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1. Introduction

In [1] we have discussed an approach to fractional integration and differentia-
tion in the framework of the Mellin transforov of f: R — C defined by

oo

ML f1(s) ::/us_lf(u)du (s=c+it; c,t €R). (1.1
0

In this approach fractional integratioig‘ﬁu and diﬁerentiatiom)gjL’u of order
a > 0 can best be defined by

M[TG  f168) = (=) MIfIs) (neR; x>0) (1.2)

and
M[D§, , f1() = (u—)*MIfI(s) (neR; x>0), (1.3)

respectively.
The explicit form of the fractional integration of (1.2) is given by

1 [/u\* Ty
(T NN =7 [ (;) (logg) fW0d (0, s
0

whererl” («) is the Euler gamma-function. When=r e N=1,2,...andu =0,
this integral coincides with theth integral of the form

J’ (x)—/dul duz /f(ur)dur

_ 1 logt) ™ -0 (1.5)
_(r—l)!/< g;) fu7 (x> 0). .
0

The fractional version of (1.5),

a—1
(T8 )0 =1 )/( ) f("‘u)d” (x>0; a>0), (1.6)

was introduced by Hadamard [2]; and it is often referred to as Hadamard
fractional integral of ordew > 0, see [3, Section 18.3 and Section 23.1, notes
to Section 18.3]. Thus (1.6) is the particular case of (1.4)fef 0.

In our previous papers [1] and [4] we have studied the more general
operator (1.4) and its modifications of the form
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1 r x\* u a_lf(u)du

a—1 d
(T8, 0@ = F(a) ()( %) f(”x) Y x>0, (18

(T, F) 0 =

and

= JE) () 222 0

with « > 0 and complex € C. By analogy with the classical Riemann—Liouville
and Liouville fractional integrals (see, for example, [3, Sections 2 and 5]) the
integrals (1.4) and (1.8) will be called left-hand-sided Hadamard-type integrals,
while (1.7) and (1.9) are called right-hand-sided.

In [3] we gave conditions for the operators (1.4), (1.7), (1.8), and (1.9) to
be bounded in the spack’ of those complex-valued Lebesgue measurable
functionsf on R for which I fllxr < oo, where

o0 1/p
,d
||f||Xf=</]ucf(u)‘17u) (1< p<oo, ceR) (1.10)
0
and
£ llxee = essgutuﬂf(u)l] (ceR). (1.11)

In particular, where =1/p (1< p < 00), these results hold ih? (R )-space:

o0 1/p
I fll, = </|f(u>|”du> (1< p <00),

I flloo = esssut)f(u)\ (1.12)

The corresponding results were also proved for the operator (1.6) and its
modification

(T2 f)x) =

T\ f)du
@ <|Og ;) . (x>0; a>0). (2.13)
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In [1] we also investigated the connections of the operators (1.4) and (1.7) with
the Liouville fractional integration operator§ f and/® f defined on the whole
real lineR by

17 d
(Iif)(x) = T (xfiu;)llia (xeR; a>0) (1.14)
and
(1 f) () Jdu R a0 (1.15)

T ) w—x)te

respectively; see for example [3, Section 5.1].

In [4] we established the semigroup property and its generalizations for the
operators (1.4), (1.7), (1.8), and (1.9) and gave conditions for the boundedness
in X! of Hadamard-type fractional integration operators, which are more general
than (1.4), (1.7), (1.8), and (1.9); they involve Kummer confluent hypergeometric
functions in the kernels.

The present paper is concerned with the establishment of the Mellin transform
of the Hadamard-type fractional integration operators (1.4), (1.7), (1.8), and (1.9)
in the spacex?, as well as with relations of fractional integration by parts for
these four operators. The corresponding results are also given for the Hadamard
fractional integration operators (1.6) and (1.13). Similar assertions for the above
operators in the spade’ (R;.) are also presented.

