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Abstract

A closed-form expression for the leading-order dispersion coefficient, describing the trend of Lamb-wave branches at
their onset from thickness resonances, is derived for an arbitrary anisotropic plate. The sign of this coefficient and hence
of the in-plane group velocity near cutoffs decides the existence or non-existence of the backward Lamb waves without a
necessity to calculate the dispersion branches. A link between the near-cutoff dispersion of Lamb waves and the curvature
of bulk-wave slowness curves in a sagittal plane is analyzed. It is established that a locally concave slowness curve of a bulk
mode entails the backward Lamb waves at the onset of branches emerging from this bulk mode resonances of high enough
order. A simple sufficient condition for no backward Lamb waves near the resonances associated with a convex slowness
curve is also noted. Two special cases are discussed: the first involves the coupled resonances of degenerate bulk waves, and
the second concerns quasi-degenerate resonances which give rise to pairs of dispersion branches with a quasilinear positive
and negative onset. Occasions of the backward Lamb waves in isotropic plate materials are tabulated.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the remarkable properties of guided waves in a free plate (Lamb waves) is the possibility of their so-
called backward propagation. This phenomenon first came to light about half a century ago (Mindlin, 1955,
1960; Tolstoy and Usdin, 1957), when it was found that Lamb waves in isotropic plates can have the phase
front and the averaged energy flux travelling in exactly opposite directions along a plate, in which sense
the group velocity is negative (with respect to the positive phase velocity). As shown by Mindlin (1955,
1960) and mentioned thereafter in many textbooks, the backward propagation in isotropic plates is typically
confined to the onset of the first symmetric and, more rarely, of the first antisymmetric dispersion branches.
For anisotropic plates, the wave vector (orthogonal to the phase front) and the group-velocity vector (equal to
the energy velocity, see Auld, 1973) may be not parallel, in which case a backward propagation implies that
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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these two vectors in the boundary plane have a negative projection on each other. Already early systematic
numerical modelling of Lamb waves in anisotropic plates (e.g., Solie and Auld, 1973; Li and Thompson,
1990) has revealed numerous examples of the ranges of negative in-plane group velocity occurring at the
onsets of different dispersion branches. Identifying these branches in a way which would be less effort-consum-
ing than numerical computing of the whole dispersion spectrum is of practical interest in view of particular
significance of the backward Lamb waves for various evaluation and imaging techniques (Liu et al., 2000; Ger-
mano et al., 2002; Durinck et al., 2002; Parygin et al., 2000; Marston, 2003; Holland and Chimenti, 2004; Clo-
rennec et al., 2006, 2007; Balogun et al., 2007). They also bear important implications for numerical schemes
involving the normal-mode decomposition and perfectly matched layers (Pagneux and Maurel, 2002; Casta-
ings and Hosten, 2003; Skelton et al., 2007). The backward Lamb waves play a pivotal role for some other
wave-guiding phenomena, e.g., they are intimately related to the mode trapping in curved waveguides (Gridin
et al., 2005; Kaplunov et al., 2005; Postnova and Craster, 2007). Note also interesting observations which have
been made by Pichugin and Rogerson (2001, 2002) for the backward guided waves in pre-stressed incompress-
ible plates.

It is clear that the backward Lamb waves are most likely to occur along the onsets of (non-fundamental)
dispersion branches. The group velocity is zero at their cutoffs corresponding to the thickness resonances,1 and
it may, generally speaking, turn either positive or negative near the cutoffs, which is seen as, respectively,
upward or downward bent of the frequency versus horizontal wave vector dispersion branches xn(k). In order
to identify which is the case, it suffices to find the coefficient of leading-order (quadratic) dispersion
xn(k) � xn(0) � O(k2) near the cutoffs and to inspect its sign. A negative sign indicates the backward propa-
gation. A near-cutoff dispersion coefficient in an anisotropic plate has been derived for a fixed propagation
direction parallel to the twofold symmetry axis by Kaul and Mindlin (1962a,b), and, more recently, for an
arbitrary propagation direction along the plate boundary containing the axis of transverse isotropy by Kaplu-
nov et al. (2000). An investigation of the sign of this coefficient has been beyond the scope of those studies;
however, it is noteworthy that its explicit representation by Kaul and Mindlin (1962a,b) involves the curvature
of the slowness curve of the resonant bulk wave. Such a link may be expected to pertain to any anisotropy of
the problem, and if so, it suggests to hinge the sign analysis of the near-cutoff dispersion on the local shape of
the bulk-wave slowness surface.

The present paper tackles the problem in the general case, which implies unrestricted anisotropy of plate
material and arbitrary propagation direction in it. This means dealing with a dispersion equation, which does
not split into two independent ones for symmetric and antisymmetric Lamb waves (as it does for the cases
treated in by Kaul and Mindlin (1962a,b) and Kaplunov et al. (2000)). The problem is set up in Section 2.
Applying the perturbation theory for ‘long waves with high frequency’ (k is small, x is not) yields the lead-
ing-order dispersion coefficient near thickness resonances, see Section 3. For a typical situation involving a
single resonant bulk wave, this coefficient can be presented as a sum of two terms: one of them describes a
local shape of slowness curve of the resonant bulk wave in the sagittal-plane cut and has the sign of its cur-
vature, while the other term accounts for the interference of the resonant wave with other partial modes con-
stituting the Lamb-wave packet in the resonance vicinity. The ratio of the latter to former is, among other
factors, inversely proportional to the dispersion-branch number n. Hence a concave shape of the bulk-wave
slowness curve may be expected to further the occurrence of backward Lamb waves at the onset of branches
of large enough number n (high-order branches). This is analyzed in detail in Section 4. A somewhat particular
case concerning degenerate resonances of transverse waves in a plate with the faces orthogonal to the fourfold
or threefold symmetry axis is treated in Section 5. The point is that, so far as the sagittal plane is not parallel to
the symmetry plane, there is a strong coupling between two quasi-degenerate bulk modes composing the
Lamb-wave packet near a degenerate resonance. In consequence, the leading-order dispersion coefficient
for these branches is no longer as simple as a linear superposition of two terms related, respectively, to the
bulk-wave slowness curve and to the interference. However, an asymptotic form of the coefficient for high-
order branches restores such an additive structure, and it is still the curvature of the bulk-wave slowness curve
which essentially determines the sign of dispersion once the branch number n is large enough. Another special
1 Throughout the paper, the cutoffs and thickness resonances are understood as corresponding to the normal incidence only.
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case, considered in Section 6, is prompted by the observation of Mindlin (1955, 1960) and Kaul and Mindlin
(1962a,b) that a theoretical possibility of bulk-wave velocity ratio which is exactly equal to a rational fraction
enables a succession of degenerate resonances such that produce branches with a linear (rather than quadratic)
leading-order dispersion xn(k) at the onset. Certainly the above equality can never be precisely the case for real
materials. At the same time, an occasional proximity of two resonances associated with different bulk waves is
a fairly common event. It is demonstrated that a sequence of pairs of closely situated resonances under certain
conditions gives rise to pairs of dispersion branches with quasilinear positive and negative onsets, the latter
corresponding to the backward Lamb waves. In this case, their occurrence on the high-order branches is inde-
pendent of the shape of resonant bulk-wave slowness curve. The concluding section (Section 7) briefly touches
the existence of backward Lamb waves across the dispersion spectrum.
2. Background

