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Biallelic mutations in ATM result in the neurodegenerative syndrome Ataxia-Telangiectasia, while ATM
haploinsufficiency increases the risk of cancer and other diseases. Previous studies revealed low reprogramming
efficiency from A-T and carrier fibroblasts, a barrier to iPS cell-basedmodeling and regeneration. Here, we tested
the feasibility of employing circulating erythroid cells, a compartment no or minimally affected in A-T, for the
generation of A-T and carrier iPS cells. Our results indicate that episomal expression of Yamanaka factors plus
BCL-xL in erythroid cells results in highly efficient iPS cell production in feeder-free, xeno-free conditions. More-
over, A-T iPS cells generated with this protocol maintain long-term replicative potential, stable karyotypes, re-
elongated telomeres and capability to differentiate along the neural lineage in vitro and to form teratomas in
vivo. Finally, we find that haploinsufficiency for ATM does not limit reprogramming from human erythroid
cells or in vivo teratoma formation in the mouse.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ataxia-Telangiectasia (A-T; OMIM208900) is an autosomal recessive
syndrome caused by compound heterozygous null mutations in the
locus encoding the ATM kinase at chromosome 11q22 (Savitsky et al.,
1995) (“classical” A-T). Most A-T patients suffer from severe cerebellar
degeneration due to Purkinje cell death, B and T cell immunodeficiency
and increased cancer predisposition (Boder and Sedgwick, 1958; Lavin,
2008; McKinnon, 2012; Shiloh, 2003). Moreover, haploinsufficiency for
ATM, estimated to occur in 1.5-2% of the populationworldwide (Swift et
al., 1986), increases the risk of cancer and heart disease and decreases
lifespan (Su and Swift, 2000; Swift and Chase, 1983). However, how al-
terations in ATM copy number result in such pleiotropic phenotypes re-
mains incompletely understood.

Nucleoplasmic ATM is activated in response to DNA double-strand
breaks (DSB) to orchestrate the cellular DNA Damage Response (DDR)
and promote cell cycle checkpoint activation and DSB repair (Paull,
2015; Shiloh and Ziv, 2013). In ATM-deficient developing lymphocytes,
broken DNA ends at “programmed” DSBs remain unrepaired or are
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repaired aberrantly, leading to T and B cell immunodeficiency and onco-
genic translocations, respectively (Callen et al., 2007; Franco et al.,
2006). In contrast, the contribution of defective DSB repair to the neuro-
degenerative phenotypes observed in A-T is lesswell understood. In this
context, the finding that ATMmay localize primarily to the cytoplasm in
post-mitotic neurons (Barlow et al., 2000; Oka and Takashima, 1998),
together with its emerging cytoplasmic functions in the regulation of
oxidative stress and metabolism (Ambrose and Gatti, 2013; Paull,
2015; Valentin-Vega et al., 2012; Zhang et al., 2015), may suggest a
mechanism independent of DSB repair (Carlessi et al., 2013). However,
Atm−/− mice (Lavin, 2013) and ATM−/− pigs (Beraldi et al., 2015) do
not manifest ataxia or significant cerebellar pathology, underscoring
the need for novel human cell-based approaches to model
neurodegeneration.

Induced pluripotent stem (iPS) cells derived from human somatic
cells by expression of defined transcription factors represent a powerful
novel system for disease modeling (Park et al., 2008; Takahashi et al.,
2007). Moreover, the recent development of highly efficient genome
editing tools has greatly facilitated the use of corrected iPS cell-derived
products for autologous tissue replacement (Mali and Cheng, 2012).
Most relevant to A-T, preclinical studies have started to define sets of
transcription factors that promote differentiation of mouse ES cells
(Muguruma et al., 2010; Tao et al., 2010) and human ES and iPS cells
(Muguruma et al., 2015; Wang et al., 2015) to Purkinje neurons.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Furthermore, these cells have some engraftment capability (Muguruma
et al., 2010; Wang et al., 2015), suggesting that A-T iPS cells could sim-
ilarly represent a source of neuronal cells for diseasemodeling and ulti-
mately for regenerative therapy.

Previous work has shown that A-T iPS cells generated by expression
of Yamanaka factors in A-T fibroblasts (Fukawatase et al., 2014; Lee et
al., 2013; Nayler et al., 2012) or T cells (Lin et al., 2015) are viable. How-
ever, all fibroblast-based protocols employed integrating viral vectors
and feeder layers (Fukawatase et al., 2014; Lee et al., 2013; Nayler et
al., 2012). Moreover, consistent with impaired reprogramming in fibro-
blasts deficient for other DSB repair factors (Gonzalez et al., 2013;
Tilgner et al., 2013), the efficiency of reprogramming from A-T fibro-
blasts was decreased about 100-fold relative to control fibroblasts
from healthy individuals (Fukawatase et al., 2014; Lee et al., 2013;
Nayler et al., 2012). Furthermore, the efficiency of reprogramming
from A-T carrier fibroblasts was also markedly decreased in one study
(Nayler et al., 2012), suggesting a gene dose effect. Patient-derived cir-
culating T lymphocyteswere recently shown to represent an alternative
to fibroblasts (Lin et al., 2015). However, the fact that they often harbor
clonal pre-leukemic rearrangements involving antigen receptor loci
(Taylor et al., 1996) complicates their use for disease modeling and
therapy. In this context, reprogramming of nonlymphoid mononuclear
cells (Chou et al., 2015; Dowey et al., 2012; Hu et al., 2011) could pro-
vide a robust yet safe approach for A-T patients and carriers. More spe-
cifically, the erythroid compartment is no or minimally affected in A-T
(Boder and Sedgwick, 1958).

