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1. INTRODUCTION

A d x d matrix X over a field F is said to be cyclic if my(t) = cx (),
where my(t) is its minimal polynomial and cy(¢) is its characteristic poly-
nomial det(z/ — X). This condition is equivalent to requiring the vector
space F¢ of 1 x d row vectors over F to be cyclic as an F(X)-module. In a
previous paper [7] we showed that most d x d matrices over a finite field F
are cyclic. The present work is a continuation of that. Its aim is to obtain
good lower bounds on the proportion of cyclic matrices in the general lin-
ear group GL(d, F) and in various important subgroups of it. Although our
motivation originated in our work on the design and analysis of algorithms
for computing efficiently in matrix groups, the results have turned out to
be of independent interest.

Define Cyc(d, g) to be the set of cyclic matrices in M(d, ¢), and
define Noncyc(d, ¢q) to be the set of non-cyclic matrices. The proportion
|Noncyc(d, q)| + g% may be naturally thought of as the probability that a
randomly chosen d x d matrix is not cyclic. In [7] we proved that

Prob[ X € M(d, q) is non-cyclic] = ¢~ + O(¢™*),
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and that Noncyc(d, g) is an algebraic subvariety of codimension 3 in
M(d, g). Since many (though certainly not all) of the groups G with which
we are concerned are close to being algebraic varieties (in the sense of
being the points defined over F of an algebraic variety defined over the
prime field), it is quite natural to expect that G N Noncyc(d, ¢g) should be
a subvariety of codimension 3 in G. There is no great difficulty dealing
with GL(d, F) itself since it is the complement of the affine algebraic vari-
ety given by the polynomial equation det(X) = 0. For other groups it is
rather harder to turn geometric intuition into acceptable proof. Indeed,
for some of the groups this intuition is misleading—for example, if G is an
orthogonal group then G N Noncyc(d, g) is a subvariety of codimension 1.
Moreover, some of the estimates that one obtains by geometric methods,
although asymptotically very good as g — oo, tend to depend on d (com-
pare [7, Sect. 7, first paragraph]), while others are inadequate for practical
purposes when ¢ is small (see, for example, [5]). Therefore in this paper,
as in [7], we shall proceed more directly, using elementary linear algebra.

For ease of reference we shall refer to a group G as being a classical
group associated with the dimension d and the field-size q if one of the
following holds:

SL(d, ) < G<GL(d, q),

SU(d, q) < G<GU(d, q),
Sp(d, q) < G <GSp(d, q),
0°(d, q) < G <GO°(d, q).

Here the “general unitary group” GU(d, q) is the subgroup of GL(d, ¢*)
consisting of all matrices that preserve a given non-degenerate hermi-
tian form up to scalar multiplication. The “general symplectic group”
GSp(d, q) and the “general orthogonal group” GO?®(d, q) are the sub-
groups of GL(d, q) consisting of all matrices that preserve a given
symplectic form, or non-degenerate quadratic form, respectively, up to
scalar multiplication. Our main results can be summarised as follows:
THEOREM. If G is a classical subgroup of GL(d, q) and
v(G) := Prob[ X e G is non-cyclic] = |G N Noncyc(d, q)| + |G|,
then
q3+0(q™) if d>3 and SL(d,q)<G<GL(d,q),
g +0(qg if d>3 and SU(d,q)<G<GU(d,q),
(1+4(G))q3+0(q™) if d is even, d>4, and
Sp(d,q)<G<GSp(d, q),
15(G)qg ' +0(¢7?) if d is even, d>4, and
0°(d,q)<G<GO°(d,q),
g '+0(qg7?) if d and q are odd and
0(d.q)<G<GO(d,q),

r(G)<
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where the constants implicit in the “Oh” notation depend on the type of the
group G, but not on d.

We emphasize that this is only a summary of our main results. In par-
ticular, for the symplectic case #(G) is defined in Section 7 and can take
values 1 or 2. For example, when d is even and q is odd, #(Sp(d, q)) =2
and #(GSp(d, q)) = 1. For the orthogonal case in even dimensions s(G)
is defined in Section 8 and can take values 1, 2, or 4 if ¢g is odd, and
values 1 or 2 if g is even. For example, when d is even and ¢ is odd,
s(Q%(d, q)) = s(SO°(d, q)) = 4, s(O%(d, q)) = 2, and s(GO*(d, q)) = 1.
Precise results are formulated as Theorem 3.1 for the general linear case,
Theorem 6.1 for the unitary case, Theorem 7.1 for the symplectic case,
Theorem 8.1 for even-dimensional orthogonal groups, and Theorem 9.1
for odd-dimensional orthogonal groups. It turns out that small-dimensional
groups behave a little differently, interestingly so, from the general case.
For the general linear, unitary, and symplectic groups we discuss this point
within the relevant section, but small-dimensional orthogonal groups are
treated separately in Section 10.

In [7] we gave both upper and lower bounds for the proportion of non-
cyclic matrices. We have decided to restrict ourselves to upper bounds here.
To have included discussion and proofs of appropriate lower bounds would
have added too much to the length of the paper. Besides, it is only the
upper bounds that are needed for the applications we have in mind. In
earlier stages of this work we were unable to prove usable bounds for the
probabilities in some of the groups over small fields, especially the orthog-
onal groups. We have taken care to ensure that the bounds we now give
are realistic. We are confident that they are good ones, not merely in the
sense that they are of the right order of magnitude with the correct coef-
ficients for the leading terms, but also in the sense that they can actually
be used—for example, in the design and analysis of algorithms [9]. Small
adjustments of the reasoning will also give the proportions of non-separable
matrices, just as they do in [7], and they would give the proportions of non-
semisimple matrices also. But again, for reasons of economy, we have left
those out. The interested reader should have no difficulty adapting our
methods to derive good estimates. Upper bounds for the probabilities of
non-semisimple elements are given by Guralnick and Liibeck in [5] but
their method does not give usable estimates when the field size g is small.

An alternative approach to the study of these probabilities uses gener-
ating functions. This method is used by Wall in [12], by Fulman in [2, 3],
and by Fulman et al. in [4]. It gives far more precise results than ours, but
unfortunately only for the groups GL(d, q), U(d, q), Sp(d, q), O°(d, q)
themselves and not for any others of the related groups. For the applica-
tions to the analysis of algorithms in computational algebra that we have
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in mind, groups such as SL(d, gq), SU(d, q), GSp(d, q), SO®(d, q), Q4(d, q)
are equally important, but it is not yet known whether, or how, the gener-
ating function methods might be adapted to give good results for them.

We thank Tim Wall and Jason Fulman for their interest and encour-
agement and many illuminating conversations. We thank Alice Niemeyer
for explicit computations in certain small-dimensional orthogonal groups
which both guided our thinking for Sections 8-10 and confirmed some of
the results of Section 10. We also thank the Australian Research Coun-
cil, the Engineering and Physical Sciences Research Council of the United
Kingdom, and the Royal Society of London for grants which facilitated
various stages of our collaboration on this project.

2. CYCLIC MATRICES, CYCLIC VECTORS, AND
SOME INEQUALITIES

For the reader’s convenience we recall here some of the basic facts
about cyclic matrices. A fuller account can be found in [7]. Given a matrix
X € M(d, F) we define F(X) to be the subalgebra of M(d, F) generated by
X, and we define Cy;(X) to be its centraliser {Y € M(d, F) | XY = YX}.
Thus F(X) consists of all polynomials in X, and F(X) < Cy;(X). The vec-
tor space V' of 1 x d row vectors over F is an F (X )-module in a natural way,
and may also be thought of as a module for the polynomial ring F[¢] (with
t acting as right multiplication by X). A cyclic vector for X is an element
vy € V such that the elements vy, vy X, Vo X2, ... span V. Such an element
exists if and only if V' is cyclic as F(X)-module (or as F[t]-module). As
indicated in Section 1, we call X cyclic if cy(¢) = my(¢). In fact X is cyclic
in this sense if and only if there exists a cyclic vector for X in V.

THEOREM 2.1. For X € M(d, F) the following are equivalent:
(1) cx(t) = mx(2);
(2) there is a cyclic vector for X in V;
() C(X)=F({X);
(4) dimF(X)=d;
(5) dimC(X)=d.
Let F be a finite field of order g. We will need the following upper

bounds for the number of monic irreducible polynomials of a given degree

over F.
LeMMA 2.2. If n, := n,(q) := the number of monic irreducible polyno-
mials of degree r over F, then ny = q, n, = 3(¢* — q), n3 = 2(¢* — q),

-3
ny = X(q* — ¢*), and in general n, <(q" — q)/r for r >2.
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As in [7] there are some elementary estimates (depending upon the fact
that g > 2) that we shall sometimes use without comment. Examples are

m+k n 1 2

n
1
g7 <2¢7"<qg " and — < < .23
r:Zm r:zm rq r:Zm r(qr - 1) mq™ ( )

3. THE GENERAL LINEAR GROUP

If G is a group such that SL(d, F) < G <GL(d, F) then it is a normal
subgroup of GL(d, F) and there is a subgroup D of the multiplicative group
F* such that G = {X € GL(d, F) | det X € D}. Note that

_1y_ D
Gl =(¢' - D" - =) (¢ = ¢ 1)ﬁ-
In [7, Theorem 4.1] we showed that ¢~¢’|Noncye(d, q)| < ((¢* — 1) x

(g — 1))71. The proportion of cyclic matrices in any group containing
SL(d, q) is not much different from this.

THEOREM 3.1.  Suppose that d >3 and that SL(d, q) < G < GL(d, q).
Define v(G) := |G N Noncye(d, q)|/|G|, so that v(G) is the probability that
a random matrix in G is not cyclic. Then v(G) < 1/q(q* —1).

Remark 3.2. 1If d = 2 then G N Noncyc(2, q) is the set of scalar matrices
in G. For SL(2, q) < G < GL(2, q) define

1 if (¢ —1)/|D| is odd,
t(G) :=
(@) {2 otherwise.

Then there are t(G)|D| scalar matrices in G and, since |G| = q(q* — 1)|D],
we find that v(G) = t(G)/q(q* — 1) in this case.

Proof of Theorem 3.1. A square matrix X is non-cyclic if and only if
there exists a monic irreducible polynomial f(¢) with the property that
dim Ker f(X) >2deg f. For each r in the range 1<r< %d we estimate
the number of quadruples (f, V;, X, X), in which

f is an irreducible monic polynomial of degree r and f(0) # 0,
V; is a 2r-dimensional subspace of V,

X, € GL(}) and f(X,) =0, and

X e GL(V), XV, = X, and det(X) € D.
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First we count those quadruples that occur when r = 1. In this case f(¢) =
t — A for some A € F*. Thus the number of possible f is ¢ — 1. The number
of choices for 1 is

(¢ —1)(q? - q)
(@ -1 —-q)

Given f and Vj, in this case X|, is uniquely determined (it has to be Al,).
Since d >3 the number of extensions X of X, to an appropriate mapping
of the whole of V' is

G - ¢ - @) (¢ - qd—l);%l

T
Thus for r = 1 the number of quadruples is

d d_ ,d-1

(q-1nx 9 =D -q7) D
(¢°> = 1D(¢* = 9) q-1

which is |G|/q(q* — 1).

Next fix r in the range 2<r<%d. By Lemma 2.2, the number of
possible f is at most (¢" — g)/r. The number of choices for 1} is
(¢¢ —1)---(q¢* — ¢*7")/|GL(2r, q)|. The matrix of the linear transfor-
mation X, is conjugate to X; ® I,, where X is the companion matrix
of f. Thus the number of possible X is |GL(2r, q) : Cor(2,q)(Xf ® I)],
which is |GL(2r, q)|/|GL(2, ¢")|. The number of extensions X of X|, to the
whole of V' is then at most (¢¢ — ¢*)---(q% — q¢*~') x |D|/(qg — 1) (it will
be exactly this if 2r < d or if |D| = g — 1, but could be smaller if 2r = d
and D is a proper subgroup of F*). Multiplying these numbers together
and reorganizing the result in an obvious way we get that the number of
quadruples is at most

9 —q 1
|G| x X .
r (@ =) —q)

One checks easily that
q9 —q L
(@ =1 —q) g
Thus if 2<r < %d then the number of quadruples is less than |G|/rg> .

