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1. Introduction 
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growth and coalescence of grain boundary cavities or environmental interaction has received considerable 
attention in recent years [2-3]. A recent work suggests that if material parameters for an established grade of 
steel are known it may be possible to predict creep strain time plots of a new grade whose composition has 
been slightly altered to improve its micro-structural stability by slightly modifying a few of the material 
constants [4]. This no doubt looks promising keeping in view the time and effort needed to collect creep strain 
time data over a wide range of temperature and stress for a new grade of steel. The paper presents highlights of 
such an approach and its limitation.  

2. Modeling shape of creep curve 

Design of high temperatures components needs predictive models describing creep strain evolution as 
function of time under any given stress and temperature. These are derived from uniaxial creep test data on the 
specific material over a range of stress and temperature. Most of these tests are conducted under constant load. 
With accumulation of creep strain the cross sectional area of the test specimen would decrease and the stress 
would keep rising. Earliest attempt to model the shape was purely empirical. There are numerous algebraic 
expressions that have been used to represent creep strain (ε ) as function of time (t), stress (σ) and temperature 
(T). One of the simplest forms is given below: 

   (1) 

In the above equation Q denotes activation energy, R is universal gas constant, n & m are stress and time 
exponents and A is a constant. Such forms clearly cannot represent creep curves having three distinct stages 
consisting of primary, secondary and tertiary. One would need more complex expressions as the one known as 
theta projection popularized by Evans et al [5]. This needs 20 material constants as against 4 in eq. (1) to be 
estimated from limited creep strain time plots. Nevertheless such expressions are easy to link with most 
commercial finite element packages used for stress analysis. This helps identify critical locations of 
components that are most vulnerable to creep strain (damage) accumulation thus provide valuable guidance in 
monitoring structural integrity during service. However a major limitation of this approach is the uncertainty 
associated with extrapolation of test data beyond the experimental domain. It is often critical in cases of newer 
grades of steel that are being introduced to improve the efficiency of power generation units.  

As against this the approach developed by Dyson & McLean [2-3] based on Continuum Damage Mechanics 
(CDM) provides a frame work to incorporate dominant mechanisms determining creep strain evolution as 
normalized damage parameters. The relations between these are expressed in the form of a set of coupled 
differential equations. Recently one of the variants of their model was used to describe creep behavior of CrMo 
steel by Hore et al [4]. Dominant mechanisms considered were stress redistribution between matrix & particle, 
strain softening, and particle coarsening. The effect of precipitate dissolution was also incorporated by 
introducing a parameter which is a function of solvus temperature. The exact form of the model and the 
description of various parameters are as follows: 
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Where:
 

 is a characteristic strain rate and depends on precipitate volume fraction and mobile 
dislocation density. 

Qd is the activation energy associated with diffusion of vacancies and formation of jogs 

σ is the applied stress 

 is a normalizing stress that is related to the dislocation-particle interactions (see subsequent 
eq.  (3) & eq. (4)) 

h' is the effective modulus 

H* Limiting value of H. Occurs on completion of stress transfer. Its initial value is zero. 

Dp is the coarsening damage defined as  where  is the initial inter-particle spacing. 

 is the inter-particle spacing at any given time. 

Dd is the dislocation damage defined as  where  is the initial dislocation density 

 is the dislocation density at any given time. 

Kp is the rate constant for particle coarsening at a temperature T 

C is a model parameter governing the evolution of dislocation density. 

 
The parameters, which need to be defined, are Qd, 0ε , 0, h

’, H* and Kp. Two of these viz, 0 and Kp are 
strong functions of temperature. These are given by 
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Ts is the temperature at which the precipitates dissolve. Enthalpy change, Hs, is a measure of how easily the 

process of dissolution takes place. 0m is the maximum strength of the matrix. The form of this expression 
clearly shows that as the temperature approaches Ts lattice friction stress becomes negligibly small. Qp is the 
activation energy associated with coarsening of precipitate and Kp0 is the base value of Kp. 

The main advantage of such an approach is that it allows unlimited scope of extrapolation within the domain 
in which the same mechanisms control the process of creep damage accumulation. Surprisingly the number of 
parameters required is only 10 which is significantly less than those needed for theta projection. It also allows 
estimation of some of the parameters by examination of microstructures of creep exposed samples. This aspect 
has recently been exploited by Oruganti et al [6] to model creep behavior of modified 9CrMoNbV steel. Also it 
is worth noting that the equations are dimensionally balanced. Therefore it is possible to compare and correlate 
the effect of alloy modification, thermal exposure or heat treatment on the performance of high temperature 
materials during service. This aspect was highlighted by Hore et al [4]. The material parameters were estimated 
empirically for 2.25Cr1Mo steel for which extensive long term creep strain time plots are available over a wide 
range of temperatures and stresses. By changing only a few of the parameters it was shown that the predicted 
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creep curves for modified 9CrMoNbV steel w
comparison of the material constants for the t
9CrMoNbV steel indicates that the precipitates
higher. The two parameters which are signific
stress redistribution from the matrix to precipi
primary creep is quite prominent in case of 9Cr
strain softening. However this is more common
is known to be much less [2]. 9CrMoNbV has 
initial dislocation density [1]. Therefore strain s
(necking). Ruptured samples in these cases do 
cavitation in stress temperature domains conside