Here, we show that A-T and carrier circulating erythroid cells can be
reprogrammed to iPS cells in xeno-free, feeder-free conditions with
high efficiency. Moreover, this protocol results in A-T iPS cells with in-
tact replicative potential, stable karyotypes, re-elongated telomeres
and capability to differentiate along the neural lineage.

2. Materials and Methods

2.1. Patients

A12 year-oldmale diagnosedwith A-T and followed at theA-T Clinic
at Johns Hopkins Hospital and his parents were consented and enrolled
in this study, following protocols approved by the Johns Hopkins Insti-
tutional Review Board (IRB#CR00007000). The proband was known
to be compound heterozygous for frameshift mutations in exon 23
(3369delA, codon 1123) and exon 26 (3754delTATinsCA in codon
1252) of ATM, both resulting in a null allele. Peripheral blood was
drawn by venipuncture and subjected to reprogramming, as described
below. The iPS cell lines generated from this family were designated
as SF-001 (mother), SF-002 (father) and SF-003 (patient). The BC1 iPS
cell line was previously generated in the laboratory of L.C. from bone
marrow (BM) CD34+ cells of an adult healthy donor (Chou et al., 2011).

2.2. Generation of iPS cells from peripheral blood erythroid cells

Reprogramming was done in the laboratory of L.C. as previously de-
scribed (Chou et al., 2015; Dowey et al., 2012). In brief, mononuclear
cells (MNCs) were isolated from PB (15 to 30 mL per donor) using a
Ficoll gradient and cultured for one week in serum-free media contain-
ing Stem Cell Factor (SCF; 255-SC, 50 ng/mL, R&D Systems, Minneapolis
MN), interleukin (IL)-3 (10 ng/mL, product number 200-03,
PreproTech, Rocky Hill NJ) and erythropoietin (2 U/mL; National Drug
Code (NDC) 59,676-303-01), to promote erythroblast expansion, as
we have previously described (Chou et al., 2015). Cells were then
transfected with three episomal plasmids encoding Yamanaka factors
(OCT4, SOX2, KLF4 and c-MYC) and BCL-xL and cultured for two addi-
tional weeks in reprogramming medium. At day 14 after
reprogramming, cells were stained with an antibody to TRA-1-60 and
the total number of positive and negative colonies was counted. To
enrich cultures for iPS cells, TRA1-60+ cells were sorted and pooled
for expansion.
2.3. Cell culture

Human iPS cells were cultured in Essential 8 Medium (Invitrogen
A1517001) in 6-well plates coated with vitronectin (VTN-N; Invitrogen
A14700). For passage, cells were disaggregated using StemPro Accutase
Cell Dissociation Reagent (Thermo Fisher Scientific, #A11105). A ROCK
inhibitor Y-27,632 dihydrochloride (Santa Cruz Biotechnology; sc-
281,642 A) was added during passage at a concentration of 10 μM.
2.4. In vivo iPS cell immunostaining

iPS cells were incubated with antibodies to pluripotency markers
OCT4, SOX2, SSEA4 and TRA-1-60 using the Pluripotent Stem Cells 4-
marker Immunocytochemistry Kit (Life Technologies, A24881), follow-
ing manufacturer's instructions. Images were taken using an EVOS FL
Auto Cell Imaging System.
2.5. Teratoma assay

iPS cells (5-10 million) were mixed 1:1 with Matrigel (Cornig
Matrigel hESC-qualified Matrix, #354,277) to a total volume of 200μlL
and injected into the flanks of NOD scid gamma (NGS) mice subcutane-
ously. After 2-34 weeks, teratomas were harvested, fixed in formalin
and embedded in parafin at the Johns Hopkins Histopathology Core Fa-
cility. Five hematoxilyn/eosin (H/E)-stained sections were analyzed for
lineage.
2.6. Analysis of mutation by sequencing

For confirmation of ATM mutations, we amplified genomic DNA
from iPS cell lines using the following primers: for exon 23, ATM-23F:
5′- TTTGTTCTGGAATATGCTTTGG-3′ and ATM-23R: 5′-
TGGTGAAGTAATTTATGGGATATT CA-3′; for exon 26, ATM-26F: 5′- CTT
TAATGCTGATGGTATTAAAACAG-3′ and ATM-26-R: 5′-
GCCATACCTGTTTTCCCAAT-3′. For mutational analysis of the p53 locus
in line SF-001,we amplified genomicDNA at exons5-8 of p53usingpre-
viously described primers (Rechsteiner et al., 2013): ex5-F: 5′-
CACTTGTGCCCTGACTTTCA-3′; ex5-R: 5′-AACCAGCCCTGTCGTCTCT-3′;
ex6-F: 5′-CAGGCCTCTGATTCCTCACT-3′; ex6-R: 5′-
CTTAACCCCTCCTCCCAGAG-3′; ex7-F; 5′-CCACAGGTCTCCCCAAGG-3′;
ex7-R: 5′-CAGCAGGCCAGTGTGCAG-3′; ex8-F: 5′-
GCCTCTTGCTTCTCTTTTCC-3′; ex8-R: 5′-TAACTGCACCCTTGGTCTCC-3′.
For both, PCR products were purified, cloned into TOPO-TA and
sequenced.
2.7. Plasmid integration analyses

To exclude plasmid integration, genomic DNA was amplified with
primers specific to the common plasmid backbone: EBNA-Fw1: 5′-
ACGATGCTTTCCAAACCACC-3′ and EBNA-Rev1: 5′-
CATCATCATCCGGGTCTCCA-3′. As a control, we amplified the same
DNA with primers to 18S: 18S-F: 5′-GCGAGTACTCAACACCAACATCG-
3′ and 18S-R: 5′-TCAAGTCTCCCCAGCCTTGC-3′.
2.8. Short Tandem Repeat (STR) Profiling

To confirm line identity, Short Tandem Repeat (STR) profiling was
done for all lines at early passage at the Johns Hopkins Genetic Re-
sources Core Facility, using GenePrint10 (Promega).
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2.9. X-ray irradiation

Cells were either mock-irradiated or irradiated using a CIXD X-Ray
irradiator (dual x-ray tube system), Xstrahl Ltd., UK, operating at a
dose rate of 3.93 Gy/min.

2.10. Immunoblotting

iPS cells were resuspended in RIPA buffer supplemented with PMSF,
protease inhibitors and the phosphatase inhibitors sodium fluoride, so-
dium orthovanadate and β-glycerophosphate. One hundred μg of pro-
tein were resolved via SDS-PAGE, transferred to PVDF membranes and
blotted with antibodies to the following proteins: γ-H2AX (clone
JBW301, Millipore); ATM (Millipore, #071,286), phospho-ATM
(Ser1981) (clone 10H11.E12, Millipore), p53 (clone 1C12, Cell Signal-
ing), phospho-p53 (Ser15) (Cell Signaling), KAP1 (Abcam, ab10484)
and phospho-KAP1 (Ser284) (Bethyl Laboratories, A300-767 A). Sec-
ondary antibodies were HRP-linked anti-mouse (Cell Signaling; 7076)
and HRP-linked anti-rabbit IgG (Cell Signaling; 7074). To control for
loading, blots were hybridized with an HRP-conjugated antibody to
GAPDH (clone 14C10; Cell Signaling, #3683S).

2.11. Indirect immunofluorescence

iPS cells were disaggregated into single-cell suspensions were spun
onto slides using a Shandon cytospin. After drying, cells were fixed in
4% paraformaldehyde, permeabilized in 0.3% Triton-X, blocked in 3%
BSA for 20 min and incubated with the following primary antibodies:
phospho-ATM (Ser1981; clone10H11.12; Millipore), γ-H2AX (clone
JBW301; Millipore) and 53BP1 (Novus Biologicals, NB100-34). Second-
ary antibodies were Cy3-conjugated goat anti-mouse IgG (115-166-
071, Jackson ImmunoResearch), Cy3-conjugated goat anti-rabbit IgG
(111-166-003; Jackson Immunoresearch), AlexaFluor 488-conjugated
goat anti-mouse IgG (A-11,029; Invitrogen) and AlexaFluor 488-conju-
gated goat anti-rabbit IgG (A-11,034; Invitrogen). Slides were mounted
in Vectashield with DAPI (Vector Laboratories). Images were acquired
using a Zeiss Axioplan Imager Z.1 microscope equipped with a Zeiss
AxioCam and an HXP120 mercury lamp (Jena GbH) and analyzed
using dedicated software (Zeiss Axiovision Rel4.6). At least 50 cells
per slide were counted.

2.12. Quantification of telomere length by flowFISH

Telomere length was measured in the lab of M.A. on peripheral
blood lymphocytes using flow cytometry and fluorescence in situ hy-
bridization (flowFISH) as previously described (Baerlocher et al.,
2006). The lymphocyte and granulocyte telomere length values were
then plotted on a nomogram derived from a cohort of 192 healthy con-
trols as shown (Alder et al., 2015). Telomere length was measured on
iPS cells similarly using the flowFISH method and comparisons of
were made between cells 12 passages apart.

2.13. Quantification of telomere length by FISH on metaphases

iPS cells were incubated in 0.1 μg/mL colcemid (KaryoMAX, Gibco)
for 4 h, swollen in 0.45% KCl for 30 min at 37 °C and fixed in metha-
nol/acetic acid (3/1). Metaphases were hybridizedwith a telomere pep-
tic nucleic acid (PNA) probe as described and analyzed as described
(Orsburn et al., 2010). For quantitative analysis of telomere length on
metaphases, we employed TFL-Telo software (kind gift of Dr. Peter
Lansdorp). We analyzed 10 metaphases per sample.

2.14. Quantitative RT-PCR for hTERT

For gene expression analyzes of hTERT, 2 mg of total RNA from each
sample was reverse transcribed using the SuperScript® VILO cDNA
Synthesis Kit (Thermo Fisher Scientific Inc. Waltham, MA) and
oligo(dT)20 primers. All qPCR experiments were performed using
ddCt method and Power SYBR Green Master Mix (Applied Biosystems,
Carlsbad, CA) on a CFX384 BioRad Real-Time PCR System (BioRad, Her-
cules, CA). 18S was used as the endogenous control. Primers were:
hTERT-F: 5′-CGCCAGCATCATCAAACCCC-3′, hTERT-R: 5′-
CTGCAGGTGAGCCACGAACT-3′, 18S-F: 5′-GATGGGCGGCGGAAAATAG-
3′; 18S-R: 5′-GCGTGGATTCTGCATAATGGT-3′.