Consider an infinite plate of thickness d made from a homogeneous non-viscous anisotropic material with
the density q and the stiffness tensor cijkl. The plate is assumed free of traction (see however Eq. (10) below).
Let n be a unit normal to the boundary plane. Each of three pairs of up- and downgoing bulk waves, prop-
agating with the phase velocity ca (a = 1,2,3) along n, produces a sequence of thickness resonances with the
frequency
Xn;a ¼
pnca

d
; n ¼ 1; 2; . . . ; ð1Þ
where n enumerates both the resonances associated with a given ath bulk mode and the dispersion branches
originating at these resonances. A deviation from the normal incidence causes coupling with the other bulk
modes into a Lamb-wave packet with the frequency xn,a(k) depending on the horizontal wave vector
k = km, where
mðhÞ ¼ e1 cos hþ e2 sin h ð2Þ
is a unit vector indicating the propagation direction orthogonal to n. The polar angle h parametrizes a bundle
of sagittal planes (m,n) spanned by given n and various vectors m(h) orthogonal to n. An orthogonal triad of
reference vectors e1, e2, n may generally have an arbitrary orientation with respect to the crystallographic coor-
dinate system X1, X2, X3. For a fixed orientation h of the sagittal plane (m,n), the cutoffs Xn,a give rise to (non-
fundamental) dispersion branches xn,a(k). In the cutoff vicinity, they expand in even powers of |kd|� 1 (unless
a theoretically possible exception discussed in Section 6), so that
xn;aðk; hÞ ¼ Xn;a þ
caW n;aðhÞ

2pnd
ðkdÞ2 þO½ðkdÞ4�; W n;aðhÞ ¼

pn
cad

o2xn;aðk; hÞ
ok2

� �
k¼0

; ð3Þ
where Wn,a(h) is a dimensionless coefficient to be found. It will be referred to as the (leading-order) dispersion
coefficient in tacit understanding that a common factor �n�1 is extracted from its definition (3), which is done
for the convenience of the forthcoming discussion and graphical display. In the present context k is real, and
the group velocity gn,a of Lamb waves near the cutoffs writes out as
gn;aðk; hÞ ¼
cakd
pn

W n;aðhÞmþ
1

2

dW n;aðhÞ
dh

t

� �
þO½ðkdÞ3� � gðmÞn;a mþ gðtÞn;at; ð4Þ
where t = m � n. Thus, if Wn,a(h) < 0 then the onset of the branch xn,a (k,h), emerging for a given h from the
cutoff Xn,a, bends downwards and yields the backward propagating Lamb waves with a negative in-plane
group velocity gðmÞn;a . Its out-of-plane component gðtÞn;a in anisotropic plates is generally non-zero, except for
(m,n) being a symmetry plane and probably for some other secluded orientations of m(h). Introduce a few
notations for the future use. Let aa be the unit mutually orthogonal polarization vectors of the bulk modes
travelling along n with the velocities ca. These are defined by the Christoffel equation
njcijklnkaal ¼ qc2
aaai; a ¼ 1; 2; 3: ð5Þ
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Where appropriate, the index a will be specialized as a = L for the longitudinal wave and a = SV, SH for the
pure transverse in-plane and out-of-plane waves, respectively; side by side with the above, we shall also use
a = T for the degenerate transverse waves and a = T1, T2 for the slow and fast quasi waves, respectively.
It is noted that the same transverse polarization aa, which is fixed for a fixed n, is ascribed as quasi-transverse
or pure (in-plane or out-of-plane) transverse relatively to the sagittal plane (m,n) with running orientation h. A
contraction of the tensor cijkl/q with the polarization vectors a1,2,3 and the reference vectors n, m(h) is denoted
as follows:
kmmkab ¼
1

q
aaimjcijklmkabl; kmnkab ¼

1

q
aaimjcijklnkablð¼ knmkbaÞ; a; b ¼ 1; 2; 3: ð6Þ
In these terms, for instance, c2
a ¼ knnkaa. Inserting (2) visualizes a dependence of kmmkab, kmnkab on the ori-

entation h of m(h).
3. Dispersion coefficient near an uncoupled resonance

3.1. Arbitrary anisotropy

Let the normal to the plate boundary n and the Lamb-wave propagation direction m(h) have a generic ori-
entation with respect to the symmetry elements (if there are any) of the plate stiffness tensor cijkl of arbitrary
anisotropy. Consider the vicinity of nth thickness resonance of some ath bulk wave. For the moment, the given
resonance is assumed non-degenerate, i.e. its frequency Xn,a is such that Xn,a 6¼ Xm,b for any m,b other than n,a
(otherwise see a remark on SH-decoupling in Section 3.2 and also Sections 5 and 6). Omitting the details of a
rather tedious but straightforward derivation, the near-cutoff dispersion coefficient Wn,a(h) introduced in Eqs.
(3) can be obtained in a closed form as a sum of two terms:
W n;aðhÞ ¼ W ð1Þ
a ðhÞ þ W ð2Þ

n;aðhÞ; a ¼ 1; 2; 3; n ¼ 1; 2; . . . ð7Þ
The first term is
W ð1Þ
a ðhÞ ¼

1

c2
a

kmmkaa �
ðkmnkaaÞ

2

c2
a

þ
X3

b¼1;b 6¼a

ðkmnkab þ kmnkbaÞ
2

c2
a � c2

b

" #
¼ cajaðhÞ

cos3 waðhÞ
: ð8Þ
The latter equality shows that this term is entirely determined by the local geometrical parameters of the
bulk-wave slowness curve Sa(h) in the cut by the sagittal plane (m,n). Apart from the bulk-wave slowness
sa = 1/ca itself, these parameters are the curvature ja of Sa and the angle wa between the plate normal n

and the normal Na to Sa. Both ja(h) and Na(h) are taken at the point sa = san. The normal to Sa is
parallel to the (m,n)-projection of the group velocity Va of the ath bulk wave travelling along n, i.e.
Nak (m � n) � V a � (m � n), whence cos wa ¼ ½1þ ðkmnkaaÞ

2
=c4

a�
�1=2ð> 0Þ. Deviation from the normal

incidence causes a slight non-alignment of the group-velocity vectors Va of up- and downgoing bulk
modes of the ath branch, and a non-zero resultant of m-components of Va contributes to the in-plane
group velocity gðmÞn;a of Lamb waves (see Eq. (4)). This contribution is precisely what is described by
the term W ð1Þ

a ðhÞ. Recalling that the slowness curve Sa is invariant with respect to the inversion centre,
it is evident why the sign of W ð1Þ

a is prescribed by the sign of the curvature ja of Sa. This is illustrated
by Fig. 1.