The paper is organized as follows. Section 2 contains some results from the
theory of Mellin tranforms in the spac¥’ . Section 3 is devoted to the formulas
for the Mellin transforms inX? of the operators in question. The relations of
fractional integration by parts for these operators(ifirspaces are presented in
Sections 4 and 5.

2. Médlin transformin X’ -space

The Mellin transformM? of f e X? with 1 < p < 2 is defined by

0
(MPf)(s) = |QI—>TO / fwu'tdu (s=c+it; ceR) (2.1)
1/e

in the sense that

-0, (2.2)

lim
QHOO
Lp({c}xiR)

4
(Mpf)(c—l—it)—/f(u)u””_li—u

1/0
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whereL? ({c} x iR) for somec € R is the set of all functiong({c} x iR) with
g(c+it) e LP(R). Itis directly checked similarly to the proof of Lemma 2 in [5]
that if f € X7 N X2, then the Mellin transform\? coincides with the classical
Mellin transform given by (1.1), i.e(M f)(c + it) = (MP f)(c + it) for almost
allr eR.

For a functionf (x) defined almost everywhere ¢ = (0, o) the elemen-
tary operatord/,, t;, N,,,, R andQ are defined as

(Mg f)(x) =x°f(x) (¢ €0, (2.3)
(t; f)(x)=h" f (hx) (heRy, reR), (2.4)
(Na,r f)(x)=lal" f(x?) (aeR, a#0; reR), (2.5)
1./1
(Rf)(x) = —f(—) (2.6)
X X
and
1
(0N (x) = f<;>- (2.7)

Mapping properties of these operators in the spifewere presented in [1,
Lemma 1].

The following assertions giving the Mellin transform of the operators
(2.3)—(2.7) in the spack’ are checked directly.

Lemmal.If c e Randl < p < 2, then the following relations hold for the Mellin
transform of the elementary operators definedh@)—(2.7) for f € X7

(MP M f)(s) = (MPf)(s +©) (Re(s) = ¢ — Re(?)), (2.8)

(MP (1 £))&) =h"(MPF)(s)  (Rels) =c), (2.9)
(MPNoy £)(s) = lal ™ (MP f)G) (Rets) = ac), (2.10)
(MPRf)(s) = (MP f)(L—s) (Re(s —1—c) (2.11)
(MPQF)(s) = (M f) (=) (Re(s) = —c). (2.12)

Remark 1. In case of the spaceg’ with p =1 andp = 2, formulas (2.8), (2.9),
(2.10) and some of their generalizations were given in [6] and [5].
Let Kf =k« f be the Mellin convolution operator defined by

T d
(Kf)(x) = (k» f)(x) =/k<§>f<u>7”. (2.13)
0

There holds the following Mellin convolution theorem.
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Lemma2 Letce Randletl< p <2 If f e X! andk € X2, thenKf € X7
and the Mellin tranform o0f2.13) is given by

(MPEF)(s) = M) ($)(MPf)(s) (s=c+it; 1€R). (2.14)

Proof. If f e X” andk € X2, then by [1, Theorem 1Kf =k « f € X?. The
relation (2.14) was proved in [6, Theorem 3(b)] and [5, Lemma 2.7]fer 1
and p = 2, respectively. For k p < 2 this formula is proved similarly to the
proof of Lemma 2.7 in [5] on the basis of the fact that the characteristic function
fo = fi1jo,p Of the interval1/o, p] belongs to the space’ ﬂX}. O

3. Méllin transform of Hadamar d-typefractional integrals

In this section we obtain formulas for the Mellin transformi? of the
Hadamard -type fractional integrals (1.4), (1.7), (1.8), and (1.9). First we con-
sider f and J¢ , f defined by (1.4) and (1.7). These integrals have
form (2. 13) namely

T d
(T8 f) @) = (ke )(x) = / k1<§)f(u)7u (3.1)
0
and
r d
(T L)) = (k2 * f)(X)Z/kz(;—C)f(u)f, (3.2)
0
where the functiong; (x) andkz(x) are given by
k1(x)=0 (O<x <1), k1(x) = #(Iogx)“ I «x>1, (3.3)
and
xH 1\*7?
ko(x) = (Iog—) O<x <1, kox)=0 (x>1), (3.4)
I'(@) X

respectively.
The folowing assertions give conditions for the functi@aéx) andka(x) to
belong to the spack?.

