internal spinor index of the spin-1/2
fields to anso(3)2 index. For the latter, the kinetic term should have the same simple form as shown in (2
can be achieved by exploiting the freedom to redefineΨ iȧ

a → Ψ iȧ
a + (Γ̂aΓ̂

c)ȧ ċΨ
iċ
c . All in all, new matter fermion

fields defined as

(11)χiȧḃċ =∆−1/2Ψ iė
c

[
δcdδ

(ȧ
ė + (

Γ̂d Γ̂
c
)(ȧ

ė

](
Γ̂ d

)ḃ
ḋ ε

ċ)ḋ

have the required properties. It can be checked directly that the fermions thus defined have inherited th
symplectic reality condition. With these preparations, the terms quadratic inΨ ′ that are obtained from the five
dimensional Rarita–Schwinger term combine into the three-dimensional enhanced Rarita–Schwinger te
gauge-fixed connection coefficients

(12)Qν
ā
b̄ := −1

4
e′
ν
α
{(
Γ̂ de

)ā
b̄Ω

′
αde + ε3∆

(
Γ̂ vΓ̂ e

)ā
b̄Ω

′
αe + 2

√
3κ∆−1[ε3

(
Γ̂ v

)ā
b̄Fα + (

Γ̂ d
)ā

b̄Fαd

]}
,

while the corresponding connection coefficients in the kinetic term of the spin-1/2 fermions turn out to be

Qν
ȧ
ḋ = −1

4
e′
ν
β

[(
Γ̂ v

)ȧ
ḋ

(
εcdΩ ′

βcd + 2√
3
ε3κ∆

−1Fβ

)
− (

Γ̂ c
)ȧ

ġ

(
∆ε3

(
Γ̂ v

)ġ
ḋΩ

′
βc − 2√

3
κ∆−1δ

ġ

ḋ
Fβc

)]
.

(13)
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Lagrangian, yield

(Pµ)
āḋėḟ = − i

2
√

2
εāḃe′

µ
α

{
1

2
∆ε3Ω

′
αc

[
δ
(ḋ

ḃ

(
Γ̂ c

)ė
ġε

ḟ )ġ + (
Γ̂ vΓ̂ c

)(ḋ
ḃ

(
Γ̂ v

)ė
ġε

ḟ )ġ
]

+ [(
Γ̂ v

)(ḋ
ġδ

ė

ḃ
εḟ )ġΩ ′

αd
d + (

Γ̂ vΓ̂ c
)(ḋ

ḃ

(
Γ̂ b

)ė
ġε

ḟ )ġΩ ′
α(bc)

]

(14)+ √
3κ∆−1[Fαc

(
Γ̂ c

)(ḋ
ġ

(
Γ̂ v

)ė
ḃε

ḟ )ġ + ε3Fα

(
Γ̂ v

)(ḋ
ḃ

(
Γ̂ v

)ė
ġε

ḟ )ġ
]}

.

By their index structure, it can be checked directly that these objects transform under the proper represen
so(3)2 × so(3)B ; by using the reality conditions for thêΓ , that they satisfy the proper reality conditions.

To complete the match, we present three consistency checks. From (3), it follows thatQν
ā
b̄ must occur in the

new gravitino’s supersymmetry variations, while one should also be able to read off(Pµ)
āḋėḟ from the matter

fermion’s supersymmetry variation. Both expressions agree with those derived above. The final check is th
of the dimensionally reduced bosonic Lagrangian with the sigma-model kinetic term in terms of the(Pµ)

āḋėḟ of
Eq. (14); the same check used in [16] for theg2-construction in terms ofsl(3) representations. The sigma-mod
term is

− 1

2κ2
gµν(Pµ)āȧḃċ(Pν)

āȧḃċ = e′
{
− 1

16κ2
(∂νḡmn)(∂

ν ḡmn)+ 1

4κ2
(∂ν ln∆)(∂ν ln∆)+ ∆2G2

16κ2

(15)− 1

2
(∂µAm)(∂

µAn)ḡ
mn − 1

4
∆−2(F ′)2

}
,

while the reduction of the bosonic terms gives the three-dimensional Einstein–Hilbert term plus

e′
{
∆2G2

16κ2 + 1

16κ2(∂
µḡmn)(∂µḡ

mn)− 1

4κ2(∂
µ ln∆)(∂µ ln∆)− 1

4
∆−2(F ′)2

(16)+ 1

2
ḡmn(∂µAm)(∂νAn)− ε3κ

1

3
√

3
εµνρεmnAm(∂ρAn)

[
3F ′

µν +∆2Gp
µνAp

]}
.

That there is no match comes as no surprise, as it is a general feature of hidden symmetries to
manifest only upon dualization of appropriate dimensionally-reducedp-forms. In this case, the objects that allo
dualization are the Kaluza–Klein field strengthGm

µν , dual to two scalarsξm, and a composite “field strength

F̃µν := ∆−2F ′
µν −Gm

µνAm, tailor-made to fulfil the Bianchi identity and dual to a scalarϕ. After dualization, the
original Lagrangian (16) plus the constraint terms becomes

−1

2
∆−2g′ρλ

(
(∂ρϕ)− 2√

3
ε3∆

2κεnrAn(∂ρAr)

)(
(∂λϕ)− 2√

3
ε3∆

2κεnrAn(∂λAr)

)

+ 2κ2∆−2g′ρλ
(
(∂ρϕ)A

m − (∂ρξp)ḡ
mp + 2

3
√

3
ε3κA

mεprAp(∂ρAr)

)

(17)×
(
(∂ρϕ)Am − (∂ρξm)+ 2

3
√

3
ε3κAmε

prAp(∂ρAr)

)
,

which is the same as theP 2-Lagrangian (15) upon substitution of the dualized entities. This completes our
checks.

There are a number of possible directions for extending the present results. The possibility of ex
“exceptional geometries” has already been mentioned; another interesting question would be to what
to the hidden symmetry if theR-symmetry or some subgroup thereof is gauged [24] (making contact with re
more general, studies of the possible gaugings in three dimensions [5]) or to study the case of compactific
AdS3 × S2, for which the spectrum has already been worked out in [25].
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