Serum levels of angiopoietin-2 and vascular endothelial growth factor in severe refractory asthma

Mohamed Hantera a, Hamed Abd El-Hafiz b,*, Amira Y. Abdelnaby c

a Chest Department, Tanta University, Egypt
b Chest Department, Cairo University, Egypt
c Clinical Pathology Department, Tanta University, Egypt

Received 15 April 2014; accepted 26 May 2014
Available online 3 July 2014

Abstract Background: Airway and vascular remodeling may play a prominent role in the clinical severity of severe refractory asthma (SRA). Angiopoietin-1 (Ang-1) is an essential mediator of angiogenesis by establishing vascular integrity, whereas angiopoietin-2 (Ang-2) acts as its natural inhibitor. Vascular endothelial growth factor (VEGF) is considered to be the most important angiogenic factor, which induces vascular endothelial cell proliferation, tubule formation and increases microvascular permeability.

Objective: In the present study, we aimed to determine the serum levels of angiopoietin-2 and VEGF in patients with SRA as both are involved in remodeling and angiogenesis occurring in SRA leading to resistance to inhaled steroid.

Methods: Twenty five patients with SRA, 25 patients with moderate asthma, and 20 healthy subjects are included in this study. Serum Angiopoietin-2 and vascular endothelial growth factor were estimated in all groups.

Results: Ang-2 (pg/ml) levels were significantly higher among patients with SRA compared to patients with moderate asthma and healthy control. Vascular endothelial growth factor was significantly higher in patients with SRA compared with the other two groups.

Conclusion: Results provide suggestion for possible mechanisms involving angiopoietin-2 and VEGF in the pathogenesis of SRA.

© 2014 The Egyptian Society of Chest Diseases and Tuberculosis. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.
other components of tissue repair and airway inflammation, they may account for the poor steroid response in SRA [3].

Angiogenesis is a complex multiphase process, potentially involving a great number of growth factors, cytokines, chemokines, and numerous other mediators but the specific role of each molecule has not been clearly defined [4]. Vascular endothelial growth factor (VEGF) is considered to be the most important angiogenic factor [5,6], which induces vascular endothelial cell proliferation, tubule formation and increases microvascular permeability [7]. The latter is a common feature of vascular remodeling in asthma and is modulated by the release of different inflammatory mediators, cytokines, proteases, and growth factors [4,8].

Angiopoietins 1 and 2 (Ang-1, Ang-2) are both ligands for the endothelial cell-specific Tie-2 surface receptor and may act in a complimentary and coordinated manner along with VEGF in airway microvascular process. Ang-1 is known to promote sprouting and stabilizing of nascent vessels by promoting interactions between endothelial cells and surrounding support cells including pericytes [9]. In contrast, Ang-2 acts as a natural antagonist of Ang-1 that competes for Tie-2 receptor and reduces vascular integrity, leading subsequently to increased vascular permeability and mucosal edema [10]. Data derived from an animal study suggest that Ang-1 protects against air way inflammation and hyperreactivity in asthma [11]. Ang-2 is increased in sputum supernatants of steroid-naive patients with asthma, is related to increased levels of vascular permeability (AVP) index [12]. Recent studies have shown that Ang-2 levels are elevated in several pathological conditions [13–15]. Parikh et al. [13] reported that Ang-2 levels were significantly elevated in patients with sepsis and impaired oxygenation. In addition, serum from these patients induces disruption of the endothelial barrier, and it has been suggested that systemic excess of Ang-2 provoked pulmonary leakage and congestion in healthy adult mice [13].

In the present study, we aimed to determine the serum levels of angiopoietin-2 and VEGF in patients with SRA as both are involved in remodeling and angiogenesis occurring in SRA leading to resistance to inhaled steroid.

Patients and methods

Patients

Patients were recruited from outpatient clinics of Cairo and Tanta chest departments from January 2013 to January 2014. All patients and control are included after taking their written consent. The diagnosis of asthma was established according to GINA guidelines [16]. The diagnosis of SRA was established according to the American Thoracic Society (ATS) criteria [1]. Fifty patients were included and divided into 25 patients with SRA and 25 patients with moderate asthma, diagnosed according to the classification of GINA 2008 [16]. All patients with asthma were never smokers. Twenty healthy, nonatopic, nonsmoking subjects served as controls. Patients with any other respiratory disease or any concomitant malignant, heart, renal, liver or collagen disease as well as subjects with a respiratory tract infection are excluded from this study.