Lemma3. Leta >0, ux € Candc e R.

(@) k1 € X if and only ifRe(u1) > c.
(b) k2 € X} if and only ifRe(u) > —c.
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Proof. According to (1.10) and (3.3) we have

17 . w1 dx
||k1||x81=m/‘yx M[|09(X)] ‘7
1

00
— 1 /ef[Re(ufc)]uuafldu’
I ()
0

the integral being convergent if and only o > 0 and Réu) > ¢. Thus
assertion (a) follows. Part (b) is proved similarly, which completes the proof of
the lemma. O

The next result yields the Mellin transforms/af(x) andkz(x).

Lemmad4. Leta >0, u € Cands € C.

(@) If Re(u —s) > 0, then

(Mkp)(s) = (u—s)"“. (3.5)
(b) If Re(ie +5) > 0, then
(Mk2)(s) = (1 +5)"%. (3.6)

Proof. Let © € R ands € R be such thajx — s > 0. Using (1.1) and (3.3) and
making the changes of variables= ¢* andu(u — s) = t, we have

(Mk1)(s) = / =t 1[log(x)]* Fdx

o
:L/efu(uﬂ)uafldu:M/e*ftafldr.
I'(a) J I'(a) )

This yields (3.5) according to the definition of the gamma-funtion [7, 1.1(1)].
Part (b) with (3.6) is proved similarly for € R ands € R such thatu + s > 0.
Hence the lemma is proved for rgalands.

For complexu € C ands € C the relations (3.5) and (3.6) stay true by analytic
continuationwhen Rg. —s) > 0 and Réu +s) > 0, respectively. This completes
the proof of Lemma 4.

Using (3.1), (3.3) and applying Lemmas 2, 3(a), and 4(a) we obtain the
following statement involving the Mellin transforms of the Hadamard-type
fractional integrals7; f andJ? , f given by (1.4) and (1.7), respectivelys

Theorem 1. Leta >0, u e C,ceRandl< p <2
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(@) If Re(u) > c and f € XZ, then the Mellin transform [ is given by
(MPIS L)) = —=5)"*(MPf)(s) (s=cH+ir, 1eR). (3.7)

(b) If Re(n) > —c and f € X¢, then the Mellin transform af/® , f is given by
(MPTE L)) =(u+9)"*(MPf)(s) (s=c+it, teR). (3.8)

Proof. According to (3.1) the Hadamard-type opera@&r,uf is a Mellin
convolution operator (2.13) with the kerrigh) = k1(x) of (3.3). By Lemma 3(a)
k1€ XC1 if and only if« > 0 and Réw) > ¢. So we may apply Lemma 2 to (3.1).
Using (2.14) and Lemma 4(b) we obtain foe= ¢ + it, € R,

(MPIG,  F) () = (M) () (MP £)(s) = (u — )" (MP f)(s),

which proves assertion (a). Part (b) is proved similarly on the basis of the
representation (3.2) for the operatéf , f by using Lemmas 2, 3(b), and 4(b):

(MPT®  )(s) = M) (s)(MP f)(s) = (u+ ) *(MPf)(s). O
Corollary 1. Leta >0, p e Cand1l< p < 2.

(a) If Re(n) > 1/p and f € LP(R4), then the Mellin transform gjwf is
given by(3.7).

(b) If Re(n) > —1/p and f € LP(R4), then the Mellin transform of/* , f is
given by(3.8).

Remark 2. Whenao =neN={1,2,...}, « = u andp = 1 formula (3.8) was
established in [6, (8.9)].

