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We consider a six-dimensional (1, 0) hypermultiplet model coupled to an external field of vector/tensor 
system and study the structure of the low-energy effective action of this model. Manifestly a (1, 0)
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superfield proper-time technique. The leading low-energy contribution to the effective action is 
calculated.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In our recent paper [1] we have developed the harmonic super-
field formulation of the 6D vector/tensor system and constructed 
its coupling to 6D hypermultiplet. One of the important and in-
teresting applications of such a coupling is a problem of the ef-
fective action induced by the hypermultiplet interaction with the 
vector/tensor background. In the paper [1] we introduced the cor-
responding effective action, which is a harmonic superfield func-
tional of the vector/tensor system, and computed the structure of 
its divergences. The present paper is devoted to continuation of 
the research originated in [1]. Our basic purpose here is to calcu-
late the finite first leading low-energy contribution to the effective 
action. The main motivation to studying the low-energy effective 
action in the theory under consideration is related to a descrip-
tion of the low-energy dynamics of M5-branes in terms of field 
theory.

As it is known, the M2- and M5-branes arise as states of the 
strong coupling phase of M-theory (see e.g. [2] for a review and 
references). The low-energy dynamics of a single M5-brane is de-
scribed by the Abelian N = (2, 0) tensor multiplet [3]. The field 
content of this multiplet is determined as follows. There are five 
scalars which arise as the Goldstone bosons from spontaneous 
breaking of the eleven-dimensional translational invariance by a 
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brane. The M5-brane is a 1/2-BPS object and therefore there are 
eight fermionic degrees of freedom. The three additional bosonic 
degrees of freedom are provided by an Abelian 2-form gauge field 
Bab which has a self-dual field strength Habc . This 2-form origi-
nates from breaking the gauge symmetry of the 3-form potential 
which exists in M-theory. However a Lagrangian description of 
such a system faces a problem: the kinetic term for the 2-form 
gauge field is identically zero because of the self-duality condi-
tion. In the non-Abelian case, there is an additional problem since 
an appropriate generalization of the tensor gauge symmetry is still 
unknown [4].1 In addition, there are the inevitable problems of 
quantization of such models and whether the conformal symmetry 
is preserved at the quantum level.

The low energy theory of multiple M5-branes is an interacting 
six-dimensional conformal field model with (2, 0) supersymme-
try (see e.g. [6] for a review and references). The existence of 
such field theories, as well as all of their known properties, has
originated from string theory, where they occur in various related 
contexts: the IR limit of the M5 or IIA NS-5 brane world-volume 
theory, IIB string theory on an ALE singularity [7], M theory on 
AdS7 × S4 [8], etc. The IR-limit of these theories are (2, 0) super-
conformal field models which obey an ADE-classification: SU(N), 
SO(2N), or E6,7,8 [9], but have no other parameters. It is worth 
pointing out that all that is known about an interacting 6D, N =
(2, 0) field theory has been obtained from string theory. In par-

1 Various proposals for dealing with this problem have been suggested (see e.g. 
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ticular, the non-trivial SO(5)R ’t Hooft anomaly was found in [10]
in the context of 11d M-theory, which gave the anomaly for the 
case G = SU(N), realized as N parallel M5 branes. The correspond-
ing anomaly coefficient for the SU(N) case was found with help of 
M theory on AdS7 × S4 in [11] to be cSU(N) = N3 − N .

In a series of works [12] it was considered the possibility of 
constructing the (2, 0) theory of multiple M5-branes using (1, 0)

supersymmetry in the framework so-called the non-Abelian hierar-
chy of p-form fields [13]. In this case the following supermultiplets 
are used: tensor multiplet, hypermultiplet and super Yang–Mills 
multiplet. In the framework of these models the SYM multiplet 
should be auxiliary analogous to non-propagating gauge fields in 
the BLG or ABJM theory for multiple M2-branes. Such models are 
parameterized by a set of dimensionless constant tensors, which 
are constrained to satisfy a number of algebraic identities. A con-
crete model is defined by the explicit choice of the gauge group 
and representations and the above associated invariant tensors. All 
these theories can be treated as belonging to the same univer-
sality class of theories which are dual to AdS7 × S4 and possibly 
describe multiple M5-branes. Several explicit examples which sat-
isfy all algebraic consistency conditions have been discussed in the 
literature (see e.g. [12]).

