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a  b  s  t  r  a  c  t

In quantitative  electromyography  (EMG),  the set  of  potentials  that constitute  a  motor  unit  action  potential
(MUAP)  train  are  represented  by a  single  waveform  from  which  various  parameters  are  determined  in
order to characterize  the  MUAP  for diagnostic  analysis.  Several  methods  that  extract  such  a  waveform  are
currently  available,  and they  are,  in  essence,  based  on  two operations:  averaging  and  selection,  which  are
performed  either  sample-by-sample  or on  the  whole-potential.  We  present  a new  approach  that  carries
out  selection  and averaging  on a local  interval  basis.

We  tested  our  algorithm  with  a dataset  of  MUAP  records  extracted  from  the  tibialis  anterioris  muscle
of healthy  subjects  and  compared  it with  some  of the  most  relevant  state-of-the-art  methods  considered
UAP
aveform

liding window

in  a previous  work  (Malanda  et  al., J.  Electromyogr.  Kinesiol.,  2015).  The  comparison  covered  general
purpose  signal  processing  figures  of  merit  and  clinically  used  MUAP  waveform  parameters.  Significantly
better  results  in both  sets of figures  of  merit  were  obtained  with  the new  approach.  In addition,  relative
to  the  other  algorithms  tested,  the new  approach  required  fewer  potentials  from  the  MUAP  set  to  obtain
an accurate  representative  waveform.

© 2016  The  Authors.  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Analysis of the motor unit action potential (MUAP) plays a
entral role in clinical electromyography (EMG). For quantitative
UAP analysis, intramuscular EMG  signals are recorded by means

f needle electrodes inserted into the muscle belly. Several trains of
UAPs are usually present in these signals, and manual, semiauto-
atic or fully automatic procedures [1,2] are used for separating out

hese trains [20]. A representative waveform is then constructed
rom each of these trains in order to quantitatively characterize

ts main features with parameters that convey clinically useful
nformation [1,3–5]. To this end, the potentials in the set are
ime-aligned and averaged. Alignment is usually carried out by

Abbreviations: DEP, Derivative error power; EA, Ensemble averaging; EMG,
lectromyography; FCA, Five-closest averaging; GSMW,  Gold standard MUAP wave-
orms; MA,  Median averaging; MUAP, Motor unit action potential; MWP,  MUAP
aveform parameters; NEP, Normalized error power; NPM, Number of potentials
er  MUAP; REP, Residual error power; SLER, Significantly large errors range; SPMF,
ignal processing merit figures; SWSA, Sliding window selective averaging.
∗ Corresponding author. Tel.: +34 948 169312; fax: +34 948 169720.

E-mail address: malanda@unavarra.es (A. Malanda).

ttp://dx.doi.org/10.1016/j.bspc.2016.01.003
746-8094/© 2016 The Authors. Published by Elsevier Ltd. This is an open access
y-nc-nd/4.0/).
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

superposing the different potentials in the set, so that their max-
imum negative peaks or their triggering points coincide in time.
Alternatively, they may  be aligned on the basis of maximum corre-
lation [6].

A number of averaging methods have been proposed to extract
representative waveforms from repetitive biomedical potentials
in the realm of EMG  (i.e, MUAP analysis) [7–10], evoked potentials
[11–14,19]; and electrocardiography [15]. A descriptive review of
these averaging methods, including a comparative evaluation of
nine of them with a bank of intramuscular EMG  signals has been
recently presented [20]. In that review the authors introduced
four features to characterize and classify the averaging methods:
selection, weighting,  observation scope and operation scope. Selection
refers to the way that the algorithm chooses which potentials in
the MUAP set to use in calculating the average. Weighting refers
to the weights that are given to selected potentials. Scope refers
to the locality of the search around a given inspected sample.
Observation scope refers to the set of samples around the inspected

one from which the information needed for the selection-weighting
process is extracted. Operation scope is the time interval around
the inspected sample over which the selection-weighting criteria
operate: the time interval for which the selected potentials and
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Fig. 1. MUAP potentials presented in raster mode. Sliding window for selection is
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These methods were chosen from the nine methods used in the
hown.

he weighting coefficients remain unchanged. From the results of
he analysis, operation scope turned out to be the most sensitive
eature, and, in most of the evaluated cases, methods with one
ample operation slope had better performance than those that
perated on a ‘whole potential’ basis.

As discussed in the above-mentioned article, available averag-
ng methods make use of one of two scopes: either one-sample
cope or whole-potential scope. These two alternatives represent
he extreme cases of what is normally known as local processing,
n which, for processing a certain time sample, information from a
imited neighbourhood of the sample is considered.

Here we present a new averaging method in which potentials
re observed through a sliding window that traverses the time span
f the whole potential and imposes an intermediate scope for the
stimation process. The rationale behind this idea is that all the
otentials in the MUAP set may  contain useful information for com-
osing the representative waveform; even if a certain potential is
orrupted by one or more interfering potentials over some part of
ts time span, other parts may  be unaffected and therefore valid for
btaining the representative waveform. Local processing provides

 sensible strategy to materialize this idea, and a sliding window, a
imple way to implement it (Fig. 1).