Since every non-cyclic matrix appears in at least one quadruple we find
that

|G N Noncyc(d, q)| < number of quadruples
|G - 1G]

1 1 1 1

<—+ — <=+ —.
q(q* — 1) Kgm rq  q(q*—1)  ¢°

v(G) =
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Matrices that have an eigenspace of dimension > 3 will have been counted
at least ¢*> + ¢ + 1 times by this method. An argument which we leave to
the reader because it is very similar to one explained in [7, Sect. 4] yields
that the upper bound can be reduced by more than ¢~ on this account.
Therefore v(G) < 1/(q*> — q) as our theorem states.

4. GENERALITIES ABOUT CLASSICAL GROUPS

The theory of classical groups is well known but conventions vary and so
we begin by specifying the notation and terminology that we shall use. We
need, moreover, to extend some of Wall’s theory of conjugacy classes [11]
from the classical groups themselves to their “general” versions.

4.1. Forms and Isometries

For general theory of the classical groups the reader is referred to
[1, 6, 10]. As in previous sections V' = F¢, the space of 1 x d row vec-
tors. We use ¢ to denote a sesquilinear or bilinear form on V, and Q
to denote a quadratic form. When dealing with quadratic forms Q we
maintain the convention that ¢ is the polar form of Q, that is, that
O(u+v) = Q(u) + O(v) + ¢(u, v). For any sesquilinear form with respect
to an automorphism o of F there is a d x d matrix A over F such
that ¢(u,v) = uA(v?)"; for a bilinear form ¢ on V' the equation is
o(u, v) = uAv'; for a quadratic form Q it is Q(u) = uAu". Moreover,
¢ or Q is non-degenerate if and only if the corresponding matrix A4
is non-singular. We shall often identify forms with their corresponding
matrices.

Matrices X in GL(d, F) act on V' by right multiplication. This gives
an action of GL(d, F) on the sets of sesquilinear, bilinear and quadratic
forms defined by the formulae ¢*(u, v) = e(uX !, vX 1) and Q¥ (u) =
QO(uX"). Forms ¢ and ¢, or Q and Q' are said to be equivalent or
isometric if they lie in the same orbit. The corresponding matrix equation
is A = XA'X". An invertible linear transformation T between subspaces
U,, U, of V is called an isometry if o(u, v) = o(uT, vT), or Q(u) = Q(uT),
respectively, for all u, v € U;.

Let ® (either ¢ or Q) be a non-degenerate sesquilinear, alternating bilin-
ear, or quadratic form on V. We shall speak of V', or of the pair (V, ®), as
being a unitary space, a symplectic space, or an orthogonal space, as the case
may be. The isometry group Aut(V, ®), usually written simply as Aut(}),
will be one of the classical groups U(V'), Sp(V'), O?(V) according to the
type of ®. It is well known that if X € Sp(}) then det X = 1. The special
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unitary and special orthogonal groups are defined by
SUWV):={X e U(V) | det X = 1},
SO(V):={X e O(V) | detX =1}.

In the orthogonal case we define (1(}') to be the commutator subgroup of
O(V). The reader should beware: notational conventions in respect of the
orthogonal groups differ. Our usage follows that of Aschbacher [1, p. 89]
and is different from that used by Taylor [10, p. 160].

4.2. Similarities

The notion of isometry needs to be extended in the following way. An
invertible linear transformation 7: U; — U, between subspaces U; and U,
of IV will be said to be a similarity if there is a multiplier (sometimes called a
scaling factor) w € F such that o(uT, vT) = we(u, v), or Q(uT) = nQ(u),
respectively, for all u, v € U;. Define the similarity group

A(V) :=A{g € GL(V) | ®(wg) = n(8)P(w)}

(where w denotes a pair (u, v) of vectors in the bilinear and unitary cases,
a single vector if ® is a quadratic form). The groups GU(V), GSp(V),
GO?(V) (sometimes known as the “conformal” groups) are defined to be
the similarity groups A(}V') when (V; ®) is a unitary, symplectic, or orthogo-
nal space, respectively. The map g > w(g) from the similarity group to F*
is a homomorphism whose kernel is the isometry group Aut(}). It is often
convenient to define )(}") to be SU(V') and Sp(}V) in the unitary and sym-
plectic cases (compare [6, Chap. 2]) so that always () = Aut(})) and
our interest is in groups G such that Q(V) < G <A(V).

LEmMMA 4.2.1. Let V be a unitary, symplectic, or orthogonal space and
let w:A(V) — F* be its multiplier map. Then w is surjective except when
A(V) = GO(V) and both d, q are odd, in which case Im u = {a® | a € F*}.

Sketch proof. The surjectivity of u can be checked very quickly when
V' is a two-dimensional symplectic or orthogonal space, or when V' is a
one-dimensional unitary space. In general, an even-dimensional symplec-
tic or orthogonal space is an orthogonal direct sum of non-degenerate
two-dimensional subspaces, and an arbitrary unitary space is an orthogo-
nal direct sum of non-degenerate one-dimensional subspaces, and so the
surjectivity of the multiplier map follows easily.

Suppose that both g and d are odd, and let Q be an orthogonal form
on V with matrix A. If X € GO(V') then XAX" = u(X)A. Therefore
w(X)? = det(X)?, and since d is odd, u(X) must be a square in F*. On
the other hand, if b is a square in F*, say b = a?, then the scalar matrix al
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is a member of GO(V) that has multiplier b. Thus if both d and g are odd
then Impu = {a® | a € F*}.

A well-known theorem of Witt [1, p. 81; 10, p. 57] states that if U,, U,
are subspaces of V' that meet the radical V= trivially, then every isom-
etry U; — U, may be extended to an automorphism of (V] ¢). Its proof
needs only very small adjustment to give the following lemma (compare
[6, Lemma 4.1.1]).

LEMMA 4.2.2. Let ® be a (possibly degenerate) sesquilinear, alternating
bilinear, or quadratic form on the vector space V, let U,, U, be subspaces of
V such that Uy NV+ = U, NV = {0}, and let u € F*. Suppose that w is a
square if ® is a quadratic form Q and dim(V') is odd. Then every similarity
T:U, — U, with scaling factor p can be extended to a similarity X:V — V
with scaling factor .

We shall also need the following variant of Witt’s theorem.

LemMmA 4.2.3.  Let (V, @) be a unitary, symplectic, or orthogonal space and
define
1 if ® is unitary,
k=10 if ®is symplectic,
2 if ® is orthogonal.
(1) If U is a non-degenerate subspace of V of dimension k then
Aut(U).Q(V) = Aut(V).
(2) If U a subspace of V' of rank m and dimension n, where 2n — m
<d — k, then every isometry T of U may be extended to an isometry of V'
that lies in Q(V").

Proof. In (1) we have identified Aut(U) in the natural way with the sub-
group {I;.} x Aut(U) of Aut(V'). The fact that this group is mapped sur-
jectively by the natural homomorphism Aut(})') — Aut(V')/Q(}) is almost
trivial in the unitary case, trivial in the symplectic case, and it follows easily
in the orthogonal case from Taylor’s description [10, p. 163] of Q(V).

For (2) we use the fact that a subspace U of rank m and dimension
n is contained in a non-degenerate subspace of dimension 2n — m. (Let
U, be the radical of U, and V|, := Uy. Then dimU, = n — m, V, has
codimension n — m, and there is a subspace U; of dimension n — m that
complements V4 in V. Define U* := U + U,. It is easy to see that U*
is non-degenerate, and of course dim U* = 2n — m since U <V},.) Then,
since 2n — m < d — k, there is a non-degenerate subspace W of IV such that
U< W and dim(W) = d — k. By Witt’s theorem, an isometry T of U can
be extended to an isometry of W and then to an isometry 7% of V' fixing W
setwise. By (1) we may choose Y € Aut(W+) (fixing W pointwise) so that
Y has the same image as T* in Aut(V)/Q(V). If X := T*Y ! then X lies
in (V') and of course X is an extension of T as required.
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4.3. The General Unitary Group

Recall that in the case of the unitary groups we take F to be F.. Define
o to be the automorphism of F of order 2 and F, := Fix(o), so that F
may be identified with F, and o is the map a — a¥.

LemMMA 4.3.1. Let Z be the group of all non-zero d x d scalar matrices
over F. Then GU(d, q) = U(d, q).Z.

Proof. Let X € GU(V), let u := u(X), and choose u, v € V' such that
¢(u, v) # 0. Then

po(u,v) = e(uX, vX) = e(vX, uX)” = n¢(v, u)’ = u’e(u, v),

and so u = u7; that is, u € F,. For a scalar matrix al,;, where a € F, the
multiplier w(al,) is a'*4. But the norm map a + a'*4 is surjective from F
to F, and it follows immediately that GU(d, q) = U(d, q).Z.

As a consequence of this lemma it will be sufficient for our purposes
to consider groups G such that SU(V) <G <U(V), that is to say, scal-
ing factors will not arise. Let X € GL(d, q), and define X := (X7)™".
The matrix X preserves the unitary form with matrix A4 if and only if
XA(X?)" = A. Pre-multiplying by A~! and post-multiplying by X we see
that a necessary condition for the existence of an X-invariant form is that X
and X should be similar. In particular, X and X must have the same char-
acteristic polynomial. For a monic polynomial f of degree d in F[¢] with
non-zero constant coefficient ¢, define

foy =g e’ fo(eh.

The characteristic polynomial of X is Cx(t) and so a necessary condition
for X to preserve some unitary form is that cy(¢) = ¢x(¢); it is not hard
to see that for cyclic matrices this necessary condition turns out also to be
sufficient. We shall therefore be interested in monic polynomials f that are
self-conjugate in the sense that f(0) # 0 and f = f.

Lemma 4.3.2. (1) If f is a self-conjugate irreducible polynomial over F
then deg (f) is odd.

(2) Let r be an odd positive integer. The number of self-conjugate monic
irreducible polynomials f € F[t] which are of degree r is at most (q¢" + 1)/r.

Proof. Let f be a self-conjugate irreducible polynomial over F, and let
A be a root in some splitting field E. Of course E = F(A). Since A~9 is
another root of f the prescription 7y: A > A~9 defines an automorphism
of E over F. Now T(z) is the Frobenius automorphism A +— /\"2, which, as is
well known, generates Aut(E/F). It follows that the automorphism 7, must
have odd order, and therefore the degree of f must be odd. This proves (1).



CYCLIC MATRICES 377

To prove (2) let E be a field extension of F of degree r. If f is to
be self-conjugate and irreducible, then it must be the minimal polynomial
of some element 6 of E which generates E over F, and which has the
property that 677 is an algebraic conjugate of it. The automorphism 7
defined above has the property that 73: a > a?, and it follows that 7: a >
a?"". Therefore 67" = 679, and so 994+ = 1. The map a > a9+ is a
homomorphism E* — E* whose kernel has order ¢" + 1 and whose image
therefore has order ¢" — 1. Thus there are ¢" + 1 elements 6 in E such
that 7¢¢+1) = 1, but it is possible that not all of them generate E over F.
Any self-conjugate irreducible polynomial f of degree r over F gives rise
to a class of r algebraic conjugates of these elements 6, and therefore the
number of such polynomials is at most (¢" + 1)/r.

LeEMMA 4.3.3.  Let r be an odd positive integer, let V' be an r-dimensional
vector space over F, and let f be a self-conjugate monic irreducible polynomial
of degree r over F.

(1) If X is a linear transformation of V with minimal polynomial f
then there are unitary forms ¢ on V that are invariant under X.

(2) The general linear group GL(V') acts transitively on pairs (¢, X)
where ¢ is a unitary form on V and X is an isometry of (V, ¢) with minimal
polynomial f.

(3) Let ¢ be a unitary form on V and let X be an isometry of
(V, ¢) with minimal polynomial f. If C := {Y € GL(V) | ¢¥ = ¢ and
Y~ 'XY = X} then |C| = q" + 1.

Proof. Let X be a linear transformation of ' with minimal polynomial
f, and let (X)) be the set of sesquilinear forms on V' that are preserved
by X. Let V' denote the dual space of I and let X: V' — V' denote the
transformation X’?, where X’ is the dual of X. Since f = f, V and V’
are isomorphic as F[z]-modules on which 7 acts as X and X, respectively.
Moreover, since f is irreducible in F[¢], X and X act irreducibly. In particu-
lar, 1, V" are cyclic modules and so the space Hom p,;(V; V') has dimension
r. This space of homomorphisms is naturally identifiable with ®(X), how-
ever, and so ®(.X) is a vector space of dimension r over F. Notice that since
X is irreducible, every non-zero form in ®(X') must be non-degenerate.