Now we obtain formulas for the Mellin transform of the Hadamard-type
fractional integral< 01t fandZ?  f defined by (1.8) and (1.9). These integrals
can be repesented in the forms (3.1) and (3.2), and their Mellin transfoms could
be deduced from Lemma 2 as was carried out above for the Hadamard fractional

integral uf andJ2 , f. We shall use a more simple procedure based on the
connectlons of (1.8), (1 9) with (1.4), (1.7), given by

(Z5+. uf)(x) (j0+,M+1f)(x) (3.9)
and

(T ) @) = (T 1 f) ), (3.10)

respectively, see [1, (4.14)].

Using (3.9) and (3.10) and applying Theorem 1 and Corollary 1 witieing
replaced byt + 1 andu — 1, respectively, we obtain the corresponding statements
for the Hadamard-type fractional integrals (1.8) and (1.9).

Theorem 2. Leta >0, u e C,ceR,and1l < p < 2.
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(@) If Re(u) > ¢ — 1 and f € X7, then the Mellin transform OI"‘ f is given
by

(MpIng’Mf)(s):(y,—i—l—s)_“(/\/lpf)(s) (s=c+it, teR).
(3.11)

(b) If Re(u) > 1—c and f € XZ, then the Mellin transform of/® , f is given
by

(MPT F) ) = (1 —14+5)"(MPf)(s) (s=c+it, 1€R).
(3.12)

Corollary 2. Leta >0, u e Candl < p < 2.

(@) If Re(n) > —1/p’ and f € L?(R;), then the Mellin transform df; 0. uf is
given by(3.11).

(b) If Re(n) > 1/p" and f € LP(R4), then the Mellin transform of®  f is
given by(3.12).

Herep' is conjugate t (1< p < 00)

1 1
=1 (3.13)

- + / ]
P P
with p’ = oo for p =1, while p’ = 1 for p = 0.
When 1 = 0, the corrresponding assertions for the Hadamard fractional
integrals (1.6) and (1.13) also follow from Theorem 1.

Theorem 3. Leta > 0,ceR,and1< p < 2.

(@) If c <0and f € X7, then the Mellin tranform offg, f is given by
(MP TG f)(s) = (=) “(MP f)(s) (s=c+it,teR).  (3.14)

(b) If ¢ > 0and f € X7, then the Mellin tranform of7* f is given by
(MPTf)(s)=s"“(MP f)(s) (s=c+it, teR). (3.15)

Corollary 3. Leta > 0,1 < p < 2and f € L?(Ry), then the Mellin transform
of J f is given by(3.15).

Remark 3. A relation of the form (3.15) was indicated in [8] as an example of the
theory of multipliers based on the Mellin transform, which is different from that
in (2.1)—(2.2).
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4. Relationsof fractional integration by partsin X”

The following formula for fractional integration by parts is known [3, (5.16)]
for the Liouville fractional integration operators (1.14) and (1.15):

e ¢]

/ f(I$8)(x)dx = / )12 f)(x) dx; (4.1)
—00
itisvalidfor f e LP(R)andg e L"(R)ywithp >1,r >1land¥p+1/r =1+a.
Such relations for the Hadamard-type fractional integration operators (1.4),
(1.7), (1.8), and (1.9) have the following forms in succession:

T dx [ d

/ F (T, 8) 0 = = f (T2, F) 0= (4.2)
0

/ (T8 8) () dx = f (T, f) () dx, (4.3)
0

/ FO(TE,8) () dx = / 20 (T, f) () dx, (4.4)
0

and
/f(X)(I&,,tg)(X)xdx=/g(X)(I§,,4f)(x)xdx. (4.5)
0 0

First we prove the resultin (4.2).

Theorem 4. Leta >0andletu e C,ce R, 1< p <oo,andl<r < oo be such
thatRe(u) > —candl/p+1/r > 1.

If fex?andge X" ., then there holds the relatiotd.2) of fractional
integration by parts.