If several potentials within a MUAP set have similar shapes
ithin a certain time interval, the common shape is more likely

o be of physiological origin than due to noise or contamination.
herefore those potentials that share a common shape over a spe-
ific time interval should be the ones used to construct the shape of
he representative waveform over this interval. For this reason, our
lgorithm selects and averages the most similar potentials within
he scope of a sliding window. Once the selection and averaging
rocess on one time interval has been completed, the algorithm
lides the window along one time sample, delimiting the next inter-
al to be analysed, from which a new set of potentials is selected
nd averaged. In view of these concepts, we refer to this approach
s Sliding-window selective averaging (SWSA). In terms of the frame-
ork previously described, both the observation scope and the

perational scope applied by SWSA are local, and the averaging
rocess is based on selection of signal sections with similar shapes
rom several potentials in the set and uses uniform weighting of
he selected potentials.
The aim of this paper is to present the SWSA approach
nd compare its performance with the most relevant of the
ssing and Control 27 (2016) 32–43 33

methods examined and evaluated in the above-mentioned descrip-
tive review of averaging methods [20].

In the following section we describe the materials used in the
study. Next, we  give an account of SWSA as well as the methods we
used to compare its performance. Then we explain the figures of
merit and the gold standard used in comparisons before reporting
the results of the comparative evaluation, discussing those results
and offering our final conclusions.

2. Materials

The material used in this study was  the same as that used in the
work previously mentioned [20], with the expressed approval of
the UPNA Ethical Committee. Particularly, 35 raw EMG  signals were
recorded from the tibialis anterioris muscle of seven healthy and
physically active volunteer subjects who had given their informed
consent before the experiments. These signals were 10 s-long and
were taken while the subjects were exerting a slight to moder-
ate muscle contraction, in the range of the current performance
of signal recording with multi-MUP systems, i.e. 5–30% maximum
voluntary contraction [9].

A Synergy electromyograph (Oxford Co.) and concentric nee-
dle electrodes (type DCN37; diameter 0.46 mm,  recording area
0.07 mm3; Medtronic) were used for the acquisition. The EMG  sig-
nals were band-pass filtered (filter setting was 3 Hz to 10 kHz),
sampled (sampling rate was  20 kHz) and digitized (16-bits per sam-
ple). The digitized signals were stored on the hard disk of a PC and
analyzed off-line. From these 35 EMG  recordings, 175 MUAP trains
were extracted using a recognized decomposition algorithm [16];
however, four MUAP train sets were lost as a result of file corrup-
tion. Each MUAP train consists of a set of potentials that have a
fixed length L, sufficiently large that the waveform characteristics
of the potential are fully contained within this length. In our case,
L = 1000 samples (50 ms).

We discarded MUAP trains that were evaluated as unaccept-
able by an expert electromyographer for having an excessively
noisy visual appearance or because the yielded average waveform
presented unrealistic MUAP shapes. We  also discarded waveforms
with a peak-to-peak amplitude lower that 0.1 mV.  For SWSA sensi-
tivity tests we  included all MUAP trains with at least 40 potentials
(Section 3.5). The number of MUAP trains that met  the require-
ments for the sensitivity tests was  119. Because in our tests we
wanted to measure the behaviour of the methods for different num-
bers of potentials in the train, we  only included in the comparative
tests those MUAP trains that had at least 80 potentials (Section
3.6). The number of MUAP trains that met  the requirements for the
comparative tests was 78.

3. Methods

3.1. Established averaging approaches used for comparison tests

Our method was  compared to three different averaging meth-
ods for extracting representative MUAP waveforms from sets of
potentials of MUAP trains. These methods were:

a) Ensemble averaging (EA)
b) Median averaging (MA) [8]

(c) Five-closest averaging (FCA): Average of the five potentials that
are closest (as given by the Euclidean distance) to each other
[20].
previously mentioned comparative study and review [20]. MA  was
the one that generally performed best. EA was  not among the best
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erformers but was chosen because it is the simplest of the nine
ethods and is useful as a point of reference for other averaging
ethods. FCA generally had intermediate performance in terms of
ost of the evaluated parameters but in some specific scenarios

ad the highest scores and in others, the lowest. Besides the above
onsiderations, these three methods were chosen because they use
ifferent observation and operation scopes and various selection
nd weighting modalities. Particularly, EA has one-sample observa-
ion scope, whole-potential operation scope, all-samples selection
nd uniform-weighting; MA,  on the other hand, has one-sample
bservation scope, one-sample operation scope, one-sample selec-
ion and no weighting; finally, FCA has whole-potential observation
nd operation scopes, five samples selection and uniform weight-
ng.

.2. The Sliding-window selective averaging method

In our SWSA algorithm, all the potentials in the MUAP set are
rst aligned in time and amplitude axes. Then a sliding window

s used to select sections of these potentials. For each time inter-
al corresponding to the window location the so-called median
ection is calculated taking the median of the samples of all the sec-
ions in the train at that time interval. The potentials with shortest
uclidean distances to the median section are selected and averaged,
btaining a representative section for that time interval. Finally,
he representative sections for each of the different time intervals
btained as the window slides along the whole potential span are
ssembled and averaged to form the final representative waveform.

This process is similar to what is done in Stalberg’s MMA  algo-
ithm, in which the scope is one sample, whereas in the SWSA
lgorithm the scope is a local neighbourhood. Below is a formal
nd detailed description of the algorithm in four steps.