The second term is
W ð2Þ
n;aðhÞ ¼

4

pn

X3

b¼1;b6¼a

ðc2
akmnkab þ c2

bkmnkbaÞ
2

c3
acbðc2

a � c2
bÞ

2
tan

pn
2

1� ca

cb

� �� �
: ð9Þ
It describes interference of the modes of ath (resonant) bulk-wave branch with the modes of two other
branches b 6¼ a incorporated into the Lamb-wave packet near the resonance. The interference fall-off with
growing resonant frequency leads to inverse proportionality of this term to the number n of the dispersion
branch xn,a(k).
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Fig. 1. A fragment of the bulk-wave slowness curve Sa in the cut by the sagittal plane (m,n), which is (a) convex and (b) concave around
the reference point sa = sa n. The bold vectors are normals to Sa which are parallel to the projections on (m,n) of the group velocity Va of
the up- and downgoing bulk modes propagating along n and in the close vicinity. The inserted box shows the geometry of the problem.
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Note in passing that Eq. (7) remains valid for a plate which is clamped (has zero displacement) on both
faces or is clamped on one face and free on the other, except some modifications in the interference term.
For example, this term for a clamped plate is as follows:
½W ð2Þ
n;aðhÞ�clamped ¼

4

pn

X3

b¼1;b6¼a

cb

ca

kmnkab þ kmnkba

c2
a � c2

b

 !2

tan
pn
2

1� ca

cb

� �� �
: ð10Þ
Also note that Eq. (3) with (7)–(10) applies for either sign of (kd)2, i.e. for both real and imaginary k.

3.2. Explicit simplifications due to material symmetry

Eqs. (7)–(9) reduce their explicit form when at least one of the three reference planes (the sagittal plane
(m,n), the boundary plane orthogonal to n, and the plane orthogonal to m) is a symmetry plane. Then the
interference between certain bulk modes a,b = 1,2,3 turns to zero. Let us list these cases and outline the result-
ing simplifications.

If, for a given n, the orientation of m is fixed so that the sagittal plane (m,n) is a symmetry plane of the
tensor cijkl, then the identity
kmnkab ¼ kmnkba ¼ 0 ð11Þ
holds when either a or b corresponds to the shear horizontal (SH) bulk mode travelling along n with the out-
of-plane polarization parallel to t = m � n. The SH waves in a plate are also uncoupled from the in-plane
Lamb waves (Auld, 1973), and their dispersion branches are defined explicitly by the well-known relation
x2
n;SH ðkÞ ¼ cðnÞ2SH

pn
d

� �2

þ cðmÞ2SH k2; ð12Þ
where cðnÞSH is the velocity of SH bulk mode travelling along n, and cðmÞSH is the velocity of SH bulk mode carrying
energy along m. As a trivial test of Eqs. (7)–(9), their applying to the a = SH family of plate branches verifies
the leading-order coefficient Wn,SH = cðmÞ2SH =cðnÞ2SH > 0, following from (12) at kd� 1. For the in-plane Lamb
waves, the sums in Eqs. (8) and (9) reduce due to (11) to a single term each. Recall that Eqs. (7)–(9) have been
restricted to a non-degenerate resonant bulk wave with the velocity ca 6¼ cb along n. Attention is drawn to the
fact that this restriction is certainly lifted in the case of a symmetric sagittal plane (m,n). Indeed if the normal n

is a direction of degeneracy ca = cb (an acoustic axis) such that lies in a symmetry plane, then one of the degen-
erate waves is the SH mode (a degeneracy between the L and SV waves is a purely theoretical possibility) and
hence its resonances give rise to the SH plate waves, which are uncoupled from the in-plane Lamb waves
regardless of degeneracy.
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If m is a fixed direction orthogonal to a symmetry plane, then Eq. (11) holds for the ath and bth bulk modes
polarized in this symmetry plane so that aa � m = a b � m = 0. The sums in (8) and (9) for the cutoffs, associated
with either of these two bulk modes, reduce to a single term leading to the result of Kaul and Mindlin
(1962a,b). Also, kmnkaa = 0 for any a = 1,2,3.

If the plate boundary is a symmetry plane and m(h) has an arbitrary orientation in it, then again Eq. (11)
holds for the ath and bth bulk modes polarized in this symmetry plane, i.e. when aa � n = ab � n = 0. Also,
kmnkaa = 0 for a = 1,2,3 and kmnkab ¼ c2

am � ab for aakn. Plugging this into Eqs. (7)–(9) and assuming in addi-
tion that the plate has a transversely isotropic axis in the boundary plane leads to the result of Kaplunov et al.,
2000.

For the future discussion, it is useful to exemplify the coefficient Wn,a(h) for an orthorhombic plate with all
three reference planes being the symmetry planes. Let the coordinate axes be orthogonal to the symmetry
planes and specify them as X1,2ke1,2, X3kn. The index a of the bulk waves travelling along n is specialized
according to their polarizations as a = L, SV, SH, see Section 2. By (7)–(9), the leading-order dispersion coef-
ficients Wn,a(h) for h = 0 (m = e1, t = e2) are
W n;SH ð0Þ ¼
c66

c44

;

W n;SV ð0Þ ¼
c11ðc33 � c55Þ � ðc13 þ c55Þ2

c55ðc33 � c55Þ
þ 4

pn

ffiffiffiffiffiffi
c55

c33

r
c13 þ c33

c33 � c55

� �2

tan
pn
2

1� cSV

cL

� �� �
;

W n;Lð0Þ ¼
c33c55 þ c2

13 þ 2c13c55

c33ðc33 � c55Þ
þ 4

pn
c55

c33

� �3=2 c13 þ c33

c33 � c55

� �2

tan
pn
2

1� cL

cSV

� �� �
; ð13Þ
where cL ¼
ffiffiffiffiffiffiffiffiffiffiffi
c33=q

p
and cSV ¼

ffiffiffiffiffiffiffiffiffiffiffi
c55=q

p
. Obviously the coefficients Wn,a for h = 90� follow from (13) on inter-

changing the indices 1, 2 in cijkl. Eq. (13) has been used by Shuvalov et al. (2006) for analyzing a link between
the backward Lamb waves in a free plate and the leaky waves in this plate loaded by fluid.