Superfield formulation of the tensor hierarchy has been stud-
ied in the paper [14] where a set of constraints on the super-
(p + 1)-form field strengths of non-Abelian super-p-form poten-
tials in the (1, 0) 6D superspace has been proposed. In [1] we 
considered six-dimensional hypermultiplet, vector and tensor mul-
tiplet models in (1, 0) harmonic superspace and discussed the 
corresponding superfield actions (see also [15–17]). The superfield 
actions for a free (2, 0) tensor multiplet and for an interacting vec-
tor/tensor multiplet system in terms of (1, 0) superfields have been 
constructed for the first time in [1]. To construct (2, 0) theory, 
one adds nT (1, 0) superconformal hypermultiplets to the above 
(1, 0) vector/tensor system. It is worth mentioning that there is 
no direct interaction between hypermultiplets and tensor multi-
plets, a coupling between these multiplets is provided by a vector 
multiplet (see e.g. [12]). Such a coupling comes through the aux-
iliary fields, which are described by the algebraic field equation 
dIrs(Y s

i jφ
I − 2λ̄s

(iχ
I
j)) − . . . = 0. In general, this equation implies 

constraints on the elementary fields [12] but inclusion of Abelian 
factors or tensor multiplet singlets, allows us to bypass constrains 
on the elementary fields and, in particular, leads to the interaction 
terms of the form Lφ0F2 . In that case there is a unique solution 
for the auxiliary fields Yij . The resulting scalars can take any values 
and then the vev of the tensor multiplet scalar acts as an inverse 
Yang–Mills coupling constant in the conformal broken phase. This 
effect is similar in many aspects of the “M2 to D2” scenario [18]
proposed for the BLG theory which teaches us that the M2-brane 
field theory is the strongly-coupled limit of the D2-brane theory 
where the type IIA string theory transforms into M-theory. Such 
a circumstance allows us to consider the Coulomb brunch of the 
theory and study of the perturbative properties of the models on 
this branch.

The next natural question is, what are the higher-order correc-
tions to the M5-brane action where the fields of the vector multi-
plet become dynamic degrees of freedom. One of the direct ways
to answer this question is to derive the effective action by calcu-
lating the open string scattering amplitudes. This program for the 
Abelian case yielded the full higher-derivative purely bosonic terms 
in the Dirac–Born–Infeld approximation [19]. In addition, there 
exists a remarkable connection between (i) partial supersymme-
try breaking, (ii) nonlinear realizations of extended supersymme-
try, (iii) BPS solitons, and (iv) nonlinear Born–Infeld–Nambu type 
actions [20–22].2 On the other hand, the systems of D5-branes 
have complementary descriptions in terms of gauge theory (see 
e.g. [23]). As one of the consequences, the leading-order inter-
action potential between separated branes admits representation 
as a leading term in the quantum gauge theory effective action. 
The agreement between the supergravity and the gauge theory 
expressions for the potential is possible because of the existence 
of certain non-renormalization theorems on the gauge theory side 
(see e.g. [24]). Since the hypermultiplet has a universal coupling to 
the vector multiplet, one can expect that, in the context of field 
theory, it will be possible to derive directly the leading higher or-
der 6D supersymmetric correction to the classical action. Precisely 
this problem is considered in the present paper.

We begin with harmonic superfield 6D hypermultiplet cou-
pled to an external field of vector/tensor system and compute the 
one-loop effective action depending on the superfields of the vec-
tor/tensor system. To develop the method of calculating of the 
effective action and study of its possibilities we consider the sim-
plest case when all the fields are Abelian. As the result we find 
superfield action which corresponds to the 6D (1, 0) superconfor-
mal ‘F 4’ term in the components.

