changes between 2000–2004 in inpatient care, home care, CT/MRI examinations. CONCLUSIONS: The budgets of drug and medical devices reimbursement are highly concentrated while the distribution of renal dialysis expenditures was the most linear. Gini coefficient of inpatient care, home care and CT/MRI examinations showed significant time trend.

PHP2

PRESCRIPTION DRUG PRICE COMPARISONS BETWEEN CANADIAN AND US ON-LINE PHARMACIES OVER A SIX-MONTH PERIOD

Richards KM, Shepherd MD

1University of Texas, Austin, TX, USA

OBJECTIVES: Prescription drug prices between Canadian and US on-line pharmacies were studied over a 6-month period.

METHODS: Prices for 28 popular brand name medications were collected from eight Canadian and five US on-line pharmacies weekly for six months. Prices were compared between Canadian and US on-line pharmacies, and price changes were monitored each week. RESULTS: During the study period, purchasing from Canadian on-line pharmacies would save consumers >$1.00 per unit for 12 drugs (42.9%). Savings were demonstrated in two drugs if purchased from US on-line pharmacies: sildenafil 25 mg ($2.06/unit) and amlopidine 10 mg ($0.02/unit). Average price increases from the first to the last week of the 6-month period were greater from Canadian on-line pharmacies ($0.10/unit) compared to the US ($0.07/unit). From Canadian on-line pharmacies, prices from all the medications increased during the study period except one, which stayed the same. The two drugs with the greatest price increases were alendronate 70 mg ($1.04/unit) and sildenafil 25 mg ($0.45/unit). From US on-line pharmacies, nine drug prices decreased during the study period, four remained the same, and 15 increased. The greatest price increases were for alendronate 70 mg ($0.62/unit) and olanzapine 10 mg ($0.41/unit). Consumer savings from purchasing Canadian on-line drugs decreased from the first to the last week of the 6-month period for 17 medications (60.7%), with the greatest decrease in savings being for 100 units of gabapentin 300 mg (19.4% decrease) and sertraline 100 mg (35.1% decrease). CONCLUSIONS: When 100% of prescription drug payments are out-of-pocket, consumers usually save money when buying from Canadian on-line pharmacies. Although prices were lower using these pharmacies, price increases over the study period were greater. In order to get the best price for medications purchased on-line, one would need to compare prices from multiple pharmacies in Canada and the US for each prescription drug over a period of time.

PHP24

ELECTRONIC INTERFACES FOR SHARING PATIENT DATA: ESTIMATING RETURN ON INVESTMENT IN HOSPICE

Mondgoek D1, Reifsnnyder J1, Magee H2

1ExcelleRx, Inc., Philadelphia, PA, USA; 2ExcelleRx, Inc., Philadelphia, PA, USA

OBJECTIVES: To estimate the return on investment (ROI) associated with database integration technology enabling automated bidirectional sharing of patient data between a hospice and hospice pharmacy provider. METHODS: ROI was calculated as total direct savings (TDS) and payback period in years (PY). Formula inputs were costs of implementing a bidirectional interface between the pharmacy and hospice, and costs of telephone/fax transmission of demographic and medication data. The net present value (NPV) adjusted for inflation was used to forecast future cash inflows across three years. RESULTS: Estimated annual savings for unidirectional interface were $7500 and bidirectional savings were $22,500 for a hospice admitting 300 patients/month, assuming $50,000 nurse salary. Hospice nurses were assumed to use wireless phones for transmission of patient admission data. Replacement of voice with interface resulted in estimated savings of $1800 annually. After summing the immediate gains of recovered time inefficiencies and reduced telephone usage, implementation of a pharmacy/hospice interface resulted in TDS of $33,420 annually. The discounted or investment yield rate utilized was 10%. Therefore, while projected total net savings generated by a pharmacy/hospice interface across 3 years equaled $100,260, the total NPV, reflecting the time value of money, was $84,596. The annual ROI represented by the NPV of the pharmacy/hospice interface was 112.79%. The ROI (payback analysis) in which the financial benefits exceed the initial investment would be reached in 0.27 years. CONCLUSIONS: “Low-tech” bias and lack of capital for investment in technology have contributed to a lag in adoption of technological innovations in hospice. Projected ROI for automated data sharing via interface suggested considerable decrease in administrative costs. Hospice administrators could apply the formulas used in this study with their unique data to forecast ROI in their settings.