It is clear that Eq. (13) with c13 = c23, c44 = c55 describes the near-cutoff dispersion coefficient Wn,a in any
sagittal plane if the plate normal n is parallel to the axis of transverse isotropy. Interestingly, if n is parallel to
the threefold or fourfold symmetry axis, then the coefficient Wn,L is also angular independent and is given by
Eq. (13)3 for any h. For an isotropic plate, Eq. (13) reduces to a trivial equality Wn,SH = 1 and to the well-
known Mindlin’s (1955, 1960) result for the in-plane Lamb branches:
W n;SV ¼ 1þ 16

pn
cT

cL
tan

pn
2

1� cT

cL

� �� �
;

W n;L ¼ 1þ 16

pn
c3

T

c3
L

tan
pn
2

1� cL

cT

� �� �
:

ð14Þ
It is noteworthy that for both isotropic and transversely isotropic cases the coefficients Wn,a near the degen-
erate transverse resonances do follow from Eq. (13) which has been obtained for a fixed symmetric sagittal
plane, but they cannot be obtained by a direct substitution of appropriate cijkl into the initial formulas (7)–
(9). This is because the case of degeneracy in the absence of SH/in-plane uncoupling is not described by
(7)–(9) and must be treated in a special way, see Section 5.
3.3. A digression on the case of isotropy

It is evident that testing the sign of the coefficients given by the Mindlin’s formulas (14) enables one to tab-
ulate the occasions of backward Lamb waves near cutoffs as a function of cT/cL, i.e. for all the variety of iso-
tropic materials. We could not, however, find such data published, so we present it in Fig. 2. It is arranged in
the form of two 2D diagrams identifying the dispersion trend at the onset of the in-plane antisymmetric and
symmetric families of branches An and Sn in any isotropic plate (0 < cT=cL <

ffiffiffi
3
p

=2). The computation is based
on Eq. (14) complemented by the conversion rule into symmetric/antisymmetric output, which implies succes-
sive picking the An cutoffs from the least among the odd numbered transverse-wave cutoffs and the even num-
bered longitudinal-wave cutoffs, and the inverse for picking Sn. It is hoped that this simple chart may be useful
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Fig. 2. Occurrence of the forward (blank zones) and backward (black zones) Lamb waves at the onsets of (a) the antisymmetric branches
An and (b) the symmetric branches Sn in isotropic plates.
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for practical use. For instance, it is seen that the first symmetric branch S1 emerges with a positive group veloc-
ity if cT/cL < s1 	 0.295 or cT/cL > s2 	 0.822, where s1 and s2 satisfy the equations 8stan(ps) = p and
16s3cot(p/2s) = �p, respectively. This possibility has been overlooked by Werby and Überall (2002). Note
that the narrow zones of negative dispersion, which arise near rational values of cT/cL, are inevitability missing
in a graphical display when they are narrower than a finite step between sampling points (104 points have been
used for computing Fig. 2). The origin of these zones is discussed in Section 6.
4. Discussion and numerical examples

4.1. Backward Lamb waves and a local shape of bulk-wave slowness curve

We now get back to the general form of Eqs. (7)–(9) and proceed to the sign analysis of the coefficient
W n;a ¼ W ð1Þ

a þ W ð2Þ
n;a of the leading-order dispersion defined by Eq. (3) (note a common factor �n�1 therein).

The first term W ð1Þ
a is independent from the branch number n, while the second term W ð2Þ

n;a is inversely propor-
tional to n. Therefore, once n becomes large enough, the sign of Wn,a shall be determined as a rule by the sign
of W ð1Þ

a , i.e. merely by the sign of curvature ja of the bulk-wave slowness curve Sa for the ath resonant wave. In
other words, a local concavity of Sa in a sector embracing the direction of the plate normal n promotes the
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existence of backward Lamb waves at the onset of dispersion branches emerging from high-frequency reso-
nances of the ath bulk wave. There are two basic points in question. First is how large the branch number
n must be in order to cause a dominance of W ð1Þ

a over W ð2Þ
n;a (whose decreasing rate W ð2Þ

n;a � n�1 is not actually
that fast). Secondly, in view of a ‘tricky’ tangent factor in W ð2Þ

n;a, it is pertinent to inquire how persistent the
prevalence of W ð1Þ

a over W ð2Þ
n;a is going to be with further growing n.

In order to fix ideas, consider an example of the rutile (TiO2) plate with the normal n parallel to the [100]-
crystallographic axis. The material constants of TiO2 are taken from Auld (1973), and the DISPERSE
package (Pavlakovic et al., 1997) has been employed in the following for computing exact dispersion curves.
Application of Eq. (3) with (7)–(9) to approximating the near-cutoff dispersion for a non-symmetric orienta-
tion of the sagittal plane is demonstrated in Fig. 3. First we note in passing a markedly flat onset of the
dispersion branches xn,T1(k) starting from the resonances of the a = T1 quasi-transverse wave whose slowness
surface ST1 has small curvature jT1 at the reference point (see the inset). Let us now look specifically at the
family of branches xn,T2(k) emerging from the resonances of the a = T2 wave with a locally concave slowness
curve ST2. In Fig. 3, the first few of these branches (n = 1, . . . ,6) bend upwards, while the higher-order ones
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(n = 7, . . . 14) bend downwards and hence correspond to the backward Lamb waves. To verify a systematic
link between the near-cutoff dispersion and the local shape of the bulk-wave slowness curve, Fig. 4 presents
the dispersion coefficients Wn,T2(h) given by Eqs. (7)–(9) for the a = T2 family of branches as a function of
running orientation h of the sagittal plane (m,n) in the (100)-cut TiO2 plate (h = 20� corresponds to the setting
of Fig. 3). The slowness curve ST2(h) in a cut by the sagittal plane is concave for h < h0 and convex for h > h0,
where h 0 	 74�. In Fig. 4, the curves Wn,T2(h) for n = 1, . . . ,17 are compared to the n-independent contribu-
tion of the term W ð1Þ

T 2 ðhÞ, which according to (8) bears the sign of the curvature jT2(h) (70 for h 7 h0) of ST2(h).
It is seen that the dispersion coefficients Wn,T2(h) for the higher-order branches tend to approximately follow
the trend of angular dependence of W ð1Þ

T 2 ðhÞ.
Now we will examine closer the impact of tangent in the interference term
Fig. 4.
for the
from h
by the
W ð2Þ
n;a �

1

n

X3

b¼1;b6¼a

tan
pn
2

1� ca

cb

� �� �
; ð15Þ
see Eq. (9). Occasionally large absolute values of this tangent for certain branches n of the ath family perturb
the convergence of Wn,a to a constant W ð1Þ

a with growing n and, moreover, may break the correspondence of
signs of Wn,a and W ð1Þ

a even though n is large. Let us exemplify this aspect. Fig. 5a displays Wn,a(n) as a discrete
function of integers n (the n-range is intentionally extended) and compares it to the benchmark W ð1Þ

a for the
a = T2 family of dispersion branches in a fixed sagittal plane (m,n) of the (100)-cut TiO2 plate. Because the
polarization vector aT1 of the T1 wave makes rather a small angle h = 20� with (m,n), i.e. aT1 is not far from
the SH-polarization, a coupling of the T2 modes to the L modes is markedly stronger than to T1. Hence a
discrete set of values Wn,T2(n) approximately lies on a ‘n�1 times tangent’ discontinuous curve, given by a sin-
gle term of (15) with ca/cb = cT2/cL 	 0.84 and shifted by W ð1Þ

T 2 < 0. It is a relatively steady (in the measure of
proximity of |cT2/cL| to 1) and increasing in n (due to cT2/cL < 1) curve, which gradually holds down to W ð1Þ