Let E be the splitting field of f over F (so that E = [ ), and let ¢ be a
root of f in E. We can identify I with E in such a way that X becomes the
multiplication map u — ué. Recall that 7, the automorphism of F' over
F, defined before the previous lemma, maps ¢ to £-9. Now the automor-
phism o of F over F, extends to an automorphism o (the coincidence of
names carries no danger here) of E over Fy, o:a + a?. Let 7 := 10\
This automorphism of E over F, has three relevant properties. First, the
restriction of 7 to F is our original automorphism o. Second, ¢™ = £71;
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that is, ££7 = 1. Third, 7> = 1 because 7° fixes F pointwise and also fixes
the generator § of E over F. For a € E define ¢,(u, v) := traceg,p(uav”).
From the fact that 7 [F = o we get that ¢, is sesquilinear with respect
to o; it should also be clear that if a # 0 then ¢, is non-degenerate. Also,

@, (uX,vX) = traceg p(uga(vé)") = tracey p(uav’) = ¢,(u, v),

and so ¢, € ®(X). The forms ¢, for a in E form an r-dimensional vector
space over F, and it follows that ®(X) = {¢, | a € E}. Now

®4(v, u) = traceg p(vau™) = traceg,p((vV'a'u)") = @, (u, v)”
and so ¢, is hermitian if and only if a € K, where K is the fixed field of .
Since |E : K| = 2, K is the extension of F, of degree r. Thus there are
precisely ¢" — 1 unitary forms that are X-invariant.

The group GL(}') acts transitively by conjugation on linear transforma-
tions X with minimal polynomial f. To demonstrate (2) we need to prove
therefore that the centraliser in GL(}") of such a transformation X is tran-
sitive on ®(X). The elements of GL(}') which centralise X are the multi-
plications u — ua for a € E*. A form ¢, is transformed into the form ¢,
where b := aa”. Now aa” ranges over values of the norm map from E* to
K> and this norm map is surjective. Therefore any two unitary forms that
are invariant under X are equivalent under an element of GL(}") that cen-
tralises X. Moreover, C = {u+> un | n € E* and nn"™ = 1}, and it follows
immediately that C is cyclic and of order g" + 1. This completes the proof
of the lemma.

4.4. Similarities of Bilinear Forms

For X € GL(d, F), the bilinear form ¢ with matrix A4 is X-invariant up
to multiplication by w if and only if XAX"™ = uA. It follows that there
is some non-degenerate bilinear form preserved by X up to multiplication
by w if and only if X is similar to uX . For u € F* and for a monic
polynomial f of degree d and with non-zero constant coefficient ¢, define
F*) by the equation

F0) 1= 6 e f ().
Note that (f*®)*®) = f Now the characteristic polynomial of uX '
is c}‘((“ ) (¢#) and so a necessary condition for X to preserve some non-
degenerate bilinear form up to multiplication by the scaling factor w is that

cx(t) = c;}(“ )(t). For preassigned non-zero values of u we shall therefore
be interested in monic polynomials f € F[¢] that satisfy the condition

C(w):  f(0)#0and f =,
If f is a polynomial satisfying C(w) and A is a root of f of multiplicity m
then so is w/A.
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LEMMA 4.4.1. Let ¢ be a non-degenerate bilinear form on V and let X
be an invertible linear transformation of V' which preserves ¢ up to multi-
plication by w. If f is a monic polynomial such that f(0) = ¢, # 0 then
dim Ker f(X) = dim Ker f*®(X).

Proof. Let A be the matrix of ¢. From the equation XAX"™ = u A it fol-
lows that XA = A(uX 1), then that X' 4 = A((uX~')")", and hence that
f(X)A = Af(uX 1), Since A4 is invertible f(X) and f(uX ') have the
same rank and nullity. But then also f(X) and f(uX~!) have the same nul-
lity, and so dim Ker f(X) = dim Ker ¢, ' X" f**)(X), where n := deg (f);
that is, dim Ker f(X) = dim Ker f**)(X), as required.

COROLLARY. Let ¢ be a non-degenerate bilinear form on V and let X be
an invertible linear transformation of V' which preserves ¢ up to multiplication
by w. For a € F define V, to be the eigenspace {v € V | vX = av}. Then
dimV, =dimV, , forall A € F*.

LEMMA 4.4.2. Let p be a non-zero member of F, let f € F|[t], and let
r:= deg (f). Suppose that f satisfies C().

(1) If f is irreducible then one of the following holds:

r=1, wis a square in F*, and f(t) =t £ X where \*> = y;
r =2, wis a non-square in F*, and f(t) = t* — ;

r is even and the roots of f in its splitting field occur in pairs A, w/A\.

(2) Ifris odd then u = \* for some A € F*, and exactly one of t — A,
t + A has odd multiplicity as a divisor of f(t).

Proof. The mapping 7: A — u/A on the set of roots of f (in its splitting
field) satisfies 72 = 1, and A is a fixed point of 7 if and only if A> = u. Since
irreducible polynomials over finite fields are separable (1) follows easily.

Suppose that f**) = f and that deg f is odd, and let g be an irreducible
factor of f in F[t]. Then g*®) also divides f in F[¢], and with the same
multiplicity, say m, as g. Hence, if g**) # g then (g*(*)g)™ makes an even
contribution to the degree of f. If g*®) = g then by (1), either g has even
degree or g(t) =t — A where A?> = u. Since deg f is odd, u must have a
square root A and, moreover, exactly one of t — A,  + A must have odd
multiplicity as a factor of f(¢).

LEMMA 4.4.3. Let r be an even positive integer and let p be a non-zero
member of F. The number of irreducible monic polynomials f € F[t] which
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are of degree r and satisfy C(w) is

%(q—l) if r=2,qis odd and w is a square in F*,
%(q%—l) if r=2,qis odd and w is a non-square in F*,
%q if r=2and q is even,

at most (¢> +1)/r ifr> 2.

Proof. Let E be a field extension of F of degree r and let K be the
1

extension of degree ;7 contained in it. If f is to be monic irreducible and
satisfy C(u) then it must be the minimal polynomial of some element &
of E, which generates E over F, and which has the property that w/¢ is
an algebraic conjugate of it. There is therefore an automorphism 7 of E
over F such that 7: & — u/é. Then 72 = 1 and so the fixed field of 7 is K.
Moreover, Ng x(£) = £€7 = p. Now the norm N is a surjective homo-
morphism from E* to K* whose kernel has order ¢'/?> + 1. Therefore the
number of elements ¢ of E for which Np k(&) = w is g/ 2 + 1. Perhaps not
all of these generate E over F. Those that do may be partitioned into sets
of r algebraic conjugates that have the same minimal polynomial. There-
fore the number of monic irreducible polynomials satisfying C(u) is always
at most (¢"/? +1)/r. If r = 2 then we require ¢ such that &+! = . Since
E* is cyclic of order g> — 1 and p9~! = 1 there are ¢ + 1 such &. If q is
odd and w is a square in F then two of these are £u!/? and the remaining
q — 1 generate E over F, and so the number of irreducible f is %(q —1). If
q is odd and w is non-square in F then they all generate E over F, and the
number of irreducible f is (g + 1). If g is even then one of our ¢ is u!/?
an? the remaining ¢ generate £ over F, and the number of irreducible f
is 5q.

Iz\IeXt we need a description of the bilinear forms preserved by irreducible
matrices up to a scaling factor u. Let r be an even positive integer, say
r = 2m, let VV be an r-dimensional vector space over the finite field F, let
n € F*, and let f be a monic irreducible polynomial of degree r satisfying
the condition C(w). Let X be a linear transformation of 1 with minimal
(and characteristic) polynomial f, so that X acts irreducibly on /. Define

@g, (1, X) := {¢ | ¢ is a non-degenerate alternating bilinear
form on V and ¢* = ue},

Do(u, X) :={¢ | ¢ is a non-degenerate symmetric bilinear

form on V and ¢* = ue}.
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It is very easy to see directly that if f(¢) = > — u (so that w must be
non-square and g must be odd) then ®g,(p, X) = {0} and dp(p, X) is
a two-dimensional vector space over F: for then X may be taken to be

(U §) and we find that X" AX = pA if and only if A4 = (§ 0 ). As it

happens, however, this case is also covered by the following discussion.

To identify ®g,(u, X) and Pp(u, X) let K :=F,» and E := [F,, so that
F<K<KE. Let £ be a root of f in E and identify IV with E in such a
way that X becomes multiplication by ¢. Note that since f(¢) is irreducible
in F[t], ¢ generates E over F. The condition f = f** guarantees that
n/€ is also a root of f. Since f is irreducible and E = F(§) there is an
automorphism 7 of E over F mapping ¢ to u/&. If f(¢) = t*> — u then 7 is
the identity map on E; otherwise 7 is the automorphism of E of order 2 and
K = Fix(7). If q is odd define M :={a € E|a" = —a}. If f(1) #? —n
and ¢q is odd then K is the 1-eigenspace of 7 in V' (or in E), M is the
(—1)-eigenspace, and V' = K @ M. Now for a € E define a function ¢, by

®q(u, v) = tracegp (auv™) for u,v e E.
LEMMA 4.4.4. With the above notation:

() if f(t) = £ —p then Bg(p, X) = {0} and Do(u, X) =
{e.lacEX}

(2) if qis odd and f(t) # * — u then ®g(u, X) = {e, | a € M*}
where M* := M\{0}, and ®o(u, X) ={¢, | a € K*};

(3) if q is even (in which case w has a square root in F, so f(t) #
£ — 1) then Dy, X) = Bo (i, X) = {@, | a € K}.

Proof.  Let ®(u, X) be the set of bilinear forms on V' that are preserved
by X up to multiplication by w. Since X acts irreducibly on V', non-zero
members of ®,(X) are non-degenerate. Let V” denote the dual space of
V' and let X*:V’ — V'’ denote the transformation wX’, where X’ is the
dual of X. Since f = f*®, IV and V' are isomorphic as F[t]-modules on
which ¢ acts as X and X*, respectively. Moreover, being irreducible these
are cyclic modules and so the space Hom gp,4(V; V') has dimension r. This
space of homomorphisms is naturally identifiable with ®(u, X), however,
and so ®(u, X) is a vector space of dimension r over F.

Certainly ¢,, as defined above, is a non-degenerate bilinear form on E,
that is, on V. Furthermore,

¢ (uX,vX) = trace(aué(vé)™) = trace(nauv™) = ue,(u, v),

and so ¢, € P(u, X). The forms ¢, for a in E form an r-dimensional vector
space over F, and it follows that ®(u, X) = {¢, | a € E}. Now 7> = 1 and
therefore

¢,(v, u) = trace(avu™) = trace(a7v7u72) = trace(a"v"u);
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that is, ¢,(v, u) = @, (u, v). It follows immediately that if f(¢) = > — u
(so that u must be a non-square, g must be odd, and 7 is the identity map
on E) then all elements of ®(u, X) are symmetric and (1) holds; if ¢ is
odd and f(¢) # t*> — u then ¢, is alternating if and only if a € M and
¢, is symmetric if and only if a € K, so (2) holds, while if g is even then
Dy, (1, X) = Po(u, X) = {e, | a € K}, s0 (3) holds.

LEMMA 4.4.5. Let r be an even positive integer, let V' be an r-dimensional
vector space over the finite field F, let u € F*, and let f be a monic irreducible
polynomial of degree r satisfying the condition C(w). Define

q)Sp = {(QD’ X) | X e GL(V)5 f(X) =0, and ¢ € CDSp(/-‘“? X)}:
Do :={ (@, X) | X € GL(V), f(X) =0, and ¢ € Do(u, X)}.

If f(t) # t*> — w then the natural actions of GL(V) on &g, and on P are
transitive.

Proof.  The actions of GL(}V') on ®g, and on ® are standard ones:
if Y € GL(V) then Y:(¢,X) — (oY, Y 'XY), where ¢"(u,v) =
e(uy~!, oY1) for all u, v € V. Identify V with E (the field ) as above.
As has already been used, the conjugation action of GL(}') is transitive
on linear transformations X with minimal polynomial f and allows us to
assume that X is multiplication by &, where & € E and f(¢) = 0. Define
T := E* as a subgroup of GL(}) with action by multiplication. Then T is
the centraliser of X in GL(V).

By the previous lemma, ®(u, X) = {¢, | a € K}. For Y € T we find that
(¢)Y = ¢p, where b = a(YY7")"!. Now the map Y + YY" is the norm
map Ngg: E* — K>, which is surjective. Therefore T acts transitively on
{¢, | a € K*} and (if g is odd) on {¢, | a € M*}, that is, on ®g,(u, X)
and on ®5(u, X). Since T centralises X, the actions of GL(}") on the sets
g, and P are transitive.