.2.1. Alignment
Formally, the kth MUAP train is expressed as:

UAPk =
{

xk,i(n)
}

, i = 1, 2, . . .,  Nk, n = 0, 1, . . .,  L − 1 (1)

here i is the index that identifies the potential within the MUAP
rain, Nk is the number of potentials in the kth train and n is the
ndex of the time sample. In the following, we will omit the index

 because we are concerned with the generic case.

UAP =
{

xi(n)
}

, i = 1, 2, . . .,  N, n = 0, 1, . . .,  L − 1 (2)

For MUAP visualization and processing, the potentials need be
ligned, and here this is achieved by aligning the largest negative
eak of the different potentials in the MUAP such that they coin-
ide in the time axis. In addition, each potential may  be affected
y different baseline wander and secondary potentials that could

ncrease or decrease its mean value in a random way. To accom-
odate the amplitude level of the potentials in the MUAP train
e simply add a constant amplitude to each potential so that its

uclidean distance to the mean (i.e. the average of all the potentials
n the MUAP train) is minimized.

.2.2. Sliding window segmentation
Once the potentials are aligned, an Lw-samples-long window is

lid along the time axis one sample at a time, delimiting segments
f potential in the MUAP set (Fig. 1). The delimited segments are
xpressed as:

ij (n) = xi (n + j) , 0 ≤ n ≤ Lw − 1, j = 0, 1, . . .,  J − 1 (3)
here j is an index which accounts for the position of the sliding
indow, and J is the number of positions necessary for the sliding
indow to fully cover the time span of the potentials (i.e., J = L −

w + 1).
ssing and Control 27 (2016) 32–43

3.2.3. Selection and averaging at each position
At each position j, the median segment of the set of segments is

computed:

xj,med(n) = median
i=1,...,N

{
xij(n)

}
, 0 ≤ n ≤ Lw − 1 (4)

The standard deviation (SD) of amplitudes of the potentials xij(n)
is also computed:

xj,SD(n) = SD
i=1,...,N

{
xij(n)

}
, 0 ≤ n ≤ Lw − 1 (5)

And the minimum standard deviation throughout the window
length is extracted:

Xj,min = min
n=0,...,Lw−1

{
xj,SD(n)

}
(6)

Then, the distance between each signal segment xij(n) and the
median segment xj,med(n) is computed as the time average of the
absolute value of the difference between these two segments:

�ij = avg
n=0,...,Lw−1

{∣∣xij(n) − xj,med(n)
∣∣} (7)

Those segments that are more distant from the median segment
xj,med(n) than � · Xj,min (� being a constant factor determined empir-
ically) are excluded. The rest are considered valid and are averaged
to form the representative potential at the jth position:

ind validj =
{

i = 1, . . .,  N, such that �ij ≤ � · Xj,min

}
,

j = 0, 1, . . .,  J − 1 (8)

yj(n) = avg
i ∈ ind validj

{
xij(n)

}
, 0 ≤ n ≤ Lw − 1. (9)

If the ind validj set is empty or has only one element, the last
step is iteratively repeated, increasing � by a certain amount each
iteration, until this situation stops.

3.2.4. Composition of the full-length potential
At this point we  have obtained a set of representative curves,

yj(n), one at each position j. These now need to be assembled.
First, they are placed in their corresponding time intervals, i.e., yj(n)
should be delayed according to its position j:

yj,del (n) = yj (n − j) , j ≤ n ≤ j + Lw − 1, j = 0, 1, . . ., J − 1

(10)

where yj,del(n) is the delayed version of yj(n), which was obtained
for the jth position.

To obtain the final representative curve, the overlapping parts
of the segment curves are averaged. The number of segments that
actually overlap on a given time sample is given by the following
expression:

� (n) =

⎧⎪⎨
⎪⎩

n + 1, if 0 ≤ n ≤ Lw − 1

Lw, if Lw ≤ n ≤ L − Lw − 1

L − n, if L − Lw ≤ n ≤ L − 1

(11)

Finally, the output representative potential is obtained from
yj,del(n) and �(n) as
ŷ (n) = 1
� (n)

×
J∑

j=1

yj,del (n) , 0 ≤ n ≤ L − 1 (12)
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Fig. 2. (A) Ensemble of MUAP potentials and duration markers (vertical bars). (B)
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NEP gives a measure of the similarity of x(n) to the GSMW curve
elected MUAP potentials within duration limits. (C) GSMW obtained as the average
f  the selected potentials.

.3. Gold standard

Gold standard MUAP waveforms (GSMWs) were used to com-
are quantitatively the characteristics of representative waveforms

enerated by different algorithms. GSMWs  were obtained in a
revious work [20] by time aligning the potentials in the trains,
anually marking the MUAP initial and end points (Fig. 2A),
ssing and Control 27 (2016) 32–43 35

subjectively selecting a subset of potentials with similar shapes
within the marked limits (Fig. 2B) and finally averaging the selected
subset (Fig. 2C).

3.4. Merit figures

We used two  different groups of figures of merit, also used in
our previous study [20]. The first group is related to the concepts
of noise and signal power in signal processing theory and are not
specifically devised for the analysis of MUAP waveforms; we  will
refer to them as signal processing merit figures (SPMFs). These figures
are intended to measure the similarity between the GSMW  and
waveforms generated by the tested algorithms. The second group
of figures of merit is composed of descriptive parameters of MUAP
waveforms that are typically used in quantitative EMG. The figures
convey structural and physiological information about motor units
and are of interest in clinical evaluation. We  will refer to them as
MUAP waveform parameters (MWPs).