T 2

with growing n except for the asymptotes near poles repeated with a period P = 2/j1�ca/cb| 	 12.7. Note that,
by (8) and (9), W ð1Þ

a =W ð2Þ
n;a contains a factor ð1� c2

a=c2
bÞ which is rather small for the case in hand, that is why the

coefficient W n;T 2 ¼ W ð1Þ
T 2 þ W ð2Þ

n;T 2 with W ð1Þ
T 2 < 0 and W ð2Þ

n;T 2ð� n�1Þ > 0 is positive in the first half-period
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n 6 6 < P/2 and so the first six branches xn,T2(k) in Fig. 3 bend upwards. With growing n > 6, the values Wn,T2

tend to group around the ‘curvature-related’ contribution W ð1Þ
T 2 < 0 except for some secluded n, for which large

|Wn,T2| fall out on the quasi-tangent asymptotes. Such are for instance the values Wn,T2 for the branches
n = 6,7 which exceed the vertical bounds and are therefore missing in Fig. 5a (cf. Figs. 2 and 3). As a matter
of fact, an extremely large |Wn,a| signals that the quadratic-dispersion approximation (3) as a whole is no good
and should be replaced by the quasilinear-dispersion fit discussed below in Section 6.

Fig. 5b presents a similar diagram for the family of dispersion branches originating from the resonances of
the a = L longitudinal wave in the (001) symmetry plane of the (100)-cut plate of tellurium dioxide (TeO2, the
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material constants are taken from Auld (1973)). The slowness curve SL has a prominent concavity around the
plate normal nk[100] (see the inset) which leads to a large absolute value of W ð1Þ

L < 0. The near-cutoff coeffi-
cient Wn,L is given by Eq. (13)3 where c33 < c55 (X3kn). Fig. 5b reveals a quasi-tangent envelope, which is deter-
mined by single-termed (15) with ca/cb = cL/cSV 	 0.92 and is shifted by W ð1Þ

L . After its first pole at P/2 	 12.4
that is for n > 12, the coefficient Wn,L becomes negative and stays as such except for some of the extreme val-
ues on the quasi-tangent asymptotes.

It is thus confirmed that a local concavity of the slowness curve Sa of the resonant ath bulk mode leads to
the systematic occurrence of downward onset for the high-order dispersion branches xn,a(k) once their number
n exceeds a certain threshold value, above which there is only a sparse sequence of upward-bending branches
persisting until probably very large n. On the same grounds, a convexity of Sa makes the existence of the back-
ward Lamb waves increasingly improbable for the high-order branches xn,a(k).

In conclusion, it is interesting to note an approximately mutually exclusive fashion in which the backward
Lamb waves may come about near the resonances of bulk waves with a (locally) concave and convex slowness
curves. This reciprocity is nearly exact for a type of plate configurations exemplified in Figs. 2–4 where a con-
cavity of the intermediate slowness curve comes close to the innermost slowness curve in the sagittal plane
(m,n) parallel (or close) to a symmetry plane. In other words, this is the case when the two in-plane (or
quasi-in-plane) bulk waves have close velocities ca/cb � 1 and close absolute values of slowness curvatures
with opposite signs. Hence the above analysis of Fig. 5a and b, which has been developed for the resonant
ath wave with a concave Sa (a = T2 for TiO2 and a = L for TeO2), can be repeated for the resonant ath wave
taken on the innermost convex Sa (a = L for TiO2 and a = SV for TeO2) with the only difference that the gov-
erning velocity ratio ca/cb is now close to 1 from above. Basically it means that the ‘quasi-tangent’ envelope
appearing in Fig. 5a and b should be mirror-reflected about the horizontal axis. This explains why in the TiO2-
plate spectrum shown in Fig. 3 (ST2 is concave, SL is convex) the first six downgoing branches of the T2 family
are accompanied by exactly six upgoing of the L family and vice versa for higher-order T2 and L branches. A
similar mutually exclusive reciprocity of the TeO2-plate branches associated with a concave and a convex
slowness curve can be observed on comparing Fig. 5b and c.

4.2. Sufficient condition for non-existence of backward Lamb waves near the resonances associated with a convex
slowness curve

Consider the resonances of an ath bulk wave, whose slowness curve Sa in the sagittal plane (m,n) is convex
around n. Note that this is always so if the ath bulk wave is the fastest along n. The convexity of Sa ensures
that W ð1Þ

a > 0 and so the dispersion coefficient W n;a ¼ W ð1Þ
a þ W ð2Þ

n;a is assuredly positive if W ð2Þ
n;a P 0. By virtue of

(9), the latter is the case when
tan
pn
2

1� ca

cb

� �� �
P 0 for b ¼ 1; 2; 3 6¼ a: ð16Þ
Thus, once the plate normal n is chosen within the range of convexity of a slowness curve Sa in a cut by some
plane, then the inequality (16) provides a sufficient condition that the dispersion branch, originating in this cut
plane from the nth resonance of the ath bulk wave, has a positive dispersion coefficient Wn,a > 0 at the onset.
Note that the above derivation is based on Eqs. (7)–(9), for which the resonant ath wave is assumed non-
degenerate unless the sagittal plane (m,n) is a symmetry plane and hence a degeneracy ca = cb involves an
uncoupled SH wave.

5. Dispersion near resonances of degenerate waves in the case of a non-symmetric sagittal plane

Suppose that the plate normal n is an acoustic axis, i.e. two of three bulk waves travelling along n have the
same velocity, and that the sagittal plane (m,n) is not a symmetry plane. This may be the case for a cubic,
tetragonal or trigonal plate, which is cut orthogonally to the fourfold or threefold symmetry axis. Given
so, Eqs. (7)–(9) still hold for the dispersion coefficient Wn,L of the branches originating at the longitudinal-
wave resonances (see Section 3.2). At the same time, these equations are no longer valid for the branches
which emerge pairwise from resonances of degenerate transverse waves.
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5.1. Normal to the plate is the fourfold axis

Consider first a tetragonal or cubic plate with n parallel to the fourfold symmetry axis. Assume the same
setting of the coordinate axes as for (13), that is, X1,2ke1,2 (both orthogonal to the symmetry planes) and X3kn.
Near the degenerate transverse cutoffs Xn,T = pncT/d (cT ¼

ffiffiffiffiffiffiffiffiffiffiffi
c44=q

p
), the dispersion coefficient as a function of

the orientation h of the sagittal plane (m,n) with m(h) turning about n is given by
2 See
that pa
‘‘outm
g > 0,
(30).
W n;a hð Þ ¼ f þ vn 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 cos2 2hþ h2 sin2 2hþ 2vnðg cos2 2hþ h sin2 2hÞ þ v2

n

q
; ð17Þ
where a = T1, T2 implies a pair of branches starting at Xn,T, and the following notations are used
f ¼ 1

2c44

c11 þ c66 �
c13 þ c44ð Þ2

c33 � c44

" #
; g ¼ f � c66

c44

; h ¼ f � c11 � c12

2c44

;

vn ¼
2

pn

ffiffiffiffiffiffi
c44

c33

r
c13 þ c33

c33 � c44

� �2

tan
pn
2

1� cT

cL

� �� �
:

ð18Þ
The radicand in (17) is indeed non-negative. Note that g = h implies transverse isotropy about n. Also note
that f > g,h, hence Wn,a(h) is assuredly positive for both if simultaneously f P 0 and tan pn

2
ð1� cT

cL
Þ

h i
P 0.