4.5. Irreducible Matrices in General Orthogonal Groups

It is well known that the orthogonal groups O%(d, g¢) contain no irre-
ducible matrices if d is odd or if € = +. One consequence of the fol-
lowing lemma is that the same is true for GO®(d, q) except perhaps if
d =2 and q is odd. As it happens, this is a genuine exception: the group
GO™(2, q) does contain irreducible matrices when g is odd—for example,
taking Q(x, y) := xy we find that the matrix (2 (1]) transforms Q to nQ,
and is irreducible if w is a non-square in F*.

Let r be an even positive integer, let V' be an r-dimensional vector
space over the finite field F, let u € F*, and let f be a monic irreducible
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polynomial of degree r satistying the condition C(u). Let X be a linear
transformation of V' with minimal polynomial f and define

W(u, X) :={0| Q is a non-degenerate quadratic form on V
and 0¥ = nQ}.

As in the previous subsection we identify I with E, where E is the splitting
field of f over F (so that |E : F| = deg f = r), in such a way that X
becomes multiplication by &, where ¢ is a root of f in E; we define also
K to be the subfield of E such that F< K <E and |K : E| = 3r. Then for
a € E we define a function Q, by Q,(u) := traceg,p (auu) for all u € E,
where 7 is the identity if f(¢) = t*> — u and otherwise 7 is the involutory
automorphism of E whose fixed field is K.

LEMMA 4.5.1. With the above notation:

(1) if f(1) = — pu then W(s, X) = {Q, | a € E*} and [¥(ps, X)| =
-1

(2) if qis odd and f(t) # t* — u then V(u, X) ={Q, | a € K*} and
W (u, X)| = q"* = 1;

(3) If q is even then ¥(u, X) ={0, | a ¢ K}, O, = Q,, if and only if
a—-bek,and |¥(u, X) =q"*—1.

Proof. By definition (or by polarisation—see, for example, [1, p. 77;
10, p. 54]) each Q € ¥(u, X) yields a unique non-degenerate symmetric
bilinear form in ®q(u, X). Conversely, if char F' is odd then also each non-
zero symmetric bilinear form in ®q(u, X) yields a unique quadratic form
in ¥(u, X). Therefore (1) and (2) follow immediately from Lemma 4.4.4.

Suppose now that char F = 2 (in which case w is a square and f(¢) #
> — ), that Qy, Q, € ¥(u, X), and that Q,, Q, are associated with the
same member of ®y(u, X). Define Q, := QO; — Q,. Then Qy:V — F,
Qo(uy + uy) = Qy(uy) + Qy(u,), and Qy(au) = a*Qy(u) for a € F. A short
calculation confirms that if 1}, := {u € V' | Qy(u) = 0} then V is a sub-
space of codimension <1 in V. Following through the fact that Q; and Q,
are X-invariant up to multiplication by u we find that 14, is an X-invariant
subspace of V. Since X is irreducible, }; = V' and hence Q; = Q,. Thus
each non-zero symmetric bilinear form in ®q(u, X) can arise from at most
one member of ¥(u, X) and so |¥(u, X)|<|Po(u, X)| = ¢/> — 1. The
functions Q, certainly are quadratic forms and a similar calculation to that
given in the proof of Lemma 4.4.4 for ¢, confirms that Q, € ¥(u, X). The
symmetric bilinear form associated with Q, is easily found to be ¢, , where
a = a+a’, and it follows immediately that Q, = Q, if and only if a, b
lie in the same additive coset of Fix(7), that is, of K, in E. Also, Q, is
non-degenerate if and only if a ¢ K. Since there are therefore ¢'/> — 1 dis-
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tinct non-degenerate forms Q,, it follows that [W(w, X)| = ¢'/?> — 1 and that
W(w, X) ={Q, | a ¢ K}.

LEMMA 4.5.2. Let r be an even positive integer, let V' be an r-dimensional
vector space over the finite field F, let w € F*, and let f be a monic irreducible
polynomial of degree r satisfying the condition C(w). If f(t) # t> — u then:

(1) the natural action of GL(V') on pairs (Q, X), where X is a linear
transformation of V' with minimal polynomial f and where Q € V(u, X), is
transitive;

(2) type(V) = — forall O € ¥(u, X).

Proof. The action of GL(}") on the set of pairs (Q, X) is a standard one:
if Y € GL(V) then Y:(Q, X) — (QY, Y™'XY), where QY (u) = Q(uY 1)
for all u € V. Part (1) follows immediately from Lemma 4.4.5 for odd q.
Suppose therefore that g is a power of 2. Identify 1 with E (the splitting
field of f over F) as in the previous lemma, and let 7 := E*. Then T acts
by multiplication on E and may be thought of as a subgroup of GL(V).

As has already been used, the conjugation action of GL(}) is transitive
on linear transformations X with minimal polynomial f and allows us to
assume that X € T, in fact, that X is multiplication by &, where f(¢) = 0.
From Lemma 4.5.1 we know that ¥(u, X) ={Q, | ¢ ¢ K} and Q, = Q,
if and only if a —b € K. For n € T let ¢ := Ng(n). If Y € GL(V)
is multiplication by 7 then we find that (Q,)Y = Q,, where b = ac™!. If
a e E\K, ¢;,¢c;, € K*, and ¢; # ¢, then ac; — ac, € K. All ¢ € K* occur
as values of the norm map and so, starting from any Q, € ¥(u, X) and
applying members of T, we get ¢'/?> — 1 distinct quadratic forms; that is, we
get all of W(u, X). Therefore T acts transitively on W(u, X) and GL(V)
acts transitively on the set of pairs (Q, X).

Transitivity implies, of course, that all the forms in W(u, X) have the
same type. To identify that type we proceed as follows. For Q € ¥(u, X)
define Z(Q) := {u € E* | Q(u) = 0}, the set of singular vectors with
respect to Q, and for u € E* define W(u) := {Q € ¥(u, X)| Q(u) = 0}.
A quick calculation shows that if n € T and Z(Q)n := {un | u € Z(Q)}
then Z(Q)n = Z(QY), where Y € GL(V) is multiplication by n; simi-
larly, ¥(u)Y = W(un). Since T acts transitively on ¥(u, X) it follows that
|Z(Q)| is the same number # for all Q € ¥(u, X). Similarly, there exists m
such that |[W(u)| = m for all u € E*. Counting pairs (Q, u) such that
0 eV¥(u, X), ue E*, and Q(u) = 0 we find that (¢"/*> — 1)n = (¢" — )m,
so that n = (¢"/> + 1)m. For forms of type + the number of singular vec-
tors is ("> — 1)(g"/>~' 4+ 1) (see [10, Theorem 11.5]), which is not divisible
by ¢7* + 1 unless ¢ = 3 and r = 2. When r = 2 and ¢ is odd, however,
Q,(u) = 2auu™ # 0, so that there are no non-zero isotropic vectors for Q,,



CYCLIC MATRICES 385

and this means that the type of Q, is —. Thus Q, has type — in all cases,
and this completes the proof of the lemma.

LeEMMA 4.5.3. Suppose that q is odd. Let . be a non-square in F* and let
V be a two-dimensional vector space over F. For ¢ € {+, —} and X € GL(V)
with X? = ul, define

W(w, X) :={0 € ¥(u, X) | type(Q) = &}

() If X € GL(V) and X? = ul then |V (u, X)| = |V~ (n, X)| =
(¢ = D).

(2) For e € {+, —} the natural action of GL(V') on pairs (Q, X)), where
X € GL(V), X? = ul,, and Q € V*(u, X), is transitive.

Proof.  As before identify 1V with the degree-2 field extension E of F
and X with multiplication by &, where ¢ € E and £ = u. Let T := E*, so
that T < GL(V') and T is the centraliser of X in GL(}V'). We know from
Lemma 4.5.1 that W(u, X) = {Q, | a € EX} and |¥(u, X)| = ¢*> — 1. In the
natural action of T on W(u, X), if n € T and Y € GL(V') is multiplication
by 7, then (Q,)Y = Q, where b = an~2. Consequently T has two orbits in
W, X),

{0, | a is square in E*} and {Q, | a is non-square in E*},

each of size %(q2 — 1). We shall show that these are ¥*(u, X) and
V¥~ (u, X) in one order or the other.

To do this we study the equation Q,(u) = 0, because it has a non-zero
solution if and only if type(Q,) = +. This is the equation au? + a9u®! = 0,
which may be re-written (for u # 0) as (au?)?~! = —1. Let p be a primitive
root in E (i.e., a generator of the cyclic group £*), and choose k such that
a = pF. Now —1 = p~1/2 and so there is a non-zero solution u to the
equation Q,(u) = 0 if and only if p(¢~D(@+1D/2=k hag a 2(g — 1)th root in E,
that is, if and only if %(q + 1) — k is even. Consequently there are singular
vectors with respect to Q, if and only if either g = 1 (mod 4) and a is a
non-square in E* or ¢ = 3 (mod 4) and a is a square in E*. Thus if we
define & := (—1)@~1/2 then

V¢ (u, X) = {0, | a is square in E*},
Ve (u, X) = {0, | a is non-square in E*}.
Both parts of the lemma follow immediately.

LEMMA 4.5.4. Let r be an even positive integer, let u € F*, and let f
be a monic irreducible polynomial of degree r satisfying the condition C(u).
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Let (V; Q) be an r-dimensional orthogonal space over F, and let X be a linear
transformation of V such that f(X) =0 and QX = uQ. Define

C:={YeGL(V)| QY =Qand XY = YX}.
If f(t) # 1> — wthen |C| = ¢/ + 1 and if f(t) = t> — u then |C| = 2.

Proof. We use the notation introduced in the previous lemmas, and
focus on the group 7, the centraliser of X in GL(})), which is the sub-
group of GL(V') consisting of multiplications by elements n of E*. Now
C=TnNO(V) = Staby(Q). In the proof of Lemma 4.5.2 it was shown that
if f(t) # t* — u then T is transitive on W(u, X), and so, since |T| = ¢" — 1
and |W(u, X)| = ¢/ — 1, it follows that |C| = ¢’/ + 1. A very similar argu-
ment shows that if f(¢t) = > — u then |C| = 2.

5. RELEVANT PAIRS AND SEQUENCES

Our analysis of non-cyclic matrices in the classical groups will depend
upon extending basic non-cyclic linear transformations on subspaces of V/
to similarities defined on the whole of V. The situation is as follows. Let ®
be a unitary, symplectic, or orthogonal form on V/, let r be a positive integer,
let u € F*, and let f be a monic irreducible polynomial of degree r in F|¢].
A pair (U, T) will be called a relevant pair (relative to all this data) if U
is a 2r-dimensional subspace of V' and T is a similarity of (U, ®|U) with
scaling factor u such that f(7) = 0. Note that since f is irreducible and
dim U = 2r, non-trivial proper T-invariant subspaces of U are of dimension
r; every element of U\{0} lies in a unique irreducible T-invariant subspace
and therefore the number of such subspaces is ¢" + 1. Note also that if U is
not totally singular then f must be self-conjugate (in the sense that f = f if
@ is unitary and u = 1, or f = f*®) if ® is symplectic or orthogonal) if T is
to exist. Define rank U := 2r — dim(U+ N U). Since U+ N U is T-invariant
its dimension is 0, r, or 2r, and rank U is 2r, r, or 0 accordingly. If ®
is an orthogonal form Q on V' and rank U # 0 then there is a naturally
induced orthogonal form Q on U/U,, where U, is U N U+, the radical of
U. In this case we define type U := type(U/U,, Q). We define pairs (U, T),
(U, T") for the same data r, u, f to be similar if rank U = rank U’ and
(when @ is an orthogonal form Q on V' and U is not totally singular) also
type U = type U'. There is a natural action (U, T) — (UY, Y'TY) of the
isometry group (indeed, even of the similarity group) of (¥, ®) on the set
of relevant pairs. Obviously rank U is preserved, as also is type U when ®
is orthogonal and U is not totally singular. The next four lemmas give the
basic information about relevant pairs needed later.
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LEMMA 5.1. Let r be an even positive integer, let U be a 2r-dimensional
vector space over F, let ® be a unitary, symplectic, or orthogonal form
on U, and let T € GL(U). Suppose that ®T = u® where u € F* and
that f(T) =0, where f is a monic irreducible polynomial of degree r and
f(t) # t* — w if ® is orthogonal. Then there are precisely q'/* + 1 totally
singular T-invariant subspaces of dimension r.