2. Model of 6D hypermultiplet coupled to vector/tensor system

We consider the hypermultiplet model coupled to an external 
field of the vector/tensor system in the framework of the formal-
ism of the (1, 0) harmonic superspace.3 Our main aim is to com-
pute the leading low-energy contribution to the superfield effective 
action depending on the superfields of the vector/tensor system.

Let us briefly discuss the structure of the vector/tensor sys-
tem. The (1, 0) superconformal 6D field theory of the vector/ten-
sor system describes a hierarchy of non-Abelian scalar, vector and 
tensor fields {φ I , Ar

a, Y ij r, B I
ab, Cabc r, Cabcd A} and their supersym-

metric partners which are labeled by the indices r = 1, . . . , nV and 
I = 1, . . . , nT (see the details e.g. in [12]). The non-Abelian field 
strengths of the vector and two-form gauge potentials are given as

F r
ab = ∂[aAr

b] − f r
st As

a At
b + hr

I B I
ab,

HI
abc = 1

2
D[a B I

bc] + dI
rs Ar[a∂b As

c]

− 1

3
f s

pqdI
rs Ar[a Ap

b Aq
c] + gIr Cabc r . (1)

Here f r[st] are the structure constants, dI
(rs) are the d-symbols, 

defining the Chern–Simons couplings, and hr
I , gIr are the covari-

antly constant tensors, defining the general Stückelberg-type cou-
plings among the forms of different degrees. The existence of the 
non-degenerate Lorentz-type metric ηI J , such that hr

I = ηI J g Jr , 
bIrs = 2ηI J d J

rs , is also assumed. The covariant derivatives are de-
fined as Da = ∂a − Ar

a Xr with the gauge generators Xr acting 
on the different fields as follows: Xr · �s ≡ −(Xr)

s
t �

t , Xr · �I ≡
−(Xr)

I
J �

J . The covariance of the field strengths (1) requires that 
the gauge group generators in the various representations should 
have the form

(Xr)
t
s = − f t

rs + gt
Id

I
rs, (Xr)

J
I = 2d J

rs gs
I − g J sdIsr,

in terms of the invariant tensors parameterizing the system (see 
the details in [12]). The field strengths (1) are defined in such a 

2 Due to the large number of relevant papers we have no possibility to cite a 
large number of papers on these aspects.

3 We follow the harmonic superspace conventions of [25] to which we refer for 
definitions, notations and additional references. Its application to vector/tensor sys-
tem is discussed in [1].
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way that they transform covariantly under the set of non-Abelian 
gauge transformations

δAa = Da�
r − hr

I�
I
a,

δB I
ab = D[a�I

b] − 2dI
rs(�

rF s
ab − 1

2
Ar[aδAs

b]) − gIr�ab r . (2)

The superspace realization of the tensor hierarchy was devel-
oped in the paper [14] in framework of the conventional 6D, (1, 0)

superspace by means of study of the consistency conditions for 
the generalized Bianchi identities. In [1] we reformulated the 6D 
hypermultiplet, vector and tensor multiplet models in (1, 0) har-
monic superspace and discussed the corresponding superfield ac-
tions. Further, we will use the results of the works [14,1]. It is 
convenient to introduce the generalized superfield strength

W iα r = W iα r + gr
IV iα I , (3)

where the W iα r is the superfield strength of the super Yang–
Mills theory (defined in [15,16]) and V iα I is the superpotential 
of the tensor multiplet (defined in [17]), and write the generalized 
Bianchi identities in its terms. Then one can see that the conven-
tional strength Fab of the vector multiplet and the potential Bab of 
the tensor multiplet enter into W iα r in the gauge covariant form 
F r

ab = F r
ab + gr

I B I
ab . The other superfield strengths of the vector/ten-

sor multiplet are defined as

Y++r = 1

4
D+

α W+αr, gr
I 


I = 1

4
(D−

α W+αr −D+
α W−αr),

�±I
α = − i

2
D±

α 
I , gr
IHI

abc = D[aF r
bc]. (4)