3.4.1. Signal processing merit figures
We used the three figures of merit described below, that were

also employed in [20].
Normalized error power (NEP): error power normalized to sig-

nal power within MUAP duration:

NEP =
∑n2

n1
[e(n)]2

∑n2
n1

[x(n)]2
(13)

where x(n) is the representative MUAP potential obtained by a
given method, e(n) = x(n) − g(n) is what we  refer to as the error sig-
nal, g(n) being the GSMW curve, and n1 and n2 are the time samples
corresponding to the initial and end duration cursors placed by the
expert.

Residual error power (REP): signal power outside MUAP dura-
tion divided by signal power within MUAP duration:

REP = n2 − n1

L + n1 − n2 − 1
×

∑n1−1
n=0 [x(n)]2 +

∑L−1
n2+1[x(n)]2

∑n2−1
n=n1

[x(n)]2
(14)

where L is the length of x(n).
Derivative error power (DEP): error power of the potential

derivative normalized to the power of the signal derivative within
MUAP duration:

DEP =
∑n2

n1

[
ıe(n)

]2

∑n2
n1

[
ıx(n)

]2
(15)

where ıx(n) is an estimation of the time derivative of x(n), which
is obtained by filtering x(n) first with a 4-tap averaging filter,
h1(n), and then with a first order differentiator, h2(n). The impulse
responses of these filters are, respectively:

h1 (n) = 0.25 if n = 0, . . .,  3,

0 if n < 0 or n > 3
(16)

h2 (n) = 1 if n = 0,

−1 if n = 1,

0 if n < 0 or n > 1

(17)

Similarly ıe(n) is an estimation of the time derivative of e(n),
which is also obtained by filtering e(n) with h1(n) and h2(n), sequen-
tially.
within the time span of the potential: the more similar the two
curves, the lower NEP. REP provides a measure of the power of the
signal outside the potential duration limits, i.e., the baseline. The
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12.5 ms,  respectively), and a value of 1.0 for the parameter �. These
6 A. Malanda et al. / Biomedical Signa

ower REP the easier the estimation of duration and other MUAP
arameters. Finally, DEP is concerned with the derivative of the
UAP representative curves within the MUAP duration. This figure

f merit is sensitive to the presence of ragged (noise-like) contours
n the waveforms and to the overall similarity between x(n) and the
SMW curves.

.4.2. MUAP waveform parameters
We used seven parameters that are widely accepted for MUAP

aveform characterization within the realm of quantitative EMG
17,18] and that were also employed in [20]:

 Peak to peak amplitude (mV).
 Area of the rectified waveform within the MUAP duration
(mV  ms).

 Number of phases: the number of baseline crossings plus one
within the MUAP duration. To make this measure robust against
noise, a crossing was only considered to constitute a new phase if
it exceeded a 20 �V threshold level above or below the baseline.

 Number of turns [3]: the number of positive and negative peaks
separated from the preceding peak of opposite polarity by more
than a certain amplitude threshold, 50 �V in this study.

 Irregularity coefficient [4]. This parameter measures the length of
the MUAP curve normalized by the peak-to-peak amplitude and
is calculated as the sum of consecutive absolute differences of the
curve samples divided by the peak-to-peak amplitude.

 Spike duration [3]: the time interval between the first and the last
positive peak of the MUAP (ms).

 Spike area [3]: the area of the rectified waveform within the spike
duration (mV  ms).

Error measurements were calculated as the difference between
he MWP  of the algorithm-generated waveform and the MWP
f the GSMW.  Relative error measurements were calculated
ividing the absolute error measurements by the MWP  of the
SMW.

In the case of the number of turns, we calculated two error mea-
urements: missed and false turn errors. The former is a count of
urns absent in an algorithm-generated waveform at instants when
hey are present in the GSMW.  The latter is a count of turns present
n an algorithm-generated waveform at time instants when they
re not in the GSMW.  To make these measurements robust against
mall waveform variations, misalignments and noise, we looked for
emporal coincidence of a turn within a certain interval as opposed
o within a single time sample. The interval used was  0.25 ms,  which
s equivalent to 5 samples in this study.

.5. SWSA performance sensitivity

First we studied how the parameters Lw and � affect the
ehaviour of the SWSA method. To this end, we used the 119 avail-
ble MUAP sets, taking the first 40 potentials of their trains. We
aried Lw from 25 to 400 samples (1.25 to 20 ms)  in steps of 25
amples (1.25 ms)  and also included lengths of 15 and 20 sam-
les (0.75 and 1.0 ms). For each value of Lw we varied � from 0.5
o 2.5 in steps of 0.5 and also included a value of 0.25. For each
air of Lw and � values, we calculated NEP, REP and DEP figures of
erit.

.6. Evaluation tests
Merit figure scores are affected by the number of potentials used
o extract the representative waveform. Therefore, we  performed
ur analysis varying the size of each MUAP set: we  repeated our
rials taking K potentials of each of the 78 MUAP sets, where K
ssing and Control 27 (2016) 32–43

was from 10 to 80 potentials in steps of 10. We  called this variable
the number of potentials included in the MUAP set (NPM). Mean and
standard deviation (SD) of all merit figures, both SPMF and MWP,
were calculated for each K value.