Proof. Suppose (seeking a contradiction) that all the irreducible
T-invariant subspaces are totally singular. If ® were a unitary form ¢ or an
orthogonal form Q then there would exist u € U such that ¢(u, u) # 0 or
O(u) # 0, respectively, and the cyclic T-subspace (u)y it generates would
not be totally singular. Thus ® must be a symplectic form ¢. Let U;, U, be
distinct irreducible 7-invariant subspaces and let u; € U;, u, € U,. Then
(uy + uy)r is also totally singular and hence ¢(u; + uy, u;T + u,T) = 0.
But o(u;, uyT) = @(uy, u,T) = 0 and so @(uy, uyT) + ¢(uy, u; T) = 0;
that is (since ¢ is alternating), ¢(uy, u,T) = ¢(u; T, u,). Replacing u, by
u, T we find that o(u;, u,T?) = o(u, T, u,T) = pe(uy, uy). It follows that
u,T? — pu, € U for all u, € U,. By Lemma 4.4.4(1), f(¢) # > — u and
so the restriction of T? — I to U, is non-singular. Consequently U, € U7,
which is false since ¢ is non-degenerate. This contradiction confirms that
there must exist irreducible T-invariant subspaces that are not totally
singular.

Let U; be such a subspace. Then U, is non-degenerate and if U, := U}
then U, is also T-invariant of dimension r, and since U = U, &+ U,, also
U, is non-degenerate. Note that if ® is a quadratic form then type U; =
type U, = — by Lemma 4.5.2 since f(t) # t* — w. Suppose first that ®
is a unitary or symplectic form ¢, or that g is odd and ® is a quadratic
form Q with associated polar form ¢. Then, by Lemmas 4.3.3 and 4.4.4
we can choose u; € U;\{0} and u, € U,\{0} and then identify U; with
{Au; | A € E} and U, with {Au, | A € E}, where E is the field extension of
F of degree r, such that (Ajuy, Auy) = @(Ayuy, Ayuy) = traceg, p(ar;Ay),
where 7 is the involutory automorphism of E and a € E*. Now let W, be
the T-invariant subspace generated by u; + au,, where « € E, so that

W, ={Au; +adu, | A € E}.
For the restriction of ¢ to W, we find that
e(Ajuy + adjuy, Luy + adyuy) = (Mg, Auy) + @(ad uy, adyuy)
= trace(a;A}) + trace(aaA ;a’Aj)
= trace(a(l + aa™)A;AY).

Consequently W, is totally singular if and only if 1 + aa™ = 0; that is,
a7+ = _1. Since the multiplicative group E* is cyclic of order ¢" — 1,
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for every element of the subfield K of index 2, and in particular for —1,
the number of (¢'/? + 1)th roots is ¢"/> + 1. Therefore precisely ¢"/> + 1 of
the irreducible T-invariant subspaces are totally singular.

What remains to be dealt with is the case where g is even and ® is a
quadratic form Q. In this case, by Lemma 4.5.1(3), notation may be chosen
as above so that Q(Auy) = Q(Au,) = traceg,p(aAr™), where a ¢ K = Fixr.
It emerges as before that W, is totally singular if and only if 1 + aa”™ =0,
and hence that precisely ¢"/> + 1 of the irreducible T-invariant subspaces
are totally singular, as the lemma states.

LEMMA 5.2. Suppose that q is odd. Let p be a non-square in F*,
let f(t) := t> —u, let (U Q) be a four-dimensional orthogonal space
over F, and let T be a similarity of U with scaling factor u and minimal
polynomial f.

(1) If type(U) = + then two of the two-dimensional T-invariant sub-
spaces are totally singular, %(q2 — 1) are non-degenerate of positive type, and
1(q* — 1) are non-degenerate of negative type.

(2) If type(U) = — then none of the two-dimensional T-invariant sub-
spaces are totally singular, %(q2 + 1) are non-degenerate of positive type, and
%(q2 + 1) are non-degenerate of negative type.

Proof.  Suppose that type(U) = +. The number of totally singular irre-
ducible T-invariant subspaces may be found using the same method as
in the preceding proof; the relevance of the assumption that type U = +
is that when U is written as U; & U,, where U,, U, are non-degenerate
irreducible T-invariant subspaces, type U; = type U,. What is different is
that 7 is the identity automorphism and therefore it emerges that the sub-
space W, is totally singular if and only if 1 4+ o> = 0. Since ¢ is odd and
|E| = ¢? there are precisely two choices for «, hence precisely two totally
singular two-dimensional T-invariant subspaces of U. Let n be the num-
ber of two-dimensional T-invariant subspaces of positive type. There are
(g + 1)(g*> — 1) singular vectors in V' and, since the minimal polynomial of
T is irreducible of degree 2, each such vector u lies in a two-dimensional
T-invariant subspace, namely (u);. Of these, 2(¢* — 1) lie in totally singular
T-invariant subspaces. The remainder lie in subspaces of positive type, each
of which contains 2(g — 1). Thus 2(q — D)n+2(¢*> = 1) = (¢ + 1)(¢* = 1)
and so n = 3(¢* — 1). There remain (¢* + 1) — 2 — 1(¢* — 1), that is,
%(q2 — 1), irreducible T-invariant subspaces, which must be those of nega-
tive type. This proves (1).

If type(U) = — then maximal totally singular subspaces have dimension 1
and so there are no two-dimensional ones. Now a similar calculation to that
in the preceding paragraph tells us that there are %(q2 + 1) non-degenerate
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irreducible T-invariant subspaces of positive type and the same number of
negative type.

LemMmA 5.3. Let (U, T), (U, T") be similar relevant pairs for the same
data V, ®, u, r, f. Then there exists Y € Aut(V) such that (U, T)Y = (U', T').

Proof. The crux of the matter is to prove that there exists an isometry
Yy:U — U’ such that Y(flTYO = T'. For, the theorem of Witt referred
to in Section 4.2 then guarantees the existence of an isometry Y of (V, ®)
extending Y, hence having the required property. Define ry := rank U =
rank U’. The proof of the existence of Y is divided into cases according to
the value of r.

Suppose first that ry = 0. Since T, 7" have the same minimal polynomial
f and dim U = dim U’, there is a linear transformation Y,: U — U’ such
that Yo_lTYO = T, as required.

Suppose now that r, = r. Let U; := U N U*. Then U, is T-invariant
and irreducible. Choose U, to be any other irreducible T-invariant sub-
space of U. Clearly, U = U, @+ U, and U, is non-degenerate. Similarly,
there is a decomposition U’ = U; @+ U} in which Uj, U} are T’-invariant
and irreducible, U; = U’ N (U’)*, and U} is non-degenerate. Let T}, T, be
the restrictions of T to U, U, and T, T, the restrictions of 7" to U}, U,
respectively; also, let ®,, ®, be the restrictions of ® to U,, Uj, respec-
tively. There certainly exists Y;:U; — Uj such that Y, 'T,Y, = T|. By
Lemmas 4.3.3, 4.4.5, 45.2, and 4.5.3 there exists Y,: U, — U, such that
<I>§2 =@, and Y, 'T,Y, = T;. Then Y; @ Y, is an isometry Yy:U — U’
carrying T to 7', as required.

When ry = 2r, that is, U, U’ are non-degenerate, one special subcase
needs to be distinguished: suppose first that » = 1 and ® is a symplectic
form ¢. Then f(t) = t — A for some A € F* and T, T’ are scalar multi-
plication by A. Certainly Sp(V; ¢) is transitive on non-degenerate 2-spaces
and any isometry Y mapping U to U’ carries T to T'. Suppose, then, that
r > 1 or that r = 1 and ® is unitary or orthogonal. From Lemma 5.1 or 5.2
(or the first parts of their proofs) there exist non-degenerate irreducible
T-invariant subspaces U; of U and Uj of U’. In the orthogonal case, if
r=1orif r =2 and f(t) = t* — u then U, U; may be chosen to have
negative type, while if r >2 and f(¢) # t*> — u then U;, U] must have neg-
ative type by Lemma 4.5.2. Define U, := U N Ui, U, := U’ N (U))*. Then
U=U &"'U, U = U &' U, U, U are non-degenerate irreducible
T-invariant subspaces, and in the orthogonal case, since type U = type U’
by assumption and type U; = type U; = —, also type U, = type U;. By
Lemmas 4.3.3, 4.4.5, and 4.5.3 there exist isometries Y: U; — U}, Y,: U, —
U, carrying the relevant restrictions of 7' to those of 77 and we may take
Yy:U — U’ to be Y; @ Y,. This completes the proof of the lemma.



390 NEUMANN AND PRAEGER

LeEmMA 5.4. Let (U, T) be a relevant pair for the same data V', ®, u, r,
f, and let C be the centraliser of T in Aut(U, ®[U). Define

. 2r if ® is a unitary form ¢,
" |r otherwise,

so that |F| = q*. Then:

(1) if U is totally singular then |C| = ¢°(q¢° — 1)(¢* — 1);

(2) if rank(U) = r and in the orthogonal case f(t) # t* — p, then
ICl=q'(¢" = 1)(g"* + 1);

(3) ifrank(U) = r = 2, ® is an orthogonal form Q, and f(t) = 1> — u,
then |C| = 2¢*(q* — 1);

(4) if U is non-degenerate and in the orthogonal case r 22 and f(t) #
2 — p, then |C| = ¢**(¢* — 1)(¢** + 1);

(5) if U is non-degenerate, r = 2, f(t) = t*> — w, and ® is an orthogonal
form Q, then |C| = 2(q* — &), where & := type(U).

Proof. (1) 1If U is totally singular then Aut(U, ®[U) = GL(U), and so
C = GL(2, ¢*), whose order is ¢*(¢* — 1)(¢* — 1).

(2), (3) Suppose that rank(U) = r. Let U; := U N U*, so that U, is
r-dimensional and T-invariant, and let U, be a T-invariant complement for
U,. Thus U = U, @' U,. Now let W, be any T-invariant complement for
U,. There are |F|", that is, ¢°, choices for W, and in the orthogonal case
they all have the same type. If Y;: U, — U, and Y,: U, — W, are linear
isometries that commute with the action of T then Y; @ Y, € C; moreover,
every member of C arises in this way. There are ¢° — 1 possibilities for Y;.
It follows from Lemmas 4.3.3, 4.4.5, and 4.5.4 that the number of linear
isometries U, — W, commuting with the action of T is g*/?> 4 1 unless ® is
an orthogonal form Q and f(t) = > — u, in which case it is 2. Therefore
IC] = ¢°(¢° — 1)(g** + 1) in case (2) and |C| = 2¢*(q* — 1) in case (3).

(4) Suppose now that U is non-degenerate and if @ is an orthog-
onal form Q then r>2 and f(t) # > — u. There is a decomposition
U = U, &' U, where U,, U, are T-invariant, r-dimensional, and non-
degenerate. By Lemma 4.6.2 there are (¢° + 1) — (¢¥? + 1), that is,
q**(¢*’* — 1), non-degenerate r-dimensional T-invariant subspaces. Let W,
be any such and let W, := U N WIL. By Lemma 4.5.2, if ® is an orthog-
onal form Q then type(U;) = type(U,) = type(W;) = type(W,) = —. We
obtain elements of C from linear isometries U; — W, and U, — W, that
commute with the action of 7. By Lemmas 4.3.3, 4.4.5, and 4.5.4 there are
q*’* 4+ 1 such maps U; — W, and the same number U, — W,. As we have
seen, there are g*?(q*’? — 1) choices for W, (and therefore for the pair
Wi, Wy), and so |C| = ¢**(¢"* = 1)(¢** +1)* = ¢"/*(¢° — D)(¢"* + 1).
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(5) Suppose lastly that U is non-degenerate, r = 2, f(t) = t* — u,
and ® is an orthogonal form Q, and define ¢ := type(U). By Lemma 5.2
there are %(q2 — &) two-dimensional T-invariant subspaces of U of type +.
Let U, be one of them and let U, := U N Uj* so that U = U, & U,, where
U, is T-invariant of dimension 2 and type(U,) = &. Now let W, be any two-
dimensional T-invariant subspace of U of type + and let W, := U N W},
Then also W, is T-invariant, type(W,) = &, and U = W; &+ W,. It follows
from Lemma 4.5.4 that there are two linear isometries U; — W, and two
linear isometries U, — W, that commute with the action of 7'. Putting such
maps together gives a linear isometry U — U that commutes with 7, that
is, an element of C, and every element of C arises this way. Thus |C| =
1(q* — &) x 2 x 2 = 2(q* — ). This completes the proof of the lemma.