The algebra of the covariant derivatives D±
α , D±± , Da is described 

in [1]. By applying a harmonic-dependent gauge transformation, 
one can choose a λ-frame where D+

α → D+
α , D++ = D++ + V ++ , 

D−− = D−− + V−− , with V ++ the analytic prepotential for the 
off-shell vector multiplet, and the other harmonic connection V−−
is the linear combination of the non-analytic potential V −− for 
vector multiplet and the potential V(−2) for on-shell tensor multi-
plet (see [16,17,1] for more details). By using these superfields one 
can define the superfield action in harmonic superspace as follows

S = 1

8

∫
dζ (−4)du gIr{
ID++Y++ r + D+

α 
ID++W+αr}, (5)

where dζ (−4) denotes the analytic subspace integration measure. 
The action (5) depends both on superfields V ++ , W αi of the vec-
tor multiplet and on superfields 
, Vαi responsible for the tensor 
multiplet. If a vev of 
 is a constant 1/ f 2, this action takes the 
form of SYM action [15,16]

S ∼ 1

f 2

∫
d6xd8θduV ++V −−,

as discussed above. The equation of motion for this action is 
Y ++ = (D+)4 V −− = 0.

As a further step towards to a (2, 0) theory it was proposed in 
the papers [12] to complement the non-Abelian vector/tensor by 
superconformal hypermultiplets and construct the corresponding 
coupling. The Lagrangian for these theories consists of two pars. 
One part involves vector and tensor multiplets, and the second 
part contains hypermultiplets coupled to the vector/tensor system. 
These two parts are independently (1, 0) supersymmetric.

A conformally invariant hypermultiplet model can be formu-
lated in six-dimensional (1, 0) harmonic superspace [16]. The cor-
responding superfield action in general case is written as follows

S = −1
∫

dζ (−4)du(q+AD++q+
A + L(+4)(q+, u)). (6)
2

The potential L(+4)(q+, u) determines a hypermultiplet self-inter-
action [26], it is irrelevant for our purposes and will be omitted 
further. We want to emphasize that the superfield V ++ here is 
related to the superfield V−− through zero curvature equation 
(see [25]). The superfield strengths W+α = − 1

4 (D+)3αV−− , involv-

ing the superfield V−− r = V −− r + gr
IV

−− I
T , obey the Bianchi 

identities which contain the superfields 
, � i
α , Habc related to 

tensor multiplet (see [1] for the details). As a result the action (6)
describes the interaction of a hypermultiplet with a vector/tensor 
system.

3. Construction of effective action

We will discuss here the procedure of calculating the effective 
action corresponding to the hypermultiplet theory in an external 
field of a vector/tensor system (6). The effective action is defined 
by integrating out hypermultiplet and keeping the U (1) vector/ten-
sor system as a background.

A formal relation for the effective action follows from (6) in the 
form

� = i Tr lnD++ = −i Tr ln G(1,1), (7)

where the G(1,1)(ζ1, ζ2) is the hypermultiplet Green function, sat-
isfying the equation:

D++
1 G(1,1)(ζ1, ζ2) = δ

(3,1)
A (ζ1, ζ2),

G(1,1)(1|2) = − 1

4
��1

(D+
1 )4(D+

2 )4δ14(z1 − z2)
1

(u+
1 u+

2 )3
. (8)

Here δ14(z1 − z2) = δ6(x1 − x2)δ
8(θ1 − θ2) is the delta-function 

in conventional superspace, δ
(3,1)
A (ζ1, ζ2) is the appropriate co-

variantly analytic delta-function δ
(3,1)
A (ζ1, ζ2) = (D+)4δ14(z1 −

z2)δ
(−1,1)(u1, u2) and (u+

1 u+
2 )−3 a special harmonic distribu-

tion [25]. In Eq. (8), 
�� is the covariantly analytic d’Alembertian 

which arises when (D+)4(D−−)2 acts on the analytical superfield

�� = −1

8
(D+)4(D−−)2

= DaDa +W+αD−
α +Y++D−− −Y+− − 
. (9)