We  observed that merit figure results varied depending on
which K potentials were selected from the 80 potentials in the
MUAP train (i.e., results might not be the same with the first ten
as with the last ten). To eliminate this source of variability, for each
K value and each MUAP, we  repeated the previous evaluation pro-
cedure 50 times, each time selecting at random K potentials from
the 80 available in the MUAP train. Then we  obtained collections
of 50 mean and 50 SD values of the SPMF and MWP,  and finally
averaged them.

In order to evaluate the significance of these results we pro-
ceeded as follows. For every merit figure and every NPM under
analysis, we determined whether any of the methods yielded a
mean absolute error significantly larger (using the paired t-test and
P-values ≤ 0.01) than the minimum mean absolute errors obtained
among the rest of tested methods. Then for each method we
extracted the range of NPM values in which this situation (i.e. its
mean absolute error was significantly larger than minimum mean
absolute error) occurred. We  will refer to this range as the signif-
icantly large-errors range (SLER).  A large SLER value indicates that
a method has a relatively low performance as compared with a
method with a lower SLER value.

As representative waveforms generated by the algorithms vary
with the number of potentials in the MUAP set, an interesting value
for quantifying the behaviour of the algorithms is the NPM beyond
which increases provide no gain in accuracy. The term rate of con-
vergence will be used to refer to this concept. It was assumed that
the representative waveform that an algorithm generates from the
whole set of 80 potentials is the definitive output and that wave-
forms generated from subsets are approximations. In view of the
above considerations, for each algorithm independently, we com-
puted the P-values of merit figure score differences when K = 80
potentials and the various trials when K < 80 potentials. Finally, we
obtained the minimum NPM for which the yielded merit figures
(SMPF or MWP  error measurements) were not significantly larger
(P-values ≤0.01) (as previously explained for the case of SLER mea-
surements) than those obtained using 80 potentials per MUAP. We
call this measure the convergence factor.  A low convergence factor
(10 or 20, for example) means that a method is fast, as it reaches
the convergence within a few iterations. A high convergence factor
(60 or 70, for example) means that a method takes longer to reach
convergence.

4. Results

4.1. SWSA performance sensitivity

The results of our sensitivity analysis yielded specific ranges of
values of parameters Lw and � for which the studied merit figures
exhibited significantly better results than for other values, while no
significant differences were observed within these ranges. These
ranges are given in Table 1.

The intervals 150 ≤ Lw ≤ 175 and 0.25 ≤ � ≤ 1.0 define the best
ranges of Lw and � values valid for most of the SPMF and MWP  merit
figures. On the basis of the above results, we decided to conduct our
evaluation of the SWSA algorithm using three different values of
the window length: Lw = 50, 150 and 250 samples (i.e., 2.5, 7.5 and
parameter values should enable the algorithm to minimize all of its
SPMF and MWP  errors, whilst maintaining some variability in the
method. We  will refer to these configurations of the algorithm as
SWSA (1), (2) and (3), respectively.
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Table  1
Ranges of values of Lw and � for which the studied merit figures exhibited sig-
nificantly better results than for the rest, with respect to SPMF (rows 2–4) and
MWP  (rows 5–12) merit figures. Lw1, Lw2, �1 and �2 define the ranges of Lw and
�  respectively.

Lw1 (samples) Lw2 (samples) �1 �2

NEP 125 225 0.25 1.0
DEP  50 175 0.25 0.25
REP  100 175 0.5 1.5
Amplitude 100 250 0.25 1.5
Area  125 350 0.25 1.0
Phases 20 375 0.25 1.0
Missing turns 150 250 0.25 1.0
False turns 50 300 0.25 1.0
Irreg. coef. 50 250 0.25 1.0
Spike duration 20 175 0.25 1.5
Spike area 15 400 0.25 1.0

Table 2
Ranges of significantly large errors (SLERs) of the SPMFs for the different averag-
ing  methods under study. (P-values ≤0.01). (r = range expressed in terms of NPM)
(FR  = full range) (None = zero range). (For the average of the last column, ‘None’
entries were substituted by 0s and ‘FR’ by ‘80’, corresponding to the complete
inspected range).

NEP REP DEP AVG

EA FR FR FR 80
MA  FR r ≤ 30 FR 63.3
FCA  FR FR FR 80
SWSA (1) r ≤ 40 None r ≤ 20 20
SWSA (2) None FR None 26.7
SWSA (3) FR FR FR 80

Table 3
Convergence factor of the SPMFs obtained by the different averaging methods.

NEP REP DEP AVG

EA 80 80 80 80
MA  80 80 80 80
FCA  50 40 30 40
SWSA (1) 80 80 80 80
SWSA (2) 70 80 60 70
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SWSA (3) 70 80 50 66.7
AVG 71.7 73.3 63.3 69.4

.2. Signal processing figures of merit

Fig. 3 shows how NEP, REP and DEP merit figures varied with
PM, from 10 to 80 potentials, in steps of 10.

Table 2 presents the SLER values for the three SPMF and the six
veraging methods studied. We  include the SLER values averaged
cross the different merit figures (last column).