2.15. Karyotyping by G-banding

iPS cell lines SF-002 (P10) and SF-003 (P8) were sent to the WiCell
Genetic Laboratory for metaphase preparation and G banding. For
each line, 20 metaphases were analyzed.

2.16. Gene Expression Analysis

RT2 Profiler™ PCR Array for Human Induced Pluripotent Stem Cells
(PAHS-092Z, Qiagen) was used to analyze level of pluripotency in SF-
003 and control BC1 and SF-002 iPS cell lines. Total RNA was reverse-
transcribed into cDNA using SuperScript® IV Reverse Transcriptase Sys-
tem (Thermo Fisher Scientific Inc. Waltham, MA) and oligo(dT)20
primers. The real time RT-PCR reaction was performed on a CFX384
BioRad Real-Time PCR System (BioRad, Hercules, CA) and data was an-
alyzed using the RT2 Profiler PCR array data analysis platform provided
by the manufacturer (Qiagen, Valencia, CA).

2.17. Differentiation of iPS cells to Neural Stem Cells (NSC)

Human iPS cell cultures at approximately 20-25% confluency were
grown in Pluripotent Stem Cell (PSC) Neural Induction Medium (for
500 mL, 490 mL of Neurobasal Medium and 10 mL of Neural Induction
Supplement; Gibco, A1647801). After 6 days, P0 NSCs were harvested
and expanded in Neural Expansion Medium (for 100 mL, 49 mL of
Neurobasal Medium, 2 mL of Neural Induction Supplement and 49 mL
of Advanced DMEM/F-12 (Gibco, 12,634,010). ROCK inhibitor Y27632
at a concentration of 5 μM was added during the first night. After
4 days, P1 NSC cultures were stained with antibodies to nestin and
SOX1 using the Human Neural Stem Cell Immunocytochemistry Kit
(Gibco, A24354), following manufacturer's instructions. Cells were
counterstained with DAPI and imaged in a Nikon Eclipse TE200
microscope.

2.18. In vivo teratoma formation assay in 4iF-A/Atm mice

The i4F-A mouse strain carrying two transgenes, one expressing
“Yamanaka factors”OCT4, SOX2, KLF4 and c-MYC under a TetO promot-
er and one expressing the transcriptional activator rtTA (Abad et al.,
2013),was obtained from Jackson Laboratories (stock# 023,749). A pre-
viously described strain of Atm+/− mice (Barlow et al., 1996), also in a
C57BL/6 background, was obtained from Jackson Laboratories (stock
008,536). All experiments were done in 2-4 month old mice. Males
and femaleswere used at similar ratios. Teratomaswere induced as pre-
viously described (Abad et al., 2013).Mouse healthwasmonitored daily
and moribund animals were euthanized and necropsied. All animal
studies were conducted in accordance with NIH guidelines and Institu-
tional Animal Care and Use Committee (IACUC)-approved protocols.

2.19. Statistical analysis

Mice survival data was presented in Kaplan Meier curves and ana-
lyzed using the log-rank test. For cellular experiments, data was pre-
sented as the mean and either the standard deviation (s.d.) or the
standard error of the mean (s.e.m.) of at least 3 replicas, as indicated.
Statistical significance was calculated using Student's t-test.
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3. Results

3.1. Generation of A-T and carrier iPS cells from circulating erythroid cells is
highly efficient

To test the feasibility of using patient-derived erythroblasts as a
source of A-T iPS cells, we expressed Yamanaka factors plus BCL-xL in
Fig. 1. Efficient generation of iPS cells fromA-T and carrier erythroid cells. (A) Pedigree of th
parents. The iPS cell lines derived from each individual are indicated. (B) Schematic of the AT
deletion in exon 23 and an indel in exon 26 are indicated. For both alleles, the mutated regio
(PI3K, depicted below). (C-D) To generate iPS cells, peripheral blood was briefly expanded in
the total number of colonies and the number of TRA-1-60+ colonies were quantified. Repres
were confirmed in genomic DNA of iPS cell lines by PCR amplification of target exons followed
regions are shown. BC1 is a control ATM+/+ iPS cell line obtained from the bone marrow of a
with antibodies to pluripotency markers OCT-4, SEEA4, TRA-1-60 and SOX-2 and counterstain
SF-003 iPS cell lines formed teratomas upon injection into the subcutaneous space of NGSmice
in vitro expanded erythroid cells of an A-T patient (see Fig. 1A for pedi-
gree and iPS cell line nomenclature; Fig. 1B for schematic of the ATM
locus and disease-causingmutations). BCL-xLwas added because previ-
ous work in the laboratory of L.C. demonstrated that, in the same exper-
imental conditions employed here, it markedly increases the efficiency
of reprogramming of blood erythroid cells, relative to expression of
Yamanaka factors alone (Chou et al., 2015). In parallel, we
e A-T family enrolled in this study. Bloodwas drawn from amale A-T patient and his carrier
M locus in human chromosome 11q22 and location of the mutations. A single nucleotide
ns encode a poorly characterized region of the protein upstream of the catalytic domain
vitro and transfected with episomal vectors expressing Yamanaka factors. After 14 days,
entative examples of TRA-1-60+ colonies in each culture are shown in D. (E) Mutations
by cloning and sequencing of PCR products. Chromatograms of the mutation-containing
healthy individual. (F-G) To assess pluripotency, the indicated iPS cell lines were stained
ed with DAPI. Representative images of each line are shown in F. In addition, SF-002 and
. Representative images of H/E-stained teratomas sections are shown in G. See also Fig. S1.