Table 1. Material parame

Material 
ε0 Qd σom ΔH

s-1 kJ/mol MPa kJ

2.25CrMo 2.71E08 298 28 13

9CrMoVNb 3.00E08 300 30 14

3. Results and discussions 

Using the material parameters estimated by
simulated for 2.25Cr1Mo steel subjected to 
Experimental data reported Hore et al [4] have
very close. Since these data were used to estim
validity of the model based approach discussed
changing only a few of the parameters it was po
The data set suggested by them for this steel 
predicted creep strain time plot with experimen
indeed very close except for the tertiary regime.
may be taken care of by the strain softening pa
associated with necking.  
 

Fig. 1. A comparison of model based prediction using
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ered in this work.  
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Fig. 2. A comparison of model based prediction us
ex

Figure 3 presents a comparison of predicte
superimposed on the experimental data. In this 
plots for 9CrMoNbV steel over a range of stress
based constitutive equations appear to have a 
various underlying mechanism and allow estim
obvious question that comes up why then the us
in the design of high temperature components. 
in empirical approach which can easily be inco
packages for stress analysis. As against this a
coupled differential equations to estimate increm
One often apprehends that this may take lo
computation this may longer be true.  
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In fact physics based constitutive models ha
crystal superalloy [7]. Another reason could be
small change in the material constants, particul
are very sensitive. In the absence of repeat test 
error band. Some attempts have been made to a
creep data on 316 stainless steel reported by G
method to address the problem is to simulate c
best way to generate a set of material parameter 
number generator. Four sets of such parameters 

Table 2. Four different sets of material parameter for 2.25C
number gene

Material 
ε0 Qd σom ΔHs

s-1 kJ/mol MPa kJ/m

Set 1 2.65E08 289 27.3 138

Set 2 2.97E08 278 28.3 126

Set 3 2.76E08 272 28.8 129

Set 4 2.89E08 302 26.0 126

 
These have been used to generate four creep 

are shown in Fig. 4 as lines along with experime
that the creep strains are well within the predi
data were not used to estimate the material pa
under identical test conditions.  
 

Fig. 4. Comparison between experimental (shown by marke
using material parameters given in Table 2. Stress 145 MP

cast sh

 

ve been linked to show the effect of creep anisotropy in
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larly those appearing either in exponential or in Sinh fun
data under identical test conditions it is impossible estim
analyze the scatter in creep data by Roy et al [8] to analy

Garofalo et. Al. [9] using a stochastic approach. An alter
creep strain evolution using a range of material constant
is to obtain a random set within a specified range using r
are given in Table 2.  

CrMo steel within ±10% of the values given in Table 1 obtained using r
erator to simulate four creep tests. 
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1020 1.10E03 0.29 207 2.58E05 

899 1.12E03 0.33 191 2.59E05 

strain time plots for 2.25CrMo steel at 550˚C, 145 MPa.
ental data recently obtained by Roy et al [10]. It is worth 
cted range. This is quite significant particularly because

arameters. It also suggests the importance of repeat cree

ers) and predicted (shown by lines with different style) creep strain time 
Pa & temperature 550 C. Note that experimental data on samples from s
how significant scatter. 

single 
ated. A 
nctions 

mate the 
yze the 
rnative 
ts. The 
andom 

andom 

C 

 

10.9 

10.3 

10.2 

9.1 

 These 
noting 

e these 
ep tests 

plots 
ame 



605 R.N. Ghosh  /  Procedia Engineering   55  ( 2013 )  599 – 606 

Fig. 5. Stress rupture plot for 9CrMoVNb steel obtained fr
trend may

Amongst practicing engineers the most comm
data. Rupture stress if plotted against a common
Miller parameter (LMP) given by T(C+log tr)
temperature in K and tr is the time to rupture in
is given in Fig. 5 for 9CrMoNbV steel. One of
data from various sources. If data from various
lower bound gives the minimum specified ruptu
temperature structural components. Quite often
being made to correlate this with parameters suc
causing any damage on the engineering compo
life assessment of engineering components wo
time database from multiple sources.  

4. Conclusion 

Continuum damage mechanics based mod
conventional empirical methods. However sligh
strain time plots. In view of limited availabi
estimation of model parameters is difficult. T
continues to depend on empirical methods based
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