SWSA (2) significantly outperformed the rest of methods in
erms of NEP and DEP in almost all NPM cases; SWSA (1) signif-
cantly outperformed the rest of methods in terms of REP in almost
ll NPM cases. From the numerical average of the three figures of
erit, SWSA (1) and (2) are by far the best performing methods.

WSA (3), however, yielded sensibly worse results.
The rates of convergence of the studied methods, as indicated by

onvergence factor,  were measured for NEP, REP and DEP (Table 3).
CA was the fastest method to converge (NPM between 30 and 50).
he rest of methods, in most cases, only reached convergence with
0 or 80 potentials per MUAP.

.3. MUAP waveform parameters
Table 4 presents the mean and SD of the MWP  values calculated
rom the GSMW obtained from the collection of MUAP trains.

Correlation coefficients for GSMW parameter values obtained
ith 80 potentials per MUAP train are given in Table 5. There is
ssing and Control 27 (2016) 32–43 37

high correlation between amplitude, area and spike area. Note also
the correlation between the number of turns and the irregularity
coefficient and between the number of turns and the number of
phases.

Fig. 4 shows the mean and SD of the differences in MWP  val-
ues between representative curves obtained with the automatic
methods and the GSMW,  for NPM between 10 and 80.

Table 6 presents the SLER for the eight MWPs and the six
methods studied. We  include the SLER values averaged across the
different merit figures (last column).

Regarding MUAP amplitude (Fig. 4A and B), error curves con-
verged to non-zero results, i.e., they were all biased. SWSA (1),
SWSA (2) and MA,  curves converged to an amplitude error of around
−1%; SWSA (3), FCA, and EA converged to errors around −1.8%, 1.2%
and −4%, respectively. As may  be observed in Table 3, SWSA (1),
SWSA (2) and MA  performed best, with no significant differences
among them. SWSA (3) and FCA came next, performing worse in
some NPM cases. EA was significantly worse in all NPM cases. With
regard to area (Fig. 4C and D), in many NPM cases, EA and FCA had
significantly larger errors than the rest. All methods presented a
certain amount of bias in this parameter. Error curves from SWSA
(2) and SWSA (3) decreased below −1% with NPM above 50 and 70,
respectively.

With respect to number of phases, turns in excess, irregularity,
spike duration, and spike area (Fig. 4E and F, I–P), all methods pre-
sented similar decreasing error curves with NPM. The three SWSA
versions yielded the best results in almost all cases. These results
were significantly better than those of the other three tested meth-
ods for all the parameters and across most of the range of NPM
considered. SWSA (1) and (2) were significantly better than SWSA
(3) in many of these cases, as well.

With respect to missing turns (Fig. 4G and H), error curves pre-
sented a slightly different pattern. EA presented the largest errors,
which were significantly larger than those of the best methods. The
best results were provided by SWSA (1) with NPM lower that 70 and
by FCA with NPM of 80.

The average SLER figures of Table 6 indicate that the three SWSA
versions are clearly superior to the other methods regarding MUAP
waveform parameters, with SWSA (1) and SWSA (2) performing
better than the SWSA (3).

Table 7 presents the convergence factors, for the eight MUAP
parameters and the six methods studied. Averages across methods
and across MUAP parameters are also included in the last column
and the last row, respectively.

The last column and row include averages across methods and
across MUAP parameters, respectively. EA and MA  provided con-
vergence factors for false turns and irregularity considerably larger
than those of the other methods. For the rest of parameters the
six methods presented similar convergence rates. In any case, the
three SWSA versions proved superior on average to the three other
tested averaging methods

5. Discussion

Several points arising from the foregoing analysis of the results
deserve further attention:

a) In terms of almost all of the MUAP waveform parameters and
signal processing figures of merit studied, and for any given
number of potentials included in the MUAP, SWSA performed
better than the other algorithms (Figs. 3 and 4). In many cases,

the significantly-large-errors-range of the SWSA was smaller
than those of the other algorithms (Tables 2 and 6). After
SWSA, the method with best performance was MA;  FCA and
EA were the most error-prone. Although each algorithm has
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Fig. 3. Changes in SPMF results with the number of potentials per MUAP (mean in the left column and SD in the right column). (Normalized units are used in the y-axis).

Table 4
Mean and SD (in brackets) of MUAP parameter values obtained with manual measurements (GSMW).

Amplitude (mV) Area (mV  ms)  Phases Turns Irreg. coef. Spike duration (ms) Spike area (mV  ms)

1.08 (0.69) 1.39 (0.78) 3.97 (1.16) 3.59 (1.32) 2.69 (0.40) 4.83 (2.61) 0.90 (0.56)

Table 5
Correlation coefficients between GSMW parameter values obtained with 80 potentials per MUAP train.

Amplitude Area Phases Turns Irreg. coef. Spike duration Spike area

Amplitude 1.00 0.92 0.39 0.23 −0.15 −0.30 0.89
Area  1.00 0.35 0.21 −0.06 −0.26 0.95
Phases 1.00 0.57 0.39 −0.26 0.35
Turns  1.00 0.69 −0.19 0.29
Irreg  1.00 −0.07 −0.03
Spike  duration 1.00 −0.12
Spike  area 1.00

Table 6
Significantly-large-errors ranges of the MUAP waveform parameters for the different averaging methods under study (P-values ≤0.01). (r = range expressed in terms of NPM)
(FR  = full range) (None = zero range). (For the average of the last column, ‘None’ entries were substituted by 0s and ‘FR’ by ‘80’, corresponding to the complete inspected
range).