Laboratory investigations including

Solid Phase Sandwich ELISA technique used for the measurement of angiopoietin-2 and vascular endothelial growth factor (VEGF) levels in serum as a monoclonal antibody specific for the measured marker has been precoated onto a microplate. Standards and samples are pipetted into the wells and the specific marker present is bound by the immobilized antibody. After washing away any unbound substances, an enzyme-linked monoclonal antibody specific for the measured marker is added to the wells. Following a wash to remove any unbound antibody-enzyme reagent, a substrate solution is added to the wells and color develops in proportion to the amount of the measured marker bound in the initial step. The color development is stopped and the intensity of the color is measured.

- Estimation of Angiopoietin-2 level in serum using R&D system Human Angiopoietin-2 Quantikine Pharm Pak (catalog no. PDANG20). The Quantikine Human Angiopoietin-2 Immunoassay is a 4.5 hour solid-phase ELISA designed to measure Human Angiopoietin-2 in serum. Serum Angiopoietin-2 levels were obtained using the standard curves of the Quantikine kit standards.

- Estimation of serum level of VEGF using R&D system Human VEGF Quantikine Pharm Pak (catalog no. PDVE00). The Quantikine Human VEGF Immunoassay is a 4.5 hour solid phase ELISA designed to measure serum VEGF. Results were obtained from the standard curves using the Quantikine Human VEGF Immunoassay standards.

Lung function

Forced expiratory volume in one-second (FEV₁), forced vital capacity (FVC), FEV₁/FVC ratio, and reversibility were measured using the vitalograph machine according to the ATS guidelines [17].

Results

Demographic characteristics

Demographic characteristics of the study participants are summarized in Table 1.

Serum level of angiopoietin 2 and vascular endothelial growth factor

Table 2 shows that Ang-2 (pg/ml) levels differed significantly among patients with SRA, compared to patients with moderate asthma and healthy control. Vascular endothelial growth factor was significantly higher in patients with SRA compared with the other two groups. Table 2 and Fig. 1 show that in patients with SRA, Ang-2 is positively correlated with VEGF (Table 3).
In the present study, we have shown that both Ang-2 and VEGF levels are significantly higher in patients with SRA compared to patients with moderate asthma and healthy subjects.

Angiopoietins may play a role in vascular remodeling of asthmatic airways. In particular, Ang-2 levels can be transcriptionally and post-transcriptionally regulated by hypoxia or exposure to growth factors, such as VEGF [18]. In this study, both Ang-2 and VEGF were increased in SRA, with a significant positive correlation between the two mediators. Therefore, the high levels of VEGF and Ang-2 observed in our patients with SRA may indicate that blood vessels in their airways are in a hypervascularized and destabilized state, thus contributing to the up-regulation of the AVP process. The absence of such correlation in moderate asthma suggests a possible absence of adequate levels of either VEGF and/or Ang-2 to exert their aforementioned effects.

In the same direction of our study but in sputum supernatant E. Tsseliou and colleagues found that angiopoietins are higher among severe asthmatics and angiopiotine-2 is associated with mediators involved in both inflammatory and vascular process [19]. Another study showed the correlation between angiopiotin-2 level and eosinophils explanting the weak steroid effect in severe asthma [20].

Inhaled steroids are currently the only treatment that may positively affect the main aspects of the vascular component of airway inflammation and remodeling [7,21]. It is important to point out that this effect seems to be mainly mediated by the reduced expression of VEGF [22]. Our study was not designed to evaluate the possible role of steroid intervention in SRA. However, the fact that our patients with SRA were receiving high doses of ICS implies that steroid treatment cannot suppress all the aspects of airway inflammation and remodeling in such patients or even more that the underlying pathophysiology of neo-angiogenesis in SRA may be resistant to the intervention with ICS.

In conclusion, this study indicates that Ang-2 and VEGF levels are higher in SRA compared with moderate asthma and healthy subjects. In patients with SRA, Ang-2 is positively correlated with VEGF which plays a role in vascular permeability. Our results provide suggestions for possible mechanisms involving angiopoietin-2 and VEGF in the pathogenesis of SRA.

This study is only a step in investigating whether angiogenic factors play a role in the pathophysiology of SRA. Further studies are required to definitively ascertain the role of Ang-2 and VEGF in SRA.

Conflict of interest

None declare.

Table 1 Demographic characteristics of study participants.