Image of Fig. 1
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reprogrammed the blood of the patient's parents, obligate A-T carriers.
At day 14 after one-round transfection, we observed abundant iPS cell
colonies in all three cultures (Fig. 1C for quantification, Fig. 1D for repre-
sentative examples). Importantly, we observed a large number of colo-
nies (n = 343) in the patient-derived culture and most (323/341;
94.7%) were positive for the pluripotency marker TRA-1-60 (Fig. 1C).
Sequencing of gDNA from early-passage patient-derived SF-003iPS
cells confirmed the expected compound heterozygous mutations (Fig.
1E). In addition, sequencing of early-passage SF-001 and SF-002 iPS
cells established that the mutation in exon 23 was of maternal origin,
while themutation in exon 26was paternal (Fig. 1E). Lineswere further
authenticated via STR profiling (Table S1). All lines were pluripotent, as
single cells expressed pluripotencymarkers OCT4, SOX2, SSEA4 (Fig. 1E)
and formed teratomas in vivo (Fig. 1G). Finally, analyses of gDNA from
all iPS cell lines after amplification demonstrated that none of the
three episomal vectors employed for expression of reprogramming fac-
tors had integrated in the iPS cell genome (Fig. S1). We conclude that
reprogramming fromA-T and carrier circulating erythroid cells expand-
ed from a small volume of peripheral blood is not only feasible but high-
ly efficient.

3.2. Erythroid-derived A-T iPS cells recapitulate features of A-T somatic cells

To further validate the patient-derived SF-003 iPS cell line, we first
performed immunoblotting for ATM in extracts of early passage cells
(Fig. 2A). A band of the expected size was detected in the control BC1
and parent-derived SF-001 and SF-002 iPS cell lines, but not in
Fig. 2. Erytroid cell-derived A-T iPS cells recapitulate features of A-T somatic cells. (A) The in
extracts were immunoblotted with the indicated antibodies. (B-C) iPS cells were treated with 2
Permeabilized cells were stained with antibodies to phospho-ATM (Ser1981), γ-H2AX or 53BP
cells per sample. Representative examples are shown in (C). See also Fig. S2.
patient-derived SF-003 cells. Upon exposure to IR, ATM autophospho-
rylates to generate phospho-ATM (Ser1981) (Bakkenist and Kastan,
2003). Accordingly, we observed clear induction of phospho-ATM in ex-
tracts of BC1 or carrier cell lines, but none in extracts from patient-de-
rived SF-003 cells (Fig. 2A). Altogether, these data indicate that the
two frameshift mutations in SF-003 cells result in null alleles, validating
this line as amodel for themost common and severe form of A-T (“clas-
sical A-T”).

In response to IR, ATM promotes activation of the DNA Damage Re-
sponse (DDR) by phosphorylating a large number of substrates, includ-
ing KAP-1 and p53 (Matsuoka et al., 2007). Consistent with previous
findings in somatic cells (Goodarzi et al., 2008), phosphorylation of
KAP1 (to form phospho-KAP1 Ser824) was markedly diminished in A-
T SF-003 cells, while it appeared to be robust in haploinsufficient SF-
001 and SF-002 cells (Fig. 2A). Similarly, we observed IR-induced p53
stabilization and phosphorylation at Ser15 (Canman et al., 1998) in
BC1 and SF-002 cells, but not in patient-derived SF-003 cells (Fig. 2A).
Unexpectedly, we found that carrier SF-001 iPS cells had no detectable
p53 protein in baseline conditions and failed to form phospho-p53
(Ser15) or stabilize p53 after IR (Fig. 2A). In human tumors, p53 is
often inactivated by missense mutations in exons 5 to 8, encoding the
DNA binding domain. (Levine et al., 1991). However, our analyses of
these exons in SF-001 gDNA revealed nomutations (Fig. S2), suggesting
an alternative mechanism.

We next assessed the DDR in A-T iPS cells via analyses of IR-induced
foci (IRIF) composition (Fig. 2B for quantification; Fig. 2C for representa-
tive examples). Consistentwith the immunoblotting data above, SF-003
dicated iPS cell lines were exposed to 2 Gy of IR ormock-irradiated. After one hour, protein
Gy of IR or mock-irradiated and fixed in 4% paraformaldehyde one hour after irradiation.

1 and counterstained with DAPI. Bars in (B) represent the average and s.e.m. for at least 50

Image of Fig. 2
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cells failed to form phospho-ATM (Ser1981) IRIF, while SF-001 and SF-
002 cells showed similar numbers as BC1 cells (14.7 ± 1.3, 12.3 ± 1.1
and 15.3 ± 1.5 foci per cell, respectively; Fig. 2B). In contrast, the num-
ber of γ-H2AX foci was comparable in ATM-deficient and proficient
cells (15.7 ± 1.3, 18.7 ± 1.2, 20.2 ± 1.7 and 24.4 ± 2.1 γ-H2AX foci
per cell for BC1, SF-001, SF-002 and SF-003 cells, respectively). Thisfind-
ing is consistent with previous observations in an independently gener-
ated A-T iPS cell line (Nayler et al., 2012) and previous findings in
somatic cells (Stiff et al., 2004). In this context, DNA-PKcs and ATR are
PI3K-like kinases that compensate for ATM in the formation of γ-
H2AX foci (Stiff et al., 2004). However, IRIF formation was impaired in
A-T iPS cells because IRIF containing 53BP1, an ATM substrate that reg-
ulates DSB repair pathway choice (Bunting et al., 2010), were markedly
decreased after IR in SF-003 relative to control iPS cell lines (14.7 ± 1.3,
12.3 ± 1.1, 13.1 ± 1.2 and 2.8 ± 0.2 53BP1 foci per cell for BC1, SF-001,
SF-002 and SF-003 cells, respectively; Fig. 2B-C). Altogether, these ex-
periments indicate that A-T iPS cells recapitulate biochemical and cellu-
lar abnormalities in the activation of the DDR observed in A-T somatic
cells, while A-T carrier iPS cells retain robust DDR activation.

3.3. Analysis of telomere length and capping function in erythroblast-de-
rived A-T and carrier iPS cells

Telomere shortening with age is accelerated in primary A-T cells
(Metcalfe et al., 1996). Consistent with these previous observations,
flowFISH of lymphocytes and, to a lesser extent, granulocytes from the
blood of the proband showed marked telomere attrition (Fig. S3). In
contrast, telomere length of parental lymphocytes and granulocytes
were within the normal range for their age (Fig. S3).

Telomere length is typically reset upon reprogramming (Suhr et al.,
2009) due to re-expression of telomerase (Takahashi et al., 2007). To
determine whether ATM may be limiting for telomere re-elongation
in this context, we quantified telomere length in A-T and control cells
by flowFISH (Fig. 3A). As expected, telomere length of the established
BC1 iPS cell line remained stable over time (approximate telomere
length, 8 kbp; Fig. 3A). In contrast, quantification of telomere length in
patient-derived SF-003 cells revealed rapid telomere re-elongation
after reprogramming (from 9.6 ± 0.2 kbp at P5 to 16.8 ± 0.3 kbp at
P17; net gain, 7.2 kbp in 12 passages, or approximately 600 bp per pas-
sage; Fig. 3A). Similarly, average telomere length in the paternal carrier
SF-002 line increased from10.7±0.3 at P5 to 16.9±0.4 kbp at P17 (net
Fig. 3. Blood-derivedA-T iPS cells reset telomere length. (A)Quantification of telomere length
in parallel and assayed at P5 and P17. BC1 is a previously established line and was assayed at P4
telomere length in the indicated lines by telomere FISH onmetaphase spreads. SF-002 and SF-00
analyzed. A.u.f., arbitrary units of fluorescence. (C) Quantitative RT-PCR for hTERT in iPS cel
represents the ΔCt relative to 18S RNA. Bars represent the average and standard deviation of 4
gain, 6.2 kbp in 12 passages, or approximately 500 bp per passage; Fig.
3A). In contrast, parallel analysis of the carrier SF-001 iPS cells, deficient
for p53 (Fig. 2A), revealed telomere shortening over time (net loss, 3.8
kbp in 12 passages; Fig. 3A). Because telomere maintenance is required
for long-term self-renewal (Huang et al., 2011; Takahashi et al., 2007),
we considered that SF-001 cells failed to meet criteria for pluripotency
at initial evaluation and this linewas not characterized further (see Dis-
cussion below).

To further characterize telomere function in bona fide iPS cell lines
SF-002 and SF-003, we also examined the integrity of single chromo-
some ends via telomere FISH on metaphase spreads (Fig. 3B). For all
lines, telomere length followed a normal distribution (357.1 ± 45.2,
303.3 ± 39.7 and 342.7 ± 66.6 arbitrary unit of fluorescence (a.u.f.)
for BC1, SF-002 and SF-003 cells, respectively; n = 10 metaphases per
line; Fig. 3B for histograms; Fig. S4 for representative images). Impor-
tantly, we found essentially no chromosome ends lacking telomere sig-
nal (“signal-free ends”) or chromosome end-to-end fusions, two
cytogenetic markers of telomere dysfunction (Kojis et al., 1991; Kojis
et al., 1989) (Fig. 3B, Fig. S2).

The elongated, homogenous telomeres observed in BC1, SF-002 and
SF-003 cells are consistent with telomere maintenance via telomerase.
In support of this notion,we also found that hTERT, the catalytic subunit
of telomerase and limiting factor for enzymatic activity (Bodnar et al.,
1998), is highly expressed in all iPS cell lines (Fig. 3C). As controls,
hTERT was undetectable in human primary fibroblasts (MRC5 cells),
but readily detectable in the telomerase-positive cancer cell line
HEK293T (Fig. 3C).

3.4. Erythroblast-derived A-T and carrier iPS cells have stable karytoypes
and differentiate along the neural lineage

Our initial characterization above established that SF-002 and SF-
003 represent bona fide iPS cell lineswith potential utility tomodel neu-
ronal function in A-T carriers and patients, respectively. To further vali-
date these lines for preclinical studies, we first analyzed their
karyotypes by G banding. As shown in Fig. 4A, both lines were euploid
and lacked rearrangements, similar to previously reported fibroblast-
or T cell-derived A-T iPS cell lines (Fukawatase et al., 2014; Lee et al.,
2013; Lin et al., 2015; Nayler et al., 2012). To determine whether ATM
is required for long-term maintenance of pluripotency, we analyzed
gene expression at passage 17, after approximately 6 months in
in the indicated iPS cell lines byflowFISH. SF-001, SF-002 and SF-003 lineswere generated
5 and P58. Data are represented as mean and s.e.m. of three replicates. (B) Distribution of
3 iPS cellswere assayed at P8 andBC1was assayedat P48. For all lines, 10metaphaseswere
l lines BC1, SF-002 and SF-003 and control MRC5 and HEK293T cells. mRNA expression
replicates. See also Figs. S3 and S4.

Image of Fig. 3


Fig. 4. A-T and carrier iPS cell linesmaintain long-termpluripotency anddifferentiate along the neural lineage. (A)Metaphases spreads fromSF-002 cells at P10 and SF-003 cells at P8
were karyotyped byG-banding. A representative example of 20metaphases analyzed is shown. (B-D)Gene expression analyses of BC1, SF-002 and SF-003 cells using theRT2 Profiler Array
for Human Induced Pluripotent StemCells, enriched for pluripotency genes. Fig. 2B shows that the distribution of Ct values for all tested genes is similar for all iPS cell lines. The normalized
expression of individual genes for lines SF-002 (C) and SF-003 (D) was plotted against the normalized expression of the same genes for the control BC1 line. (E-F) BC1, SF-002 and SF-003
cells were differentiated to NSCs using Neural InductionMedia, briefly expanded, stained with antibodies to Nestin and SOX1 and counterstained with DAPI. The experimental protocol is
summarized in (E) and representative images are shown in (F).
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continuous culture, using a commercial PCR Array enriched for
pluripotency genes (Fig. 4B-D). We found that pluripotency genes in
the array were highly expressed in all lines, in contrast to the low levels
of expression of genes that mark differentiation (Fig. 4B for distribution
of expression levels (Ct values) per iPS cell line; Fig. 4C-D for expression
of individual genes in SF-002 and SF-003 cells relative to expression of
the same gene in BC1 cells, respectively).

Finally, we employed a commercially available modification of the
dual SMAD inhibition protocol originally developed by the Studer Lab
(Chambers et al., 2009) to assess the ability to differentiate to the neural
lineage. In agreement with our finding of ectodermal tissue in iPS cell
line-derived teratomas (Fig. 1G), all BC1, SF-002 and SF-003 cells readily
differentiated to neural stem cells, as determined by expression of the
intermediate filament protein nestin and the transcription factor
SOX1, twowidely employed neural stem cell (NSC)markers (Fig. 4E-F).

3.5. Effect of Atm haploinsufficiency on in vivo teratoma formation

In contrast to a previous report usingfibroblasts (Nayler et al., 2012),
haploinsufficiency for ATM does not appear to be a significant barrier to
reprogramming in our conditions (see Fig. 1 above). However, our ex-
perimental system is not amenable to a standard colony-based
quantitation assay. Moreover, individual genetic heterogeneity may
mask an ATM gene dose effect. To examine the effect of ATM
haploinsufficiency in a homogeneous genetic background, we took ad-
vantage of a recently developed C57BL/6 transgenic mouse that ex-
presses Yamanaka factors ubiquitously upon addition of doxycycline
to the drinkingwater (4iFmice) (Abad et al., 2013). Becausemost doxy-
cycline-treated i4F mice succumb to teratomas during or within a short
period of time after drug administration, survival can be used as an end-
point to assess the efficiency of reprogramming in different mutants.

We bred i4F mice to Atm+/− mice to generate a colony of 4iF/
Atm+/− mice (n = 12) and control 4iF/Atm+/+ littermates (n = 8)
(see Fig. 5A for breeding scheme). Atm−/− control mice were not in-
cluded in this study because they are highly prone to thymic lympho-
mas at a young age. At the end of a 10-week observation period, 6/8
4iF/Atm+/+ and 7/12 4iF/Atm+/− mice had succumbed to teratomas
(Fig. 5B for Kaplan Meier curve; Fig. 5C for examples of teratomas in
necropsies of moribund animals). This survival difference was not sta-
tistically significant (log rank test, p = 0.77). In addition, necropsies of
all surviving mice revealed teratomas in the abdomen of one 4iF/
Atm+/+ and one 4iF/Atm+/−mice. Overall, therewas also no significant
difference in the number, size or distribution of teratomas between the
two groups.

Image of Fig. 4


Fig. 5. Effect of ATM haploinsufficiency on teratoma formation in vivo. (A) Schematic of breedings for the generation of i4F mice with one or two copies of Atm. Upon exposure to
doxycycline in the drinking water, survival was monitored as the endpoint for in vivo teratoma formation. (B) Kaplan Meier curve for cohorts of i4F/Atm+/+ (n = 8) and i4F/Atm+/−

(n = 12) mice. Doxycycline was administered in the drinking water during the first 2.5 weeks of the experiments. (C) Representative necropsies of moribund i4F/Atm+/+ and i4F/
Atm+/− mice. Yellow arrows point to teratomas.
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4. Discussion

A-T, a monogenic disease presenting with multi-organ dysfunction
early in childhood, is a candidate for regenerative medicine after gene
defect correction. However, previous strategies to generate iPS cells
from patient-derived somatic cells were hampered by very low
reprogramming efficiency (fibroblasts) or possible contamination of
the source with premalignant cells (T cells). Here, we show that circu-
lating erythroid cells provide a robust and safe alternative for the gener-
ation of A-T iPS cells. Moreover, we find that reprogramming corrects
defects in chromosomal integrity and telomere length observed in A-T
somatic cells, suggesting that patient-derived iPS cells rather than so-
matic cells represent the best substrate for gene defect correction. This
observation is not unique to A-T because a previous report demonstrat-
ed that the abnormal ring chromosome 17 causing Miller Dieker Syn-
drome (MDS) is also corrected by reprogramming (Bershteyn et al.,
2014).

The use of patient peripheral blood for reprogramming has several
advantages. First, the small volume of blood (30 cm3 or less) employed
here can be obtained fromvirtually any patient by venipuncture, obviat-
ing the need for specialized medical care and the discomfort associated
to skin biopsies. Indeed, frozen material stored at a blood bank can be
used. Secondly, the addition of BCl-xL to Yamanaka factorsmarkedly in-
creases the efficiency of reprogramming over previous findings using
Yamanaka factors alone and fibroblasts (Fukawatase et al., 2014; Lee
et al., 2013; Nayler et al., 2012). Importantly, the A-T line generated
here has a normal karyotype, indicating that improved reprogramming
efficiency does not result from unchecked proliferation of cells harbor-
ing chromosomal aberrations. Thirdly, our protocol takes advantage of
the fact that, unlike the lymphoid compartment, the erythroid compart-
ment is noorminimally affected in A-T,minimizingpotential carry-over
of abnormalities from parental cells. Finally, unlike most previous stud-
ies that employed feeder layers and/or viral vectors (Fukawatase et al.,
2014; Lee et al., 2013; Lin et al., 2015; Nayler et al., 2012), our experi-
ments were conducted using our previously described xeno-free epi-
somal-based protocol (Chou et al., 2015), further supporting their
clinical applicability.
Ourwork has also helped clarify the role for ATM in human cell telo-
mere maintenance specifically in the context of reprogramming. The
observations of accelerated telomere shortening (Metcalfe et al., 1996;
Xia et al., 1996) and spontaneous telomere fusions in primary (Kojis et
al., 1989, 1991) and transformed (Metcalfe et al., 1996; Pandita et al.,
1995) somatic A-T cells led to the proposal that A-T is, at least in part,
a syndrome of telomere dysfunction. Moreover, recent data indicates
that ATM is required for telomerase-dependent telomere re-elongation
is some contexts (Lee et al., 2015; Tong et al., 2015). In contrast, we find
here that erythroblast-derived A-T iPS cells re-elongate telomeres to a
length similar to that observed in human ES cells (Amit et al., 2000;
Niida et al., 2000; Rosler et al., 2004), similar to a previous report on fi-
broblast-derived A-T iPS cells (Fukawatase et al., 2014). This observa-
tion has direct clinical relevance to regenerative medicine, as gene
defect correction in the iPS cells would then restore telomere balance
in their derived products. Consistent with previous findings in other
iPS cell lines (Feng et al., 2010; Suhr et al., 2009; Vaziri et al., 2010),
one carrier iPS cell line failed tomaintain telomeres over time. These ob-
servations underscore the need to evaluate telomere dynamics in all
newly generated iPS cell lines to assert pluripotency.

Finally, our work has also examined the effect of ATM gene dose by
generating and analyzing an A-T carrier cell line from the patient's fa-
ther. These experiments were motivated by the previous observation
that, when using fibroblasts as a source, the efficiency of
reprogramming in the mother of a patient was markedly decreased
(Nayler et al., 2012). Furthermore, A-T carriers show decreased lifespan
due to increased risk of cancer and cardiovascular disease (Su and Swift,
2000). Although our protocol does not allow for quantitative analysis of
the reprogramming efficiency, we observed large numbers (over 700)
of TRA-1-60+ colonies in carrier cultures, suggesting no major defect
in our experimental conditions. Furthermore, A-T carrier cells were
comparable to a control iPS cell line generated from a healthy individual
in all parameters assessed here, including activation of theDNADamage
Response, telomere maintenance and ability to maintain pluripotency
and differentiate to the neural lineage. Finally, althoughmurine cells de-
ficient for ATM show severe reprogramming defects (Marion et al.,
2009), we observed comparable in vivo teratoma formation in Atm+/−

Image of Fig. 5
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and control wild-type mice. Altogether, these findings indicate that, at
least in some experimental conditions, heterozygocity for ATM does
not represent a barrier to reprogramming.
5. Conclusions

Our results indicate that A-T erythroid cells represent a robust, safe
source of iPS cells for disease modeling. Moreover, the findings here
that A-T iPS cells have normal karyotype, re-elongate telomeres to em-
bryonic-like length, maintain pluripotency with extended passage and
differentiate along the neural lineage suggest that these cellsmay repre-
sent the optimal substrate for gene defect correction, towards the devel-
opment of regenerative therapies for A-T. Finally, human and murine
somatic cells from A-T carriers can be reprogrammed efficiently in the
conditions tested here.
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