Let the labels a = T1,T2 in (17) correspond to the upper and lower signs on the r.h.s., respectively, so that
xn,T1(k) < xn,T2(k) for a fixed non-zero kd� 1. This choice can be shown to be in one-to-one correspondence
with labelling the outer and inner slowness curves of the quasi-transverse bulk modes near their degeneracy as,
respectively, ST1(h) and ST2(h).

Eq. (17) reduces to the SH/in-plane uncoupled Eqs. (13)1,2 in the principal symmetry plane (h ¼ pm
2

) or to
their analogue in the diagonal symmetry plane (h ¼ p

4
þ pm

2
). Otherwise, for a general orientation of the sagittal

plane (m,n), the structure of Eq. (17) is essentially different from that of Eq. (7), in which no degeneracy is
involved. At the same time, if the interference parameter |vn| � n�1 becomes small due to n being large enough
and not incidentally close to a pole of tangent in (18), then Eq. (17) admits an asymptotic form
W n;aðhÞ 	 W ð1Þ
a ðhÞ þ eW ð2Þ

n;aðhÞ for n� 1; a ¼ T 1; T 2: ð19Þ
It is similar to (7) in that eW ð2Þ
n;aðhÞ � n�1 tan pn

2
ð1� cT

cL
Þ

h i
while W ð1Þ

a ðhÞ is independent from n. Moreover, W ð1Þ
a ðhÞ

is defined by the local shape of the bulk-wave slowness curve Sa(h) in the cuts by the sagittal plane in exactly
the same way as in (8)1 (with coswa = 1 due to the fourfold symmetry of n). That is, W ð1Þ

a ðhÞ in (19) is
W ð1Þ
a ðhÞ ¼ cT jaðhÞ ¼ f 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 cos2 2hþ h2 sin2 2h

q
; a ¼ T 1; T 2; ð20Þ
where we have used the expression of Shuvalov and Every (1996)2 for the curvatures ja(h) of the curves Sa(h)
at their touching point on the fourfold symmetry axis. Like in (17), the upper and lower signs in (20) corre-
spond, respectively, to the outer and inner slowness curves ST1(h) and ST2(h). The curvature jT2(h) is always
positive for any h, i.e. the inner curve ST2(h) is always convex (jT2(h) > 0 for any h). The jT1(h) of the outer
curve ST1(h) is positive for any h if g,h > �f, negative for any h if g,h < �f, and it changes sign four times with
h sweeping 180� if (�f) falls in between g and h (Shuvalov and Every, 1996).

As an example, we take the (001)-cut cubic plate of gallium arsenide (GaAs, the material constants are
taken from Auld (1973)). Fig. 6a shows the dispersion spectrum xn,a(k) in a non-symmetric sagittal plane
(m,n), for which the pairs of branches starting at the resonances of degenerate transverse waves are approx-
imated by means of Eq. (3) with the leading-order coefficient Wn,a given by Eq. (17). The outer slowness curve
ST1 is concave around nk[001] hence the displayed branches xn,T1(k) have a downward-bending onset once
n > 3, except for the n = 10 branch. The axial concavity of the curves ST1(h) persists for any orientation h
Eq. (45) in Shuvalov and Every (1996), where the notations f, g, h differ from (18) by a common factor 2c44. Note a few misprints in
per. In (1), the second sign is plus. In (26), the r.h.s. must be multiplied by 1

2. The last word on the last but one line of Section III is
ost”, and on the next line the inequality sign is ‘‘<”. In (42)1, the second sign on the r.h.s. is minus. The first line of (57) reads ‘‘either
or both g < 0 and f + g > 2h2/g”, and the second line reads likewise. On the 13th line of the last page, the reference is to (37), not
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of the sagittal plane in a symmetry irreducible sector 0 6 h 6 45�. Fig. 6b relates the angular dependence of the
dispersion coefficients Wn,T1(h) to that of the ‘curvature-related’ asymptotic term W ð1Þ

T 1 ðhÞ defined by Eq. (20).
This diagram confirms that, despite a different form of Eq. (17) comparatively to Eq. (7), there is the same link
as in the general case (not involving degeneracy) between the systematic occurrence of backward Lamb waves
at the onset of high-order branches and the concavity of bulk-wave slowness curve.
5.2. Normal to the plate is the threefold axis

Similar conclusions hold for a plate with the normal n parallel to the threefold symmetry axis. Consider a
trigonal plate and introduce the coordinate axes so that the threefold axis is X3kn and c25 = 0, c14 > 0. The
coefficients Wn,a(h) near the degenerate transverse-wave resonances are
W n;a hð Þ ¼ f � c2
14

c2
44

þ vn 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 sin2 3hþ 2gvn sin 3hþ v2

n

q
; a ¼ T 1; T 2: ð21Þ
The asymptotic form for large n is given by Eq. (19) with
W ð1Þ
a ðhÞ ¼

cT jaðhÞ
cos3 w

¼ f � c2
14

c2
44


 g sin 3h; a ¼ T 1; T 2; ð22Þ
where w = arctan(c14/c44) is the angle of conical refraction, and the formula for the curvatures ja(h) of the
slowness curves Sa(h) at their crossing point on the threefold symmetry axis is taken from Shuvalov and Every
(1996). In Eqs. (21) and (22), the label a = T1, T2 corresponds to the outer and inner curves Sa(h) and to the
upper and lower signs, respectively. Both curvatures ja(h) are positive for any h if
c11 � c2

14=c44 > ðc13 þ c44Þ2=ðc33 � c44Þ, otherwise each curvature changes sign three times with the angle h
sweeping 180� (Shuvalov and Every, 1996). The result for a (111)-cut cubic plate follows via a standard re-def-
inition of cijkl.
6. Quasilinear onset of dispersion branches