Proof. For “sufficiently good” functionsf and g, (4.2) is verified directly by
using (1.4) and (1.7), changing the order of integration and applying the Dirichlet
formula (for example, see [3, (1.32)]):

r d
/ FO(T2,8) 0
0

T 1 [ x\* u\* L) du |dx
_/f(”[r(oo/(E) ('Ogi) v |
0 X
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/g( )[r( )/( ) < ) 1f(xx)d1duu

=/g(u)(50+,uf)(u)7
0
To prove the theorem in general, it is suffices to show that both sides of (4.2)
represent bounded bilinear functionals f x X" .. Forthe left side of (4.2) we
apply the Hoelder inequality to deduce

< [ ol (T, ) ]
0

<l 1965 gl o - (4.6)

Since ¥p + 1/r > 1, thenp’ > r in accordance with (3.13), and hence if
Re(w) > —c, thenjOJr u € (X", ,C] by Theorem 7(a) in [1], and

||j0+ngHXf/‘ X K1||g||xr7(., (47)

d
() (T 08) )

whereK1 > 0is abound f0[j70Jr pasa member of the seX”_ ., X ] of all linear
mappings fromX”_, into Xfc. Substituting this estimate into (4.6) we obtain

T d
[ 108 )@ | < Kall S, (4.8)
0

Hence the left side of (4.2) represents a bounded bilinear functiongfonXx” ...
Using the Hoelder inequality and Theorem 7(b) in [1] similarly as for
(4.6)—(4.8) we have

9]

d
/ g2, f) 0 =

0

< [ g [ V7] (2 g o ax

0
< ligllxr,

< Kaliglixr Mf e

where K> > 0 is a bound forjﬁ‘,u as a member ofX?, Xg/]. Hence the right

side of (4.2) also represents a bounded bilinear functionakfnx X" ; this
completes the proof of the theorem

Corollary 4. Leta > 0, 1 < p < 00, and letu € C and ¢ € R be such that
Re(n) > —c.
If feXx?andge X_C, then(4.2) holds.
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Corollary 5. Lete > 0and letu € C, 1 < p < oo and1 < r < oo be such that
1/p+1/r >1andRe(un) > —1/p.
If feLP(Ry)andge X_1/ , then(4.2) holds.

Corollary 6. Leta >0 and letu € C and1 < p < oo be such thaRe(u) >
-1/p.

If feLP(Ry)andge X" then(4.2) holds.

=1/p’

Corollary 4 is a particular case of Theorem 4 whea p’. Corollary 5 follows
from Theorem 4 whea = 1/ p, while Corollary 6 wherr = 1/p andr = p’

The assertions in (4.3), (4.4), and (4.5) can be established similarly to the proof
of Theorem 4 by using Hoelder’s inequality and the coresponding results in [1]:
Theorems 7(a) and 8(b), Theorems 8(a) and 7(b), and Theorems 8(a) and 8(b),
respectively. In this respect we have:

Theorem 5. Leta > O0andletu € C,ce R, 1< p<ooandl<r < oo be such
thatl/p+1/r > 1andRe(u) > 1 —c.

If feX? andge X' _,, then there holds the relatio4.3) of fractional
integration by parts.

Theorem 6. Leta > O0andletu € C,ce R, 1< p<ooandl<r < oo be such
thatl/p + 1/r > 1andRe(u) > —c.

If feXx? andg e X} __, then there holds the relatiod.4) of fractional
integration by parts.

Theorem 7. Leta > Oandletu € C,ce R, 1< p<ooandl <r < oo be such
thatl/p+1/r > 1andRe(u) > 1 —c.

If feXx? andg e X} _, then there holds the relatiod.5) of fractional
integration by parts.

The counterparts of Corollaries 4 to 6 are also valid for the relations
(4.3)-(4.5).

Takingu = 0 in (4.2), we obtain the relation of fractional integration by parts
for the Hadamard fractional integration oparators (1.6) and (1.13):

/f(x)(J&g)(X)TxZ/g(X)(Ji"f)(x)Tx. (4.9)
0 0

Indeed, Theorem 4 yields the result for the validity of (4.9).

Theorem 8. Leta > 0and letc e R, 1 < p < oo and1 < r < oo be such that
1/p+1/r>21andc>0.
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If feXx? andge X"
integration by parts.

then there holds the relatiofd.9) of fractional

—c!