Amplitude Area Phases Missing turns False turns Irreg. coef. Spike duration Spike area AVG

EA FR FR r ≤ 60 FR FR FR FR FR 77.5
MA  None r ≤ 50 r ≤ 40 r ≤ 60 FR r ≤ 70 r = 10–50, 80 r ≤ 60 52.5
FCA  r = 80 r = 10–40, 70–80 FR r ≤ 20 FR FR r ≤ 30 r ≤ 20 56.2
SWSA (1) None r = 20–30 None None None None r = 20 r = 20 5
SWSA (2) None None None None None None None None 0
SWSA (3) r ≤ 20 None r = 10 r = 10 r ≤ 40 r ≤ 50 r = 10 r = 10 18.7
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Table  7
Convergence factors for the MUAP parameters obtained by the different averaging methods.

Amplitude Area Phases Missing turns False turns Irreg. coef. Spike duration Spike area AVG

EA 10 20 70 30 80 80 30 20 42.5
MA  10 10 20 30 60 80 20 20 31.2
FCA  10 10 20 30 40 30 30 20 23.7
SWSA  (1) 10 10 10 20 40 20 10 10 16.2

20
20
43
SWSA  (2) 10 10 20 10 

SWSA  (3) 10 10 20 20 

AVG  10 11.7 26.7 23.3 

its own peculiarities, this order of performance may  in part
be explained by algorithm operation scope: SWSA, having local

scope, had better performance than MA,  which has one-sample
scope; finally, FCA and EA, both having whole-potential scope,
obtained the worst results.Contamination of MUAPs with sec-
ondary potentials (those coming from different motor units)

Fig. 4. Changes in MWP  errors with the NPM (mean in the left column an
 20 10 10 13.7
 20 20 10 16.2
.3 41.7 20 15 24.0

is expected to occur randomly along the potential time span.
Implementing the selection-averaging process locally permits

selecting parts of potentials in the MUAP train that are clean,
while discarding other parts that are corrupted by interfering
potentials. For example, if a given MUAP potential is corrupted
by a secondary potential in its final portion but remains clean

d SD in the right column). (Normalized units are used in the y-axis).
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Fig. 4. 

elsewhere, local-scoped algorithms, such as SWSA, may  dis-
card the corrupted portion and take into account the rest of
the potential. On the other hand, whole-potential operators
select, discard or weight the entire MUAP potential. In the
given example they will not be able to use the clean portion
of the potential, and at the same time reject its final corrupted
portion. In this sense, local strategies seem better prepared than
whole-potential operators for obtaining representative MUAP
waveforms.At the other extreme, algorithms based on a scope
of just one-sample neglect information in the waveform adja-
cent to this sample. Peaks (and therefore, turns) and growing
and decreasing slopes are examples of local curve features that
are disregarded by such algorithms. In contrast, local scope algo-

rithms can use this local information. SWSA exploits local scope
to look for similar curve segments among the set of MUAP poten-
tials, and therefore curve features such as peaks or slopes are
inued ).

implicitly considered in the process of selecting which segments
to use to generate the averaged waveform at each position of the
sliding window.

b) The study shows that all the averaging methods suffer from
amplitude bias. (See Figs. 4A and Fig. 5). After convergence, the
amplitude bias was  around −4% for EA, 1.2% for FCA and from
−0.9% to −1.8% for the rest of methods. One possible explana-
tion for this would involve hypothesizing a certain selection bias
in the manual procedure for extracting the GSMW.  A natural
tendency of the expert electromyographer to select potentials
that, apart from being similar to each other, were also some-
what larger than the rest could explain the slight and negative
bias in MA  and SWSA (Fig. 5C–E). Apart from this, the larger neg-

ative bias in EA (Fig. 5C) could be explained as follows. Given
that small misalignments of the potentials in the MUAP set are
practically inevitable, as EA performs no selection or weighting
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ig. 5. Example of a MUAP set illustrating the different behaviour of the studied
veraging methods with respect to MUAP amplitude. (See Section 5 point b for
xplanation).

of samples or potentials at all, misaligned curves cause a
decrease in the averaged peak-to-peak amplitude that increases
with the number of potentials used for the average. This is
a well-documented phenomenon in the realm of curve aver-
aging [13]. MA,  FCA and SWSA, in contrast, implement some
form of selection or weighting, either on a whole-curve or on
a sample-by-sample scale, and consequently only a small frac-
tion of the MUAP potentials has important weight in calculating
the average. This also occurs with the manual extraction proce-
dure performed to obtain the GSMW.  This results in a smaller
decrease in the amplitude of the average waveform yielded by
MA,  SWSA, FCA (and also by the GSMW), which explains the
lower bias of MA,  FCA and SWSA with respect to EA. Besides,
the fraction of potentials involved in the averaging by MA,  FCA
and SWSA are probably more similar among themselves and to
the GSMW than the rest of potentials in the MUAP train, which
favours even more a lower bias in these methods, as compared
to EA. Finally, the same curve misalignment phenomenon could
account for the positive amplitude bias of FCA (Fig. 5C), as the
number of potentials selected in this method is five, which in
the majority of evaluated MUAPs is lower than the number of
those manually selected for the GSMW.  (In our study this num-
ber ranged from 3 to 88, with a mean of 21.0 and SD values of
16.6).