The operator 
�� (9) possesses the important properties

[D+
α ,

��] = 0,

[D++,
��]V (p) = Y++(p − 1)V (p), (10)

where V (p)(ζ, u) is an arbitrary analytic superfield of U (1)

charge p. To prove the above identities, one should make use of 
the following properties of the 6D, (1, 0) gauge covariant deriva-
tives in harmonic superspace [15,16,1]

[D+
α ,D−

β ] = 2iDαβ, [D±
γ ,Dαβ ] = −2iεαβγ δW±γ . (11)

The field strength W±α obeys the generalized vector/tensor 
Bianchi identities

D−
α W+β r = δ

β
α(Y+− r + 1

2

I gr

I ) + 1

2
Fβ r

α ,

D±
α Y+− r = ±i(DαβW±β r + iD±

α 
I gr
I ). (12)

These properties follow from the 6D (1, 0) vector/tensor multiplet 
formulation [14] in conventional superspace.

The definition (7) of the one-loop effective action is purely for-
mal. The actual evaluation of the effective action can be done in 
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various ways (see e.g. [27,28]). Further we mainly will follow [28]
with some special differences and use the relation

� = �y=0 +
1∫

0

dy∂ y�(yV ) = −i Tr

1∫

0

dy(V ++G(1,1)(y)), (13)

where

Tr(V ++G(1,1)) =
∫

du1dζ
(−4)
1 V ++(1)G(1,1)(1|2)|1=2. (14)

Here G(1,1)(yV ) means the Green function depending on the su-
perfield yV ++ . Now one substitutes the expression (8) for Green 
function G(1,1)(1|2) into (13) and uses a proper-time representa-
tion for the inverse operator 1

�� . To avoid the divergences in the 
intermediate steps of calculation one considers the regularized in-
verse operator in the form (ω – regularization)

− 1
�� =

∞∫

0

d(is)(isμ2)ωeis
��−εs. (15)

The divergent part of the effective action has already been found 
in [1], it was shown that it defines a charge renormalization in the 
vector/tensor action (5), and a higher derivative SYM action, found 
in [16]. We calculate the effective action in the local approximation 
where the effective action is represented as a series in background 
fields and their derivatives and expressed in terms of the effective 
Lagrangian in the form

� =
∫

dζ (−4)duL(+4). (16)

The further analysis is based on the following identity involving 
the product of D-factors presenting in the Green function (see 
derivation of this identity for 4D and 5D cases in [28])

(D+
1 )4(D+

2 )4 1

(u+
1 u+

2 )3

= (D+
1 )4{(u+

1 u+
2 )(D−

1 )4 − (u−
1 u+

2 )�−− − 4
�� (u−

1 u+
2 )2

(u+
1 u+

2 )
}. (17)

Here

�−− = iDαβD−
α D−

β + 4W−αD−
α − (D−

αW−α). (18)

Now we will discusses the restrictions on background. To find 
the leading low-energy contribution to effective action it is suffi-
cient to consider a covariantly constant vector/tensor multiplet in 
the absence of the auxiliary fields (‘on-shell’ background)

DaW±α = 0, Y i j = 0. (19)

For self-consistency of the relations (19) we should supplement 
the above relations by the following relations

Di
α
 = 0, Di

αFab = 0. (20)

In this case the operators 
�� and �−− take a simple form and de-

pend only on the background fields W+α , D−
αW+β and 
. Since 

the form of the effective Lagrangian is defined by the coefficients 
of these operators we can conclude that on the background under 
consideration, the effective Lagrangian should have the following 
general form

L(+4) = L(+4)(W+α, D−
αW+β,
). (21)

Further we will see that in leading approximation the effective La-
grangian does not depend on D−