6.1. Special case of a rational ratio of velocities

The foregoing considerations have dealt with the near-cutoff dispersion xn,a(k) which is quadratic in k2

according to (3). It is however evident that the coefficient Wn,a of quadratic dispersion may turn infinite if
the interference term W ð2Þ

n;a given by (9) (see also (18)) contains an infinite tangent tan pn
2

1� ca
cb

� �h i
multiplied

by a non-zero prefactor. The latter is the case provided that kmnkab and/or kmnkba does not vanish, which
simply means that the a and b modes are coupled in a given sagittal plane (m,n) (i.e. none of them is the
SH mode when (m,n) is symmetric). In turn, the tangent may become infinite if the velocity ratio ca/cb is
an (irreducible) rational fraction of natural numbers M,N one of which is odd and the other even, i.e.
ca=cb ¼ M=N with M ;N of different parity; having no common divisors ð6¼ 1Þ: ð23Þ
Given so, then by (1) each cutoff Xn,a of the order n = pN for the ath bulk mode coincides with the cutoff
Xm,b of the order m = pM for the bth bulk mode, thus producing a degenerate resonance with the frequency
XðdÞp ¼
pnca

d

� �
n¼pN
¼ pmcb

d

� �
m¼pM

; p ¼ 1; 2; . . . ð24Þ
For these degenerate resonances, the tangent in question is zero for even p and infinite for odd p. A resulting
divergence of the coefficient Wn,a signals that the underlying Eq. (3) is invalid, i.e. the leading-order dispersion
is no longer quadratic in k. Regarding this case for an isotropic plate, Mindlin (1955, 1960) has shown that Eq.
(3) must be replaced by an expansion with the leading-order dispersion term linear in k
xðk; hÞ ¼ XðdÞp 

ox
ok

� �
k¼0

k þ � � � ; ð25Þ
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where the indices for x are omitted for brevity. The coefficient in (25) has been established for isotropic plates
by Mindlin (1955, 1960) and for a propagation direction m orthogonal to a symmetry plane by Kaul and Mind-
lin (1962a,b). The case of an isotropic plate with cT/cL = 1/2 has been recently re-visited by Werby and Überall
(2002). In fact, Eq. (25) applies to an arbitrary anisotropic plate near the degenerate resonances (24) once the a
and b modes are coupled, M and N are of different parity, and p is odd. Unless further specialized case of triple-
degenerate resonances in a non-symmetric sagittal plane, a general form the coefficient in (25) is
ox
ok

� �
k¼0

¼ 2

XðdÞp d

c2
akmnkab þ c2

bkmnkba

c2
a � c2

b

: ð26Þ
6.2. Quasilinear near-cutoff dispersion for real materials

Certainly a velocity ratio can never be precisely a rational fraction and so Eqs. (7)–(9) can never be valid in
the exact sense. At the same time, they may hold approximately thus leading to a sequence of pairs of closely
situated resonances. Given that the resonant waves are not SH-polarized, each pair with odd p gives rise to a
pair of dispersion branches starting up with a strong quadratic dependence on k (large coefficient |Wn,a(n)| due a
large tangent in the interference term W ð2Þ

n;a) but then they rapidly (i.e. for yet small kd) switch to the quasilinear
dependence on k. The latter can be approximated by Eqs. (25) and (26). It is essential that these branches must
have mutually inverse slopes, i.e. one of them slopes downwards and hence yields the backward Lamb waves. In
this case they occur regardless of a local shape of the bulk-wave slowness surface, so that the upward and down-
ward branches may correspond to the resonant modes with a concave and convex slowness curves, respectively
(or to both ones convex). Thus an occasional violation of the one-to-one correspondence between the curvature
of bulk-wave slowness curves and the near-cutoff trend of high-order Lamb branches discussed in Section 4.1 is
associated with closely situated pairs of resonances and break-down of a quadratic dispersion.

Closely situated resonances of different bulk modes occur in any real material. What is actually significant is
that they come out as a (finite) regular sequence with a not too large step provided that the velocity ratio ca/cb

of two bulk waves, none of which is the SH mode, is close enough to a rational fraction M/N with M and N

being relatively small integers of different parity. For example, in the case of TiO2-plate shown in Fig. 3, the
ratio cT2/cL lies in between 5/6 and 6/7. That is why the branches emerging from the nearly situated cutoffs
X5,L 	 X6,T2 and X7,T2 	 X6,L have a quasilinear slope of an opposite sign. It is approximated in Fig. 3 (dashed
lines) by Eqs. (25) and (26) with XðdÞ1 (p = 1) taken as a ‘fictitious’ degenerate cutoff equidistant from the actual
neighbouring T2 and L cutoffs. As noted below (24), an even p = 2 nullifies the tangent factor in the corre-
sponding interference parameter, and hence the next pairs of close resonances of T2 and L waves in Fig. 3
(n = 12,13 for T2 and 10,11 for L) give rise to the branches which are well fitted by the quadratic-dispersion
approximation with a coefficient determined mainly by the ‘curvature-related’ contribution. The latter aspect
is visualized in Fig. 4, where the curves Wn,T2(h) for n = 12,13 are quite close to the curve W ð1Þ

T 2 ðhÞ for the full
angular range. The next occasion of proximity of T2 and L resonances, corresponding to (24) with p = 3
(n = 19 for T2 and 16 for L, not shown in Figs. 2–4), again brings about a pair of branches with quasilinear
onset. In Fig. 3, the polarization of T1 bulk wave has rather a small h = 20� deviation from the SH-polariza-
tion, hence a proximity of its resonances to the resonances of L and T2 waves is of minor significance. It is
however demonstrated that the close resonances X2,L 	 X3,T1 produce a quasilinear dispersion approximated
in Fig. 3 by Eqs. (25) and (26).

As another example, we consider the (001)-cut cubic copper plate (the material constants c11 = 169,
c12 = 122, c44 = 75.3 GPa and q = 8.932 g/cm3 are taken from Every and McCurdy (1992)). This case is inter-
esting for it yields the ratio cT/cL which is extremely close (from above) to 2/3. The dispersion spectrum for in-
plane Lamb waves in the (100)-sagittal plane is shown in Fig. 7a (the SH branches are omitted). The qua-
dratic-dispersion approximation is given by Eq. (13)2,3. It fits the onset of all the detached branches and also
of the two branches emerging from the second pair of nearly degenerate L and SV resonances (even p = 2 in
(24)), but it breaks away very rapidly from the branches starting at the first and third pair of such resonances
(odd p = 1,3). These latter branches are well fitted by the linear-dispersion approximation given by Eqs. (25)
and (26).
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Staying with the example of the copper plate enables us to highlight some other subtle aspects of the dis-
persion near quasi-degenerate resonances. According to the preceding analysis, a concavity of the slowness
curve SSV (see inset to Fig. 7a) leads to the downward onset of high-order dispersion branches xn,SV(k) once
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n > 3 and except for the branch numbers n = 3p with odd p, when the cutoffs X3p,SV come close (from above)
to the cutoffs X2p,L (which in turn give rise to the exceptional downward-bending branches of the L-family). By
virtue of cT/cL = (2/3) + e where 0 < e� 1, the quadratic-dispersion coefficient Wn,SV(n) as a discrete function
of n is proportional to
n�1 tan
pn
6
� p