c) As MUAP area is strongly correlated to MUAP amplitude, the
amplitude bias exhibited by the different averaging methods
led to corresponding bias in the MUAP area (Fig. 4C).

d) Errors in the detection of turns reflect differences in the shape
of the averaged waveform relative to the GSMW. False turns

errors were most frequent with EA, followed by FCA and MA
(Fig. 4I–J). False turns in EA are evident in the example of Fig. 6.
The difference in the shape of an analysed curve with respect to
a GSMW is also indicated by NEP, and, not surprisingly, EA, MA
ssing and Control 27 (2016) 32–43 41

and FCA were the methods with highest NEP values (Fig. 3A and
B). False turn errors can also be caused by jagged curve profiles
due to noise or to the averaging process itself, as occurs in the
case of MA in the example of Fig. 6.

e) The irregularity coefficient measures the normalized length of
the potential [4]. So, irregularity errors reflect discrepancy in the
time course between averaged waveform and the GSMW.  These
errors are larger with EA, especially with noisy MUAPs (see Figs.
4K and L and Fig. 6). Jagged curves yielded by MA  may  also be
associated with irregularity values higher than normal (Fig. 6).

f) Spike area is directly dependent on the potential amplitude and
on the spike duration. MA  and SWSA yielded negative ampli-
tude errors upon convergence (Fig. 4A). Similarly, they produced
negative spike area errors (Fig. 4O). In contrast, FCA had posi-
tive error values in spike area, which was in agreement with the
positive errors in amplitude and spike duration (Fig. 4A and M).
EA presented negative bias for the amplitude, positive bias for
spike duration and positive bias in spike area. It seems in this
case that spike duration has relatively more influence on spike
area than the peak-to-peak amplitude.

g) The high correlation between MUAP waveform parameters
(Table 5) can explain the relative similarity of some of the error
curves, in particular, the error curves for area (Fig. 4C and D) and
spike area (Fig. 4O and P); and the error curves for number of
phases (Fig. 4E and F), false turns (Fig. 4I and J) and irregularity
coefficient (Fig. 4K and L).

h) With respect to the MWP,  convergence, as indicated by average
convergence factor, was  generally quickest for the three SWSA
methods and slowest for EA (Table 7). However, with respect to
SPFM, FCA was the fastest method to converge and all the rest
converged very similarly (Table 3). No explanation can be given
for this discrepancy in results.

(i) Convergence rate differed according to the parameter evaluated,
being generally quicker for MUAP amplitude, area and spike
area (Table 7). Convergence was slower for the estimation of
the number of turns and irregularity; presumably these two
parameters demand a more detailed and precise representative
waveform than that required for the rest.

(j) When long windows are used in SWSA it is more likely that
any segment of the MUAP train be affected by secondary poten-
tials than when short windows are used. Therefore, the resulting
averaged potential will be in general more corrupted by these
interferences when long windows are used. However, very short
windows will not benefit from the strategy of using information
from a neighborhood of samples (a local interval), not just from
a single sample, to decide how to calculate the average. These
two issues seem to focus in opposite directions and a tradeoff
should be found. From our results (Tables 2 and 6 and Figs. 3–4) it
seems that windows with lengths between 50 and 150 samples
(2.5 and 7.5 ms)  are the best compromise.

k) Selection of factor � is also important. If � is very small, very
frequently only one segment (i.e., the median segment) will be
selected for the local neighbourhood, disregarding the benefit
of averaging segments from several potentials; the process will
tend to work as the MA method. On the other hand, if � is large,
for every analysed sample the segments from almost all poten-
tials will be included for the average, blocking the selection
process; in this case SWSA resembles the EA method. Again a
compromise should be found. Our performance sensitivity study
indicates that a value of � in the interval (0.25, 1.0) is suitable
for most of the figures of merit that we evaluated (Table 1).

(l) The EMG  data used in this comparative study was obtained only

from normal subjects. Further studies are required to confirm
that use of EMG  data from patients with myopathic or neuro-
genic conditions would yield similar results and trends as those
elucidated by our evaluations.
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. Conclusions

- A new averaging algorithm for the extraction of representative
waveforms from MUAP sets has been presented. The Sliding-
window selective averaging is based on selection and averaging
segments of potentials within the local scope of a sliding win-
dow.

- In terms of several signal processing figures of merit and of vari-
ous commonly-used quantitative MUAP waveform parameters,
the new algorithm performed markedly better than three other

relevant averaging algorithms at processing trains of real MUAP
recordings.

- With regard to MUAP waveform parameters, the new algorithm
converged faster than the other three methods tested, that is,
 methods with respect to MUAP turns and the irregularity coefficient. (See Section

it generally required a smaller number of MUAP potentials to
attain maximal accuracy.

4- The best performance of the algorithm was found for a length
of the sliding window in the range of 5 to 12.5 ms  and for the
internal parameter � in the range from 0.25 to 1.0.

5- Further studies are necessary to evaluate how the Sliding-
window selective averaging algorithm performs with EMG  signals
from muscles with neuromuscular pathological dysfunctions.
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