<table>
<thead>
<tr>
<th>Variables</th>
<th>SRA (n = 25)</th>
<th>Moderate asthma (n = 25)</th>
<th>Controls (n = 20)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRA & Moderate</td>
<td>SRA & Control</td>
<td>Moderate & Control</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>31.3 ± 11.6</td>
<td>30.6 ± 12.4</td>
<td>32.6 ± 10.5</td>
<td>0.635</td>
</tr>
<tr>
<td>Sex (female/male)</td>
<td>16/9</td>
<td>14/11</td>
<td>12/8</td>
<td>0.658</td>
</tr>
<tr>
<td>FEV1% pred.</td>
<td>63 ± 5.36</td>
<td>69 ± 8.21</td>
<td>91 ± 9.36</td>
<td>0.142</td>
</tr>
<tr>
<td>FVC% pred.</td>
<td>86.2 ± 5.3</td>
<td>93.1 ± 6.5</td>
<td>102 ± 9.6</td>
<td>0.004</td>
</tr>
</tbody>
</table>

* Highly significant.

Table 2 Serum level of angiopoietin-2 and vascular endothelial growth factor in different groups.

<table>
<thead>
<tr>
<th>Variables</th>
<th>SRA (n = 25)</th>
<th>Moderate asthma (n = 25)</th>
<th>Controls (n = 20)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRA & Moderate</td>
<td>SRA & Control</td>
<td>Moderate & Control</td>
<td></td>
</tr>
<tr>
<td>Ang-2 (pg/ml)</td>
<td>3650.5 ± 542.7</td>
<td>2200.10 ± 980.9</td>
<td>1865.5 ± 475.3</td>
<td>0.002</td>
</tr>
<tr>
<td>VEGF (pg/ml)</td>
<td>1020 ± 113.5</td>
<td>445 ± 35.4</td>
<td>201 ± 15.96</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* Highly significant.

Figure 1 Correlation of Ang-2 and VEGF in severe refractory asthma.

Table 3 Correlation of Ang-2 and VEGF in severe refractory asthma.

<table>
<thead>
<tr>
<th></th>
<th>Ang-2 (pg/ml)</th>
<th>VEGF (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.639</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* Highly significant.

Discussion

In the present study, we have shown that both Ang-2 and VEGF levels are significantly higher in patients with SRA compared to patients with moderate asthma and healthy subjects.

Angiopoietins may play a role in vascular remodeling of asthmatic airways. In particular, Ang-2 levels can be transcriptionally and post-transcriptionally regulated by hypoxia or exposure to growth factors, such as VEGF [18]. In this study, both Ang-2 and VEGF were increased in SRA, with a significant positive correlation between the two mediators. Therefore, the high levels of VEGF and Ang-2 observed in our patients with SRA may indicate that blood vessels in their airways are in a hypervascularized and destabilized state, thus contributing to the up-regulation of the AVP process. The absence of such correlation in moderate asthma suggests a possible absence of adequate levels of either VEGF and/or Ang-2 to exert their aforementioned effects.

In the same direction of our study but in sputum supernatant E. Tsseliou and colleagues found that angiopoietins are higher among severe asthmatics and angiopiotine-2 is associated with mediators involved in both inflammatory and vascular process [19]. Another study showed the correlation between angiopiotin-2 level and eosinophils explanting the weak steroid effect in severe asthma [20].

Inhaled steroids are currently the only treatment that may positively affect the main aspects of the vascular component of airway inflammation and remodeling [7,21]. It is important to point out that this effect seems to be mainly mediated by the reduced expression of VEGF [22]. Our study was not designed to evaluate the possible role of steroid intervention in SRA. However, the fact that our patients with SRA were receiving high doses of ICS implies that steroid treatment cannot suppress all the aspects of airway inflammation and remodeling in such patients or even more that the underlying pathophysiology of neo-angiogenesis in SRA may be resistant to the intervention with ICS.

In conclusion, this study indicates that Ang-2 and VEGF levels are higher in SRA compared with moderate asthma and healthy subjects. In patients with SRA, Ang-2 is positively correlated with VEGF which plays a role in vascular permeability. Our results provide suggestions for possible mechanisms involving angiopoietin-2 and VEGF in the pathogenesis of SRA.

This study is only a step in investigating whether angiogenic factors play a role in the pathophysiology of SRA. Further studies are required to definitively ascertain the role of Ang-2 and VEGF in SRA.

Conflict of interest

None declare.
References