αW+β .
4. Leading low-energy contribution to effective action

We will consider now a computation of the leading low-energy 
quantum contribution to the effective action. First of all we substi-
tute the expression for the Green function (8) into the expression 
for effective action (13) and use the identity (17). It leads to

� = i

4

1∫

0

dy

∫
dζ

(−4)
1 duV ++

1
1

��1

(D+
1 )4{(u+

1 u+
2 )(D−

1 )4

− (u−
1 u+

2 )�−−
1 − 4

�� (u−
1 u+

2 )2

(u+
1 u+

2 )
}δ14(z1 − z2)|2=1. (22)

To get the leading low-energy contribution to the effective ac-
tion one analyzes the terms in the expression (22) for the back-
ground under consideration. First of all we take into account that 
we should use eight D±

α -factors in this expression to eliminate the 
δ-function of anticommuting variables via the identity

(D+)4(D−)4δ8(θ − θ ′)|θ=θ ′ = 1. (23)

Consider the last term in (22). We see that the operator 
�� is 

cancelled and then there is no enough number of D-factors to 
eliminate the above δ-function. Therefore this term is zero. Now 
consider the first term in (22). This term was analyzed in [1], 
it was shown that it is proportional to Y++ , which is equal to 
zero on the background under consideration.4 Now let us analyze
the contributions of �−− . The third term here is proportional to 
Y−− and hence, it vanishes on the background under considera-
tion. Now we will use the proper-time representation (15) of the 
inverse operator 

�� in (22) and expend eis
�� = eis(�−
)eisW+D−

in 
the power series in W+αD−

α . The leading contribution arises in 
the third order in this expansion. Consider the contribution of the 
second term in (18) after the above expansion. Schematically it has 
the form∫

dζ (−4)duV ++W−(W+)3 =
∫

dζ (−4)duV ++D−−(W+)4

=
∫

dζ (−4)duV−−D++(W+)4 = 0.

Thus, the leading low-energy contribution to effective action is 
given by the following expression

� = − i

4

1∫

0

dy

∞∫

0

d(is)

∫
dζ (−4)duV ++iDαβD−

β D−
α

× 1

6
(isW+δD−

δ )3eis(�−
)(D+)4δ14(z − z′)|2=1. (24)

Then let us integrate by parts with respect of the operator DαβD−
β . 

The following transformations of 
∫

dζ (−4)duV ++iDαβD−
β L

(+3)
α

look schematically like

=
∫

dζ (−4)duD−
β

1

4
εαβγ δ D+

γ D
−
δ V ++L(+3)

α

=
∫

dζ (−4)duD−
β

1

4
εαβγ δ D+

γ (D−−D+
δ )V ++L(+3)

α

= −
∫

dζ (−4)duD−
β

1

4
εαβγ δ D+

γ D+
δ (D−−V ++)L(+3)

α

4 This term determines the divergences of the effective action [1]. In particular, it 
means that the effective action is finite on the background under consideration.
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= −
∫

dζ (−4)duD−
β

1

4
εαβγ δ D+

γ D+
δ (D++V−−)L(+3)

α

=
∫

dζ (−4)duD+
β

1

4
εαβγ δ D+

γ D+
δ V

−−L(+3)
α

=
∫

dζ (−4)dudζ (−4)duW+αL(+3)
α .

The expression L(+3)
α is seen from (24). Here we have used that 

D+
α V ++ = 0, D++(W +)3 = 0 and that for a non-zero result there 

should be eight D-factors acting on δ8(θ − θ ′). As a result we ob-
tain that the effective Lagrangian depends only on W+α and 
. 
After these transformations one gets the integrand in (24) in the 
form

∼ (is)3W+αW+βW+γW+δD−
α D−

β D−
γ D−

δ (D+)4δ8(θ − θ ′)

∼ (is)3(W+)4.