2
ne

� �
ð27Þ
with a shift by W ð1Þ
SV < 0. The values Wn,SV(n) shown in Fig. 7b are distributed along these tangent curves in a

way which sets apart six subsets: one, for n = 3p with even p, lies on a straight-like line and five others are
placed along hyperbola-like lines (note a striking difference from Fig. 5). The upper hyperbola, for n = 3p with
odd p, traces the values Wn,SV(n) falling out just before (due to e > 0) the tangent poles. It tells us that the
exceptional branches of the SV family have an upward trend until n = 45 (indicated in Fig. 7b), above which
ne in (27) is no longer small enough. Attention is drawn to the fact that a strong quadratic-dispersion depen-
dence due to a large tangent is in fact rapidly replaced by a smoother quasilinear dispersion, but we can be sure
that both of them have the same sign for a given branch. In other words, the exceptional branches xn,SV(k) for
n = 3p < 45 with odd p retain upward trend when passing from the quadratic-dispersion onto the adjacent
quasilinear range, and correspondingly xm,L(k) for m = 2p < . . . with odd p remain being downward. Indeed
otherwise would cause crossing of these xn,SV and xm,L branches which is impossible as they are either both
symmetric or both antisymmetric due to n = 3p and m = 2p being of different parity when p is odd (in contrast
to the case of even p, see the zoom of x6,SV(k) and x4,L(k) in Fig. 7a). To highlight this aspect, imagine for the
moment a slight perturbation of c11 and c44 such that inverts the sign of e = cT/cL � (2/3) from positive to
negative and hence inverts the neighbouring cutoffs so that now X2p,L > X3p,SV. Correspondingly, the upward
and downward (quadratic) branches associated with even p shift with respect to each other, so that they no
longer intersect. One could expect that a pair of quasilinear branches for odd p also undergo the same kind
of transition through each other, but then this would lead to their intersection which is forbidden. Thus what
happens in fact is that the upper, upwards going SV branch and the lower, downwards going L branch ap-
proach each other at e ? 0 and meet at the degenerate cutoff when e = 0, but then, for e < 0, these branches
move apart retaining their dispersion trends. At the same time, the upper (and upward) branch becomes the L-
branch while the lower (and downward) branch becomes the SV-branch. This is in agreement with (27),
according to which the upper hyperbola in Fig. 7b is mirror-reflected about the horizontal axis when e be-
comes negative.
7. Conclusions

In brief summary, the coefficient of leading-order dispersion xn,a(k)�Xn,a � O(k2) at the onset of Lamb-
wave branches (n is the branch number for the family originating at the cutoff frequency Xn,a of resonances
of a = 1,2,3 bulk waves) has been derived for an arbitrary anisotropic plate. Its negative sign identifies a
downward trend at the onset of branches xn,a(k) and hence the near-cutoff existence of backward Lamb waves
with a negative (in-plane) group velocity. The sign analysis is based on the observation that this coefficient
contains two contributions: one is determined by the curvature of resonant bulk-wave slowness curve Sa in
the sagittal plane, the other describes modal interference in a Lamb-wave packet. For a special case, when
the plate normal is an acoustic axis and the sagittal plane is not a symmetry plane, the dispersion coefficient
is given by a more complicated formula; however, its asymptotic form for large enough n also acquires the
above-mentioned structure with two additive terms of different nature. On taking out a common factor
n�1, the former term is independent from n, while the latter contains an additional factor n�1 and is also pro-
portional to a tangent depending on n. As result, a local concavity of the slowness curve Sa of the ath bulk
wave causes a systematic occurrence of downward bent for the branches xn,a(k) whose number n exceeds cer-
tain threshold n0 (for several examples of materials considered in the paper, n0 has ranged from 3 for GaAs
and Cu to 12 for TeO2). The high-order branches of ath family (Sa is concave) starting from the cutoff fre-
quency Xn,a > pn0ca/d admit an upward bent only occasionally, for a sparse sequence of branches which fall
out with a step of about 2n0 in n until some large n. On the same grounds, a convex slowness curve of the
resonant bulk wave entails the downward trend of the high-order branches with only rare exceptions. A
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sequence of the exceptional high-order branches, for which the near-cutoff dispersion trend is irrelevant to the
shape of slowness curve of the resonant bulk wave, is associated with a pairwise proximity of resonances giv-
ing rise to pairs of dispersion branches with upward and downward quasilinear onset. This feature is especially
prominent and regular in a spectrum where the velocity ratio for two resonant bulk waves, none of which is
the SH mode, is close to a fraction of relatively small integers of different parity.

In conclusion, let us cast a brief glance on the problem of backward Lamb waves in a broader sense, which
is not restricted to the near-cutoff vicinity (in doing so, it is suitable to label the dispersion branches by a single
index J = 1,2,. . . instead of (n,a) as elsewhere). It is evident that the approach of the present study, which is
confined to the leading-order dispersion near cutoffs, is unable to give us the point where the downward onset
of a dispersion branch in a given sagittal plane (m,n) switches to the upward trend, i.e., where its initially neg-
ative group velocity gðmÞJ ðkÞ in a given sagittal plane (m,n) turns to zero and becomes positive with further
growing k. Neither it can predict occasions of negative gðmÞJ ðkÞ, and hence of spectral zones of backward Lamb
waves, in the intervals which are not adjacent to a cutoff. A possible existence of such intervals has been dem-
onstrated by Solie and Auld (1973) and Li and Thompson (1990) and emphasized recently by Parygin et al.
(2000) for anisotropic plates with a boundary parallel to symmetry plane (which allows intersection of disper-
sion branches). Alternating intervals of positive and negative gðmÞJ ðkÞ along dispersion branches occur due to
their weaving shape, which is especially salient in the case of a prominent concavity of the bulk-wave slowness
sheets both along n and along m, like in the (100)-cut TeO2 plate (Parygin et al., 2000). Note also that a prox-
imity of vJ(k) to the real part of velocity of the leaky wave for a halfspace consisting of the plate material
(d ?1) may be a favorable factor for the backward propagation of Lamb waves provided that the group-
velocity vector of the partial bulk mode of this leaky wave has a negative projection on m. Certainly
gðmÞJ ðkÞ ¼ vJ ðkÞ þ kv0J ðkÞ must become positive definite on descending down any phase-velocity branch vJ(k)
(or vJ(x)) since its dispersion falls off sooner or later. In this light, another intriguing question arises: what
is the absolute phase-velocity bound, below which no branch vJ(k) or vJ(x) can admit negative gðmÞJ ? Alto-
gether, the above-mentioned issues invite further research into the backward propagation of Lamb waves
in anisotropic plates.
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Werby, M.F., Überall, H., 2002. The analysis and interpretation of some special properties of higher order symmetric Lamb waves: The

case for plates. Journal of the Acoustical Society of America 111, 2686–2691.


	On the backward Lamb waves near thickness resonances in anisotropic plates
	Introduction
	Background
	Dispersion coefficient near an uncoupled resonance
	Arbitrary anisotropy
	Explicit simplifications due to material symmetry
	A digression on the case of isotropy

	Discussion and numerical examples
	Backward Lamb waves and a local shape of bulk-wave slowness curve
	Sufficient condition for non-existence of backward Lamb waves near the resonances associated with a convex slowness curve

	Dispersion near resonances of degenerate waves in the case of a non-symmetric sagittal plane
	Normal to the plate is the fourfold axis
	Normal to the plate is the threefold axis

	Quasilinear onset of dispersion branches
	Special case of a rational ratio of velocities
	Quasilinear near-cutoff dispersion for real materials

	Conclusions
	Acknowledgements
	References