Corollary 7. Leta > 0, 1< p <ooandc > 0.
If f e X? andg e X”_, then(4.9) holds.

i
Corollary 8. Leta >0 and let1 < p < oo and 1 < r < oo be such that
1/p+1/r>1.

If feLP(Ry)andge Xil/p, then(4.9) holds.

Corollary 9. Lete > 0andl< p < oo
If feLP(Ry)andg e Xfl/p, then(4.9) holds.

5. Relationsof fractional integration by partsin XZ. Continuation

There hold the formulas, similar to (4.2)—(4.5) and (4.9), of the form

r dx [ d

[ o0 = [ g, nm, (5.1)

0 0

f P78 u8) = [ (T8, , ) dx. (52)
0

/ PO g dx = [ 40 (T5, ) d (5.3)
0

f FET® ug)oxdx = f (T8, f))x dx, (5.4)
0

and

r dx [ d

[ ro@zgm = [ (g e (5.5)

0 0

Conditions for the validity of (5.1) are given by the following result.

Theorem 9. Lete > O0andletu e C,ceR, 1< p <ooandl <r < oo be such
thatl/p +1/r > 1andRe(u) > c.

If feX? andg e X", then there holds the relatiofs.1) of fractional
integration by parts.

—c
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Proof. Theorem 9 is proved similarly to Theorem 4 by applying the Hoelder
inequality and Theorem 7 in [1]. O

Corollary 10. Leta >0, 1 < p < o0 and letu € C and ¢ € R be such that
Re(n) > c.

If £ e X? andg € X", then(5.1) holds.

—c
Corollary 11. Lete > 0and letu € C, 1 < p < oo and1 < r < oo be such that
1/p+1/r >1andRe(n) > 1/p.

If feLP(Ry)andg e X" Liype then(5.1) holds.

Corollary 12. Leta > O and Ietu € Candl < p < oo besuchthaRe(n) > 1/p.
If feLP(Ry)andge X”l/p, then(5.1) holds.
The results in (5.2), (5.3), and (5.4) are proved similarly to the proof
of Theorem 9 by using Hoelder inequality and the following results in [1]:
Theorems 7(b) and 8(a), Theorems 8(b) and 7(a), and Theorem 8, respectively.

Theorem 10.Leta > 0andletu e C,ce R, 1< p <ocandl < r < oo besuch
thatl/p+1/r > 1andRe(u) > ¢ — 1.

If feXx? andge X'_., then there holds the relatio(b.2) of fractional
integration by parts.

Theorem 11. Lete > Oandletu e C,c e R, 1< p <oocandl < r < oo be such
thatl/p+1/r > 1andRe(u) > c.
If f e X! andg e X__, then there holds the relatiof5.3).

Theorem 12. Leta > Oandletu e C,c e R, 1< p <oocandl < r < oo be such
thatl/p+1/r > 1andRe(un) > ¢ — 1.
If fe X! andge X5_ ., then there holds the relatiof®.4).

The counterparts of Corollaries 10 to 12 are also valid for the relations
(5.2)—(5.4).
Whenc = 0, Theorem 10 yields the result for the validity of (5.5).

Theorem 13. Leta > 0and letc e R, 1 < p < oo and1 < r < oo be such that
1/p+1/r>21andc <O.

If fe X! andg e X", then there holds5.5).

Corollary 13. Lete > 0,1 < p < 00, andc < 0.
If feX?andge x” . then(5.5) holds.

—c
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Remark 4. The relations (4.2)—(4.3), (5.1)-(5.2), (4.4)—(4.5), (5.3)—(5.4), (4.9),
and (5.5) could be applied to define the Hadamard-type fractional integration

o o o o o (02 1
operatorsJOﬁH, VAP Ot 7% . Joy, and J2 in the space of generalized

functions(X?”)’ consisting of continuous linear functionals &# equipped with
the norms (1.10) and (1.11).
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