By using the relation eis�δ6(x − x′)|x=x′ = i
(4π is)3 , we finally obtain

�[W+,
] = 1

12(4π)3

∫
dζ (−4)du

(W+)4



. (25)

The effective action is given as an integral over the analytic sub-
space of harmonic superspace of the effective Lagrangian L(+4) . It 
is necessary to point out here that this effective Lagrangian sat-
isfies the condition of analyticity only on the background under 
consideration where D+

α W+α = 0 and 
 = const. For a generic 
background we should take into account the terms containing the 
superfields Y++ and the derivatives of the superfields W , 
, but 
all this lies beyond the leading low-energy approximation.

Now we will consider the component structure of the effective 
Lagrangian in the bosonic sector. By integrating over the anticom-
muting coordinates 

∫
d4θ+ = (D−)4, one gets

(D−)4(W+)4

= 1

4!εαβγ δε
α′β ′γ ′δ′D−

α′W+αD−
β ′W+βD−

γ ′W+γD−
δ′W+δ

∼ 1

4!εαβγ δε
α′β ′γ ′δ′Nα

α′N β

β ′N γ
γ ′N δ

δ′ = 1

4! detN , (26)

where we have denoted N β
α ≡ D−

α W+β |θ=0 for (12). A direct cal-
culation of the determinant gives

detN = (N )4 − 6(N )2N β
α Nα

β + 8(N )N β
α N γ

β Nα
γ

− 6N β
α N γ

β N δ
γNα

δ + 3(N β
α Nα

β )2, (27)

where (N ) ≡ N α
α = 2
. It is also evident that trN 3 = 0. This ex-

pression in the limiting case 
 = 0 is in agreement with earlier 
perturbative calculations of the low-energy effective action of su-
perstrings (see a review and references in [19] and restrictions 
implied by supersymmetry in 6D [22]). In the bosonic sector we 
have N = 1

2 (φ +F) where

F β
α = F β

α + B β
α .

It follows from the definition (1) in the Abelian case. Here φ is a 
scalar bosonic component of the superfield 
, F β

α = (γ ab)
β
α Fab is 

the strength of Abelian vector field and B β
α = (γ ab)

β
α Bab is the an-

tisymmetric tensor field. Then it is evident that if we substitute 
relation (27) into expression (25) and consider the bosonic sector, 
we get the following terms φ3, φF2, 1

φ
F4 as the quantum correc-

tions induced by the one-loop effect of the hypermultiplet.
5. Conclusion

Let us briefly summarize the main results. We have considered 
a problem of the induced effective action in the 6D (1, 0) hy-
permultiplet theory coupled to an external field of vector/tensor 
system. The theory is formulated in six-dimensional (1, 0) har-
monic superspace in terms of an unconstrained analytic hyper-
multiplet superfield in the external superfields corresponding to 
an Abelian vector/tensor system. The effective action is formulated 
in the framework of superfield proper-time technique which al-
lows us to preserve a manifest (1, 0) supersymmetry. To calculate 
the low-energy effective action it is sufficient to consider a special 
background (19), (20). We have developed a generic procedure for 
calculating the effective action on such a background and found 
the leading low-energy contribution to the effective action (25). 
The divergences in this theory have been computed in our pre-
vious paper [1]. It is worth mentioning that the divergences are 
absent on the background (19), (20).

We expect that the obtained results can have a relation to 
the problem of the effective action of a single isolated D5-brane 
[23]. However, to calculate the complete effective action for such a 
D5-brane we should study a quantum vector/tensor + hypermulti-
plet system. Of course, such a problem requires a special consid-
eration. Another aspect, which is essential for finding the effective 
action of a D5-brane, is a necessity to curry out the calculations 
on a conformally broken phase of the 6D non-Abelian supersym-
metric gauge theory (see definition of this phase e.g. in [12]). 
Nevertheless, we hope that the methods, developed in this paper, 
can be used to analyze the general problem of the effective ac-
tion of a D5-brane. The methods and results of the present work 
can be generalized in the following directions: (i) calculation of 
the low-energy effective action beyond the leading approximation, 
(ii) calculation of the effective action in a non-Abelian theory in 
the broken phase, (iii) calculation of the effective action of the 
quantum vector/tensor + hypermultiplet system.
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