In our theorems we shall have a group G such that Q(V)< G <A(V),

where

Su(d, q) if ® is a unitary form ¢,

QW) =4 Sp(d, q) if ® is a symplectic form ¢,

Q4(d, q) if ® is an orthogonal form Q of type &,
and A(V) is the group of all similarities of (V, ®). The map w: A(V) — F*,
X — w(X), where, as in Section 4, u(X) is the scaling factor associ-
ated with X, is a homomorphism. The natural homomorphism A(V) —
A(V)/Q(V) will be denoted X + X. Note that since Q(V)<Aut(V) =
Ker(u), u induces a homomorphism A(V)/Q(V) — F>* which will also be
denoted by u. For the proofs of the theorems we shall count sequences
(p,n, f, Vg, Xy, X) where:

peG/UV);

1<r<id;

f is a monic irreducible polynomial of degree r;

V, is a 2r-dimensional subspace of V;

X is a similarity of I, such that (X)) = 0 and u(X,) = u(p); and

X is an extension of X, to a similarity of 1/ such that X = p.
These will be called relevant sequences. The point is that the last entry of

a relevant sequence is non-cyclic, and every non-cyclic matrix appears in at
least one such sequence. Therefore

|G N Noncyc(d, q)| < |{relevant sequences}|

and we shall seek estimates for the number of relevant sequences. In such
a sequence the pair (1, X)) is a relevant pair as defined above. Let (U, T')
be a relevant pair for the data u, r, f. If (V, X,) is similar to (U, T') then
we shall say that the sequence (p, r, f, Vj, Xy, X), where w(p) = u, is of

type (U, T).



392 NEUMANN AND PRAEGER

LeEMMA 5.5. Suppose that p € F*, 1<r< %d, f is a monic irreducible
polynomial of degree r, and (U, T) is a relevant pair for the data V., ®, u, r, f.
Define

ry := rank(U),

1 if ® is unitary,
k:=10 if @ is symplectic,
2 if @ is orthogonal,

C:={Y e Aut(U,®1U) | Y 'UY = U}.
Then the number of relevant sequences of type (U, T) is c|Q(V)|/|C|, where:
(1) either c = 0 or ¢ divides |Aut(V') : Q(V)|;

(2) if4r —ry<d — 1 and in the orthogonal case, either dim(V") is even
or w is a square in F*, then ¢ = 1.

Proof. Suppose, for the moment, that relevant sequences (p,r, f, V;,
Xy, X) of type (U, T) exist. Lemma 5.3 tells us that Aut(}') acts transi-
tively on the set of relevant pairs similar to (U, T') and so their number is
|Aut(V') : H|, where H is the stabiliser of (U, T') in Aut(}'). Define

K:={Y e Aut(V) | uY = u for all u € U}.

Then K <H and, by Witt’s theorem, H/K = C. Define K, := K N Q(V).
Given a relevant sequence (p, r, f, U, T, X), a sequence (p,r, f, U, T, X') is
another if and only if p(X) = p(X’) and X [U = X'[U, that is, if and only
if X, X’ lie in the same coset of K. Therefore the number of relevant
sequences (p, 1, f, Vo, Xy, X) of type (U, T) is |[Aut(V') : H| x |K,|. Since
AwN)| (Kol _ 1000 JAuw)] Kol

€l K| Cl Q0N K]
and K/K, is isomorphic to a subgroup of Aut(})/Q(}), the number we
are seeking is ¢|Q(V)|/|C|, where c is the index |Aut(}V)/Q(V) : K/K-
This proves (1).

Suppose now that 4r — ry<d — 1 and, in the orthogonal case, that
either dim(})) is even or wu is a square in F*. There exists a non-
degenerate subspace W of IV containing U and of codimension k. By
Lemma 4.2.2, T can be extended to a similarity of W with multiplier
u(p) and then to a similarity Y of V' with multiplier wu(p). Define
p =Y p~l. Then p' € Aut(V)/Q(V) and by Lemma 4.2.3, there exists
Y’ € Aut(W+) (thought of as an element of Aut(}') fixing W pointwise)
such that Y = p/. If X := Y(Y’)"! then X = p and X[U = T. There-
fore ¢ # 0. Define L := Aut(W+)<Aut(V), so that, by Lemma 4.2.3,
QV).L = Aut(V). Since L < K this implies that Q(1).K = Aut(}'), hence
that K/Ky = Aut(V)/Q(V'). Thus ¢ = 1, as required.

|[Aut(V) : H|.|Ky| =
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6. NON-CYCLIC MATRICES IN UNITARY GROUPS

Recall notation from Section 4.3: throughout this section we take F to
be F,.. We take o to be the involutory automorphism of F and Fj to be its
fixed field, so that F;, = F,. We take J" to be the F-vector space F 4 ptobea
unitary form on V/, and G to be a group such that SU(d, q) < G < GU(d, q);
that is, SU(J) < G < GU(V).

THEOREM 6.1. Suppose that d>3. If SU(d, q)<G<GU(d, q) and
v(G) is the probability that a random matrix in G is not cyclic, then

q+3

2(g2 — 1
V(G)< q(qqz_i_)z

¢*(q—1(¢* + 1)
In particular, v(G) < ¢ + O(q™*).

if d =3,

ifd=4.

Remark 6.2. As in the case of the general linear group, the situation
for d = 2 is different. In fact, if U(2, q) < G<GU(2, g) then v(G) =
|Z N G|/|G|, where Z is the group of non-zero scalar matrices, and so
we find that »(G) = t(G)/q(q* — 1), where t(G) = 1 if q is even or G con-
tains matrices with non-square determinant, and #(G) = 2 if ¢ is odd and
all elements of G have square determinant.

The remainder of this section is devoted to the proof of Theorem 6.1. By
Lemma 4.3.1, GU(d, q) = U(d, q).Z where Z is the group of all non-zero
d x d scalar matrices over F. Therefore

v(G)=v(G.Z)=v(H.Z) =v(H),

where H := G.Z N U(d, q), and so we may (and shall) assume that
G <U(d, q).

Let D be the image of the determinant map G — F*, so that D is a
subgroup of Z,,, where Z,, :={a € F* | a't4 = 1}. Relevant sequences
as described in Section 5 take the form (a,r, f, V4, Xy, X) where a € D,
det(X) = a, and otherwise the entries are as specified there. Given r and
r let k, . be the number of monic irreducible polynomials f that can arise
if relevant pairs (U, T') for the data r, ry, f are to exist. If r, = 0, so that
U is totally singular, then this is simply the number of monic irreducible
polynomials f(r) of degree r over F with f(0) # 0; thus k,, < (¢* —1)/r.
If ry > 0 then f must not only be monic and irreducible but must also be
self-conjugate (in the sense that f = f as in Section 4.3) and therefore
from Lemma 4.3.2 we know that r must be odd and k,, <(q" +1)/r. By
Lemma 5.5, if a, r, ry, and f are given and U, T, and C are as specified
there, then the number of relevant sequences is at most ¢, , |SU(d, q)|/|C]|,

nLr
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where ¢, , =1if 4r —ry <d and ¢, = q+ 1 if 4 —ry = d. Since there
are |D| choices for a and |D| |SU(d, q)| = |G|, for given r, ry, and f the

number of relevant sequences is at most ¢, , |G|/|C|. Thus
r Trhntnrny ¢, Ty
[relevant sequences| < |G| > ———" cl

L

and so ¥(G) < X, , Ky 1, ., /|C|, where the sum is over pairs r, r;y such that
ro is 2r, r, or 0. Using Lemma 4.5.4 and our bounds for k., and ¢, we
therefore have that

q+1 q+1
V(G)S ——5————+
q9(q*=1)(g+1) K_sz/z. rq’ (¢ =1)(qg"+1)
q+1 g -1 y
+
D e e N e P
1 1

+ 2

~q(g*-1) i, rq’ (g7 —1)
1 1

" 1%%/3 rq” (g —1) +1<§d/4 (@ 1)
where v' accounts for terms (if any) for which 4r — ry = d.

Suppose for the moment that d > 4. Consider the three summa-
tions, including their contributions to »’. The first is certainly at most
(q + 1)/3¢°(¢® — 1), which is less than 2/3¢%. The second is at most
1/¢*(¢* — 1) + (¢ +1)/3¢%(g® — 1), which is less than 1/¢*(¢*> — 1) + 1/q"".
And the third is at most 1/¢*(¢* — 1) + (¢ + 1)/2¢*(¢® — 1), which is less
than 1/¢*(¢* — 1) + 1/q'!. Thus if d > 4 then

1 n 1 n 1 n 1
a¢-1)  ¢@-1) ¢q¢*'-1) ¢
If d = 4 the first summation disappears, the only term in the second is
1/¢*(g> — 1), and the third contributes at most (g + 1)/¢*(g¢* — 1), and so

v(G) <

L 1 L atl
9q(¢>—=1) (¢ -1) ¢ (¢*—-1)

If d = 3 then the first and third summations disappear and, on the face of it,
the second might contribute a term (g + 1)/¢*(g> — 1). It comes, however,
from relevant sequences (a, r, f, Vj, Xy, X) in which r = 1, f(¢t) =t — A,
dim 1} = 2, and X, is scalar multiplication by A. Here cy(¢) = (t — A)? and
A% = a. Thus the number of choices for A (when a is given) is at most 3,

v(G) <
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and it follows that the contribution to »(G) is at most 3/|C|, that is, at most
3/q*(¢*> — 1) (and it is at most 1/¢*(g*> — 1) if 3 does not divide (g + 1)/|D|
because then the eigenvalue A must lie in D). In summary, ignoring the last
(parenthetic) point, we have found that

1/q9(¢*—1)+3/4*(¢*—1) if d=3,
v(G) < 1/q(¢* =) +1/¢* (¢ =D +1/¢°(g—1)(g*+1)  if d=4,
1/q(*—1D)+1/*(@*—D)+1/¢*(¢* - 1)+1/¢*  if d>5,

and Theorem 6.1 is a slightly simplified version of this.

7. NON-CYCLIC MATRICES IN SYMPLECTIC GROUPS

In this section we take d to be even, ¢ to be a symplectic form on V', and
G to be a group such that Sp(V') < G < GSp(V'). The image of the scaling
factor homomorphism g +— u(g) is a subgroup M of the multiplicative
group F*, and |M| = |G : Sp(d, q)|. Define

1 if |[F* : M| is odd,
HG) = {2 if |[F* : M| is even.
Note in particular that if g is even then #(G) = 1 and the bound for »(G)

given in the theorem below is independent of G—as should be expected
since then GSp(V') = Sp(V) x Z and v(G) = v(Sp(V)).

THEOREM 7.1.  Suppose that d > 4, that d is even, and that Sp(d, q) < G <
GSp(d, q). Define v(G) to be the probability that a random matrix in G is
not cyclic. Then
1+ 1t(G) 1 t(G)

2 by 2 2 :
q(¢>=1)  2¢°(¢° =1) ~ ¢*(¢—1D(¢* = 1)
In particular, v(G) < (14 t(G))q3 + O(q™*).
Remark 7.2. Since Sp(2, q) = SL(2, q) and GSp(2, q) = GL(2, q) we

find that if d = 2 then »(G) = t(G)/q(q*> — 1), just as in the general linear
case.

v(G) <

Cosets p of Sp(d, q) in GSp(d, q) correspond to values of the multiplier.
Therefore in the symplectic case we modify the notation of Section 5 slightly
and write our relevant sequences as (u, 1, f, Vy, Xy, X) where u € M and
w(Xy) = u(X) = p. The leading term in our upper bound for »(G) comes
from three different types of relevant sequence: those with r = 1 and U
non-degenerate, those with » = 1 and U totally singular, and those with
r =2 and U non-degenerate. We treat these first as separate cases.
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Case r = 1 and rank(U) = 2. In this case our sequences are of the form
(u, 1, — A, V), Xy, X) for some A € F*, and X, is multiplication by A.
Then A> = u, so A determines u and the number of choices for A, or for
the first three entries of the sequence, is #(G)|M|. By Lemma 5.5, once
those first three entries are chosen, the number of relevant sequences for
this data is |Sp(d, q)|/|C| where C = Sp(2, q). Thus the total number of
relevant sequences in which r = 1 and V}, is non-degenerate of dimension
2 is t(G)|M||Sp(d, q)|/ISp(2, q)|, which is #(G)|G|/q(g* — 1). These con-
tribute #(G)/q(q* — 1) to v(G).

Case r =1 and rank(U) = 0. In this case the relevant sequences again
take the form (u, 1, ¢ — A, V), Xy, X), where now, however, 1}, is totally
singular. The number of possibilities for u is |M|, and since now there is no
restriction on A other than that it be non-zero, the number of choices for A
is g — 1. By Lemma 4.4.1, however, some of these choices may be discarded.
For, if X is non-cyclic in virtue of the fact that dim V) > 2 (where, recall, V),
denotes the A-eigenspace of X)) then it will also have been counted among
those matrices which are non-cyclic in virtue of the fact that dim V), >2.
Thus from each pair {a, u/a} with a € F* we need only choose one value
of A and the number of choices for A comes down to %(q +1) if g is odd
and wp is square in F*, to %(q — 1) if g is odd and w is non-square in F*,
and to %q if g is even. If ¢ is odd and #(G) = 1 then half the members
of M are squares and half are not, whereas if ¢ is odd and #G) = 2,
or if g is even, then all the members of M are squares. It follows easily
that the number of choices for the pair (u, A) is %(q +t(G) —1)|M|. By
Lemma 5.5, for given A, u, the number of relevant sequences in which 1}
is two-dimensional and totally singular is [Sp(d, q)|/|C| where now C =
GL(2, q). Thus we get %(q + t(G) — 1) |M||Sp(d, q)|/IGL(2, q) relevant
sequences and a contribution %(q +t(G) —1)/q(q — 1)(¢* — 1) to v(G).

Putting these two results together we have the following fact.

LeEMMA 7.3. Suppose that Sp(d, q) < G <GSp(d, q) with d>4, and
define vi(G) to be the probability that a random element of G has an
eigenspace of dimension >=2. Then

1(G)+(1/2) 1(G)
q(¢>—1)  2q(q—1)(¢*—1)

Case r =2 and rank(U) = 4. Here interest focuses on relevant
sequences (u, 2, f, Vo, Xy, X) where f is quadratic irreducible, and 1}
is a four-dimensional non-degenerate space. Since X, preserves a non-
degenerate bilinear form on V{, up to multiplication by u, f must satisfy
condition C(u). Given w, by Lemma 4.4.3, the number of choices for f
is %(q + 1) if g is odd and u is non-square, %(q —1) if q is odd and u is

11(G) <
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square, and %q if g is even. Much as in the previous case, the number of
choices for the pair (u, f) turns out to be %(q +1—¢(G)). By Lemma 5.5,
for each such choice the number of relevant sequences is |Sp(d, q)/|C|,
where by Lemma 5.4, |C| = g(q* — 1)(q + 1). Thus the total number of
sequences is at most |M| x (g + 1 — t(G))/2 x |Sp(d, q)|/q(q* — 1)(q + 1),
and if the contribution to »(G) is v,(G) then

«(G)
29(¢*—1)  2q(q+1)(¢* - 1)
Adding the two principal contributions to »(G) we find that

1+ ¢(G) t(G)
(> 1) q(q> —1)*

Other Cases in which r >2. For relevant sequences (u, 7, f, Vg, Xy, X)
in which r>2, f is irreducible of degree r, and 1}, is a 2r-dimensional
non-degenerate space, the number of choices for w is |M|; given r, an even
integer >4 for the moment (since the case where r = 2 and V}, is non-
degenerate has already been accounted for), the number of choices for f is
then at most (¢"/> + 1)/r; and when pu, r, and f are fixed the number of rel-
evant sequences is |Sp(d, ¢)|/q"*(q¢" — 1)(¢'"/*> + 1). Thus the contribution
to »(G) is at most Y, -4 1/rq¢"/?(¢" — 1), where the sum is over even r.

Next, for fixed r > 2, we estimate the number of relevant sequences in
which rank(};) = r. The number of choices for u is |[M| and, given u,
since f must satisfy condition C(u), the number of possibilities for f is 0
if  is odd and it is <(qg/* +1)/r if r is even. If r, u, and f are given
then by Lemmas 5.5 and 5.4 the number of relevant sequences is at most
ISp(d, 9)|/q"(¢" — 1)(¢"/* + 1). Thus for given r the number of relevant
sequences is

Vz(G) <

v(G) +1,(G) <

q’*+1 y ISp(d, q)|
r q(q —D)(g"*+1)’

which is |G|/rq"(¢" — 1), and the contribution to »(G) is at most
> r>2 1/rq"(q" — 1), where the sum is over even r.

Last we estimate the number of relevant sequences in which 1 is totally
singular. The number of choices for p is |M|, and by Lemma 2.2 the
number of choices for f is at most (¢" — ¢)/r. By Lemmas 5.5 and 5.4,
for given w, r, f the number of these relevant sequences is at most
ISp(d, ¢)|/q"(q¢" — 1)(¢*" — 1). Thus for given r>2 the total number of
relevant sequences in which 1 is totally singular is

@=-q) __ Bedal __ g (¢ —4q)
r q’(q" = (g = 1) rg’(q"— 1)(g* — 1)

< M| x

< M| x
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It is easy to check that (¢" — q)/q"(¢" — 1)(¢*" — 1) < 1/q”, and so we get
a contribution < Y, 5, 1/rg* to v(G).
Putting all these estimates together we find that

1 1 1
(G) < (G)+ry(G)+ > g —1) +> =1 +> F

r=4, r=2, r=2
reven reven

The three summations add to an error term which is O(g~*). In fact, the
only summand which is of this order of magnitude is the term with r = 2
in the second summation, namely 1/2¢%(g*> — 1). It is not hard to see that

1 7 1 2
Z (g —1) Z (g —1) 2 rgv = 2ags T 24g0 T ag0

Then
1+ ¢(G) t(G) 1

+ + + =,
q(*—1)  q(¢®>—=1)*  2¢(¢>-1) ¢°

and the theorem follows easily.

v(G) <

8. NON-CYCLIC MATRICES IN EVEN-DIMENSIONAL
ORTHOGONAL GROUPS

In this section we take d to be even, Q to be a non-degenerate
quadratic form on V' with polar form ¢ and type & and G to be
a group such that Q(V)< G <GO(V). Small dimensional orthogonal
groups are treated in Section 10 below; here we assume that d >6. If
g is odd then GO(V)/((x(V').Z) is a dihedral group of order 8 and
(SO(V).Z2)/(UV).Z) is its centre; GO(V)/(SO(V).Z) = Z, x Z,. Also
OoWV).Z = {X € GO(V) | u(X) issquare in F*}. If g is even then
GO(V) =0(V) x Z. As usual, define

v(G) := |G N Noncyc(d, q)| + |G|,

the probability that a random matrix in G is not cyclic. Recall that »(G) =
v(GZ) where Z is the group of non-zero scalar matrices. For d > 6 (indeed,
for d >4) the probability »(G) depends primarily on g and the parameter
$(G) defined as follows:

26 [16007):GSOW) 2] it q is odd,
" IGO(V) : G.Z| if g is even.

When ¢ is odd s(G) is 1, 2, or 4; when ¢ is even s(G) is 1 or 2.
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THEOREM 8.1. Suppose that d is even, d>6, and O°(d,q)<G<
GO?(d, q). Then

4
$(G) q j if q is odd,
29 2q(¢* 1)
DV, o
24 A7 -1 if q is even,

and so v(G) < 3s(G)qg~' + O(q7?).

We begin by establishing some further notation and conventions. Let M
be the image of the scaling factor homomorphism g +— u(g) and, as in the
symplectic case, define

]2 if |[F* : M| is even,
1(G) := {1 it F> : M| is odd.

It is not hard to see that #(G) = |GO(V') : G.O(V').Z]. Define also

, __|1G6.0(V).Z : G.SO(V).Z| if g is odd,
1(G) = { IGO(V) : G.Z| i Z is overn
Clearly, s(G) = s(G.Z), t(G) = t(G.Z), (G) = t(G.Z), and s(G) =

t(G)Y(G).

The natural homomorphism GO(V) — GO(V)/Q(V) will be denoted
X  X. Define R := G, the image of G under this map. The scaling factor
homomorphism GO(V') — F* induces a homomorphism GO(V)/Q(V) —
F*, which we write p — u(p). Its kernel is O(V)/Q(V') and so this homo-
morphism is four-to-one if ¢ is odd and it is two-to-one if ¢ is even.

For A € F* and a d x d matrix X let V,(X) be the A-eigenspace
{veV |vX = v} If w(X) # A? and dim V,(X) >2 then V,(X) must be
totally singular—matrices of this kind will be treated later. The leading
term in v(G) comes from those matrices X for which there exists A such
that dim V,(X) >2 and A?> = u(X), and we focus on these first. Define

N,(G) :={X € G | dimV,(X)>2 and A? = uw(X)},
N(G) = U{N\(G) | r e F*},
r(G) = IN(G)| =+ |G].
We first bound v,(G).

LEMMA 8.2.

s(G) 1(G)
r1(G) < 24 + AP 1)
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Proof. Suppose first that g is odd. Define G, := {X € G | u(X) is
square in F*}. From the definition of #(G) it follows that |G : G,| =
2/t(G). Also of course N(G) € G, and therefore v,(G) = v(G,)/|G : G,|;
that is, v;(G) = v,(G,).t(G)/2. Since s(G) = t(G)t'(G) what we need to
prove is that v,(G,) < t(G)/q +2/q(q* — 1).

Now define H, :=(G.Z)NO(V) and Hy :=(G.Z)NSOV). If H, = H;
then H; <SO(V) and one sees easily that #'(G) = 2, whereas if |H; : Hy| =
2 then H,;.SO(V) = O(V) and ¢(G) = 1. Thus |H, : Hy| = 2/t (G). Now
H,.Z = G,.Z and it follows that v;(H;) = v;(G;). Therefore we may work
with H, and need to prove that v,(H,) < ' (G)/q +2/q(g* — 1).

Define n,(H;) := |N,(H,)|/|H;|- If X € H; then u(X) =1 and, since
the eigenvalues A we are concerned with satisfy A> = u(X), they are +1.
Consider first the contributions to n.,(H;) coming from H, We have
{£1} <H, and so if X € H, then also —X € Hy; also, V_{(X) = Vj(—X)
and it follows immediately that n_,(Hy) = n;(H,). Now Q(V)< H, and,
since d > 2, (V') is transitive on non-zero vectors v with a given value
of Q(v). It follows that H, is transitive on such vectors and so it has g
orbits in V\{0}. By Not Burnside’s Lemma, "y, |[Fix(X)| = g|Hy|, so
ni(Ho)(q*> —1) < g|H,| and

q
ny(Hy) +n_y(Hy) =2n(Hy) <2 |Hy| 5—.

q° —1
If HO = Hl thel‘l t,(G) = 2 and
V(H)=”1(H1)+”71(H1)< 2q =z+ 2
n |H,| -1 q q(@-1)’

so that v;(H,) < '(G)/q +2/q(¢* — 1) as required. Thus we may assume
that H, is a proper subgroup of H;, in which case |H; : Hy| = 2. Applying
Not Burnside’s Lemma in the same way as above to H, and to H;, and
subtracting, we get that "y .y g, |FiX(X)| = g|Hy|, and so

> (Fix(X)| = (g — 1)) = |Hy|.
XeH\H,

The point is that if X € H;\H, then dim Ker(/ — X) is odd (see, for exam-
ple, [10, Theorem 11.43]). Therefore every term in the sum is non-negative,
and if X € N{(H,) N (H\H,) then dimKer(/ — X)>3 and |Fix(X)|—
(g —1)> ¢ — q. Consequently,

[Ny (Hy) N (Hy\Hy)| < |Hol/q(q” = 1),

m(Hy) <|Hol(a/(¢* = 1) +1/9(q* = 1)),

and

ny(Hy) +n_(Hy) =2n(H;) < 2|H,| <q2q_ 1T q(q21_ 1))'
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Since we are assuming that |H,| = 2|H,|, we get that

n(H,) +n_(H 1 1 2
1(Hy) 1(Hy) - 26] + . -4 . ’
|H, | -1 q(¢-1) q q(g*-1)

and, since #'(G) = 1, this is what we wanted to prove.

Now suppose that g is even. Define H, := GNO(V), Hy := G N Q).
The above argument still works, but has to be modified in minor ways.
First, v(G) = v;(H,). Second, for H, there is only one relevant eigenvalue,
namely 1, and therefore v,(H;) = n(H;)/|H,|- These two adjustments,
which involve multiplying and dividing by 2, respectively, cancel each other
out and the result is the same.

vi(Hy) =

To deal with other non-cyclic matrices we count relevant sequences
(p, 1, f, Vy, Xy, X) of type (U, T) as defined in Section 5. There are five
cases to be considered.

Caser =1, f(t)=1t— A and \* # u(p). Define u := u(p). By Lemma
4.4.1, dimV,(X) = dim V), ,,(X). Therefore it is sufficient to treat just one
of A, u/A and, for fixed p, the number of choices for A is %(q —3) when g
is odd and %(q — 2) when q is even. The space U must be totally singular
since A% # w and so by Lemmas 5.5 and 5.4, for fixed p and A, the number
of relevant sequences is [Q(V)|/q(q — 1)(g*> — 1). Then, since the number
of choices for p is |R| and |R| x |Q(V)| = |G|, we find that »(G) acquires

q-—3 e
— 5 if ¢ is odd,
contribution < 2a(q 1_)(5 b (1)
1 if g is even

2q(q - 1)(¢* - 1)
from this case.

Case r 22 and U is totally singular. In a relevant sequence (p, 1, f, 1,
Xy, X) with rank(};)) = 0 the number of choices for p is |R|, the number
of choices for f is at most (¢" — q)/r, and then, by Lemmas 5.5 and 5.4,
the number of possibilities for (V;, X, X) is ¢ |Q(V)| = (¢* — 1)(¢* - q"),
where ¢ = 1 if 4r <d — 2 and ¢ divides |O(}V) : Q(V)| if 4r = d. Thus we
get a contribution to »(G) which is

4 —-4q 1
< + E,
2<r<%,2)/4 r (q2r - 1)(q2r - qr)

where E accounts for cases where d = 4r. Thus E = 0 if d = 2 (mod 4)
and if d = 4m then

9" —q 1

E< 5
T (@ - D@ g
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where ¢ =4 if g is odd and ¢’ = 2 if ¢ is even. It is easy to check that

/

4 —-4q ¢
+E< )
K,g([f,w r(@ —1)(¢" —q) 29(q +1)(¢* - 1)

and so v(G) acquires

2
————— ifgisodd
4 _ &l
contribution < q(a + 1)1(q D 2)
if g is even

(g +1)(q¢* - 1)

from this case.

Case r =2, f(t) =1t> — u, and rank(U) =71, > 0. Let N(p,r,, &) be
the number of relevant sequences (p, 2, 1> — u, ¥, Xy, X) of type (U, T) in
which rank(U) = r, and type(U) = &', and of course u = u(p). If u(p) is
square in F* then N(p, ry, £') is the empty set. Otherwise, by Lemmas 5.5
and 5.4 we have that

IN(p, rp, &) Cq, + Cq, — €, + G, -
< : + : + : + : ,
D T 2 B SV O VRV s y vl propy

e+ -}

where the coefficients ¢, , are those appearing in Lemma 5.5. If d > 8 then
¢, = 1 in all four cases. If d =6 then ¢, , = ¢4, _=1,but¢, ; and ¢, _
might be 4. One of ¢, , and ¢, _ must, however, be 0. For, let U} := U NU*
and let U, be a T-invariant complement for U; in U. Then U, is non-
degenerate and V = U, ® Uy". Now Uy, which is of dimension 4, is non-
degenerate and contains the two-dimensional totally singular subspace U;.
Therefore type(Us ) = + and so type(U) = type(U,) = &, where, as usual,
e = type(V). Thus

Z |N(p,l’0,8,)| < q2 + 2 — 6]2+1 + 1
v, Q)] -1 ¢@@-1) ¢@@-1) ¢(¢*-1)

ef+, -}

Adding over all p € R we find that the contribution to »(G) is 0 if u(p) is
a square in F* for all p € R and it is 3|R| x |R|7'((¢* + 1)/¢*(¢* — 1) +
1/¢*(¢* — 1)) otherwise. Therefore »(G) acquires

2-4G) ( ¢ +1 1 o
contribution < ) <q2(q2 ST TR ?f q ?s odd 3)
if ¢ is even

from this situation.
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Caser>2, f(t) # t* — u, and rank(U) = 2r.  Since the polynomial com-
ponents f of our relevant sequences (p, r, f, V), X, X) must satisfy condi-
tion C(u), where u = u(p), they have even degree and we may suppose
that » = 2s. By what should now be a familiar argument, the contribution
to v(G) is at most ¥, (¢° + 1)/2s x 1/¢°(¢* — 1)(¢* + 1) + E, where E
accounts for terms in which 2r > d — 2. Let m := |d/4] and let ¢ be as in
Lemma 5.5. By that lemma

0<E< c(g"+1) i 1
2m  q"(¢*" = 1)(g" + 1)
_ c < 2/mq™(g*" — 1) if g is odd,
2mgn (g —1) 1/mq™(g*" — 1) if q is even.

It follows easily that the sum of £ and the terms with s>2 is at most
1/¢*(g* — 1) if g is odd and at most 1/2¢*(¢* — 1) if q is even. Then, since
d > 6, we find that »(G) acquires

1 1
+ if g is odd,
251(‘]2 -1 ¢ -1 (4)
1 1

if g is even.

contribution <

+
29(¢*> - 1)  2¢*(q*—1)
from this case.

Case r>2, f(t) # t* — u, and rank(U) =r. The polynomial compo-
nents f of our sequences (p, 1, f, V;, X, X) again satisfy condition C(u),
where uw = u(p), and therefore have even degree, so we may take it
that » = 2s. Moreover, d >3r. The contribution to »(G) is at most
(g +1)/2s x 1/¢*5(¢* — 1)(¢* + 1) + E’, where E’ accounts for terms
in which 3r > d — 2. If m := |d/6] then 0K E' <2/mq™(¢*™ — 1) by
Lemma 5.5, and it follows easily that if d > 8 then v(G) acquires

1 1
_l.
2¢2(¢> = 1) q*(¢*—1)

from this case. As it happens this also holds for d = 6: it is not hard to
prove that if d = 6 and g is odd then this case does not arise so that the
relevant contribution is 0, and that if d = 6 and g is even then Lemma 5.5
holds with ¢ = 1 so that the relevant contribution is at most 1/2¢*(g> — 1).

Now we put all this together to estimate v(G). Suppose first that g is
odd. The terms of order ¢g~!, g2, ¢~ that involve s(G) and #(G) come
from Lemma 8.2 and inequality (3). They are

s(G) HG)  HG) (g +1)
2g  q(¢*-1)  2¢%(¢*-1)°

contribution <

®)
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which is
§(G)  HG)(g—1)
29 2¢%(q+1)
Let E, be the sum of the terms of order g2, g3, g~* that do not involve

s(G) or t(G). There are contributions to E, from inequalities (3), (1), (4),
and (5):

¢ +1 qg-3 1 1
2 S 20,2 2 + 2 + 20,2
q*(q* —1)  2q(q—1)(g*—=1) 2q(¢>*—-1) 2q*(q¢*—1)
1 q-—3

= + )
a(g—=1)  2¢*(g—1)(¢> - 1)

Collecting terms of order g~¢ and g% from inequalities (1), (3), (4), and

(5) (and remembering in relation to (3) that (2 — #(G))/2< %) we find a

contribution Eg, where

2 1 1 1
Eq < + + +
g+ 1) (¢ -1)  2¢%¢* 1) ¢ (¢*-1) ¢ g*-1)
7
S22 -1y
Therefore if g is odd then
G) HG)(g-1 1
V(G)<S( )« 2)(q )
2q 2q*(q+1)  q(g—1)
- -3 S—
2¢°(q - 1)(¢* = 1) 2¢*(q¢* - 1)
s(G) q+4 1
< 2 T H 22
2qg  2q(¢*-1) 2¢*(¢*—1)
q-—3 7

+ + ,
2¢%(q—1)(q> —1)  2¢°(¢* 1)

and since, as is easy to check, (g —3)/2¢*(q — 1)(¢* = 1)+ 7/2¢*(¢* = 1) <

1/2¢%(g* — 1) for all g, this case of Theorem 8.1 follows.

Suppose now that g is even. In this case #(G) = 1 and there are no
contributions to »(G) from inequality (3). Therefore the terms of order
g~! to ¢~* come from Lemma 8.2 and from inequalities (1), (4), and (5).
If their contribution is s(G)/2q + E, then

1 q—2 1 1
E, < + + +
PTa@ -1 29(g-1(@ -1 2q(¢*-1)  24%(¢* - 1)
2 1
a(¢*—1)  2¢*(q—1)(g* 1)
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There are contributions of order g=¢ and ¢~® coming from inequalities (2),
(4), and (5). If Ej is their sum then
E, < 1 n 1 n 1 - 3 '
q(q+1)(¢*=1)  2¢%(¢* 1)  q*q¢*=1) 2¢*(¢*-1)
Therefore

(G) s(G) 4 2 1 N 3
v < - .

2g 9@ -1 2¢°(g—-1)(¢*—1)  2¢°(¢*—1)
Now 1/2¢*(q — 1)(¢*> — 1) > 3/2¢*(¢* — 1) for all g and so the inequality
of Theorem 8.1 holds when ¢ is even.

9. ORTHOGONAL GROUPS OF ODD DIMENSION

In this section notation is the same as in Section 8. We take d to be odd
and then, since Q is a non-degenerate quadratic form on V/, also ¢ must be
odd. Recall from Lemma 4.2.1 that if X € GO(}') then w(X) is a square
in F*, and it follows that GO(d, q) = SO(d, q) x Z. Furthermore, 1 occurs
as an eigenvalue of every matrix X in SO(d, g) with odd algebraic multi-
plicity, in the sense that cy () = (¢ — 1) f(¢) where m is odd and f(1) # 0,
and also with odd geometric multiplicity, in the sense that dim Ker(/ — X))
is odd.

THEOREM 9.1. If d and q are odd, d =5, Q(d, q) < G < GO(d, q), and,
as usual, v(G) is the proportion of non-cyclic matrices in G, then

1, 3
g—-1 (g—D(¢+1)

Although the proof is based on the ideas of Section 8 there are some
significant differences. First, there is a simplification—since GO(V') =
SO(V) x Z, there is no loss of generality in assuming that Q())< G <
SO(V), that is, that G = Q(V) or G = SO(V). Second, however,
Lemma 8.2 does not work quite so well. For even-dimensional groups
that lemma not only allowed us to avoid detailed treatment of relevant
sequences (p, r, f, Vo, Xy, X) in which r = 1, f(¢) = ¢t — A, and the two-
dimensional space }; was not totally singular, it also gave a better bound
than the general method. For A = £1 define

N\(G)={X e G|dmV,(X)>2},  »(G):=[N\(G)/IGI.

w(G) < =q '+ 0(qg7?).

We find that we have to use the general method to deal with eigenvalue —1,
and it is this that gives the leading term in the upper bound of the theo-
rem. By way of contrast, the contribution from the eigenvalue 1, which was
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significant in the even-dimensional case, is very small here:
LEMMA 9.2. »(G) < 1/q(q* —1).

Proof. As in Lemma 8.2 we consider the permutation action of G on
’\{0} and use Not Burnside’s Lemma. Since G is transitive on the set of
vectors v with given value Q(v), it has g orbits. Therefore Yy s |Fix(X)| =
q|G|. The equation may be re-written in the form "y s (|[Fix(X)| — g+ 1)
= |G|. The point of the rewriting is that, since every element of G has 1 as
an eigenvalue, every term in the sum is non-negative. The positive terms
come from elements of N,(G) and, since dim V;(X) is odd, each of these
contributes at least g> — g to the sum. Thus g(q*> — 1)|N,(G)| < |G| (strict
inequality because some X have fixed-point spaces of dimension greater
than 3) and the result follows immediately.

From here on we count relevant sequences. Estimates are exactly as
in Section 8 except that the case r = 1, f(¢) = ¢+ 1 has to be treated
separately.

LeEMMA 93. v_(G) < ¢*/(q — 1)(¢*> = 1).

Proof. Consider relevant sequences (p, 1, ¢t + 1, 1}, Xy, X). If (U, T) is
their type then U is two-dimensional and 7' = —1I,. They lead to a contri-
bution 1/|C| to v_;(G) where, as in Section 5, C is the centraliser of T in
Aut(U); that is, C = Aut(U). If U is non-singular and ¢ := type(U) then
|C| = 2(g — &), and so such sequences contribute 1/2(q — 1) +1/2(qg + 1)
that is, q/(¢*> — 1). If U is of rank 1 then |C| = 2¢g(q — 1) and such
sequences contribute 1/g(g — 1) since there are two possible types. If U is
totally singular then C = GL(U), so the contribution is 1/q(q — 1)(¢*> — 1).
Adding, we find that

q 1 1 7

SE-1T -0 T da-D@-1  (@-D@-1)

as the lemma states.

(]

Proof of Theorem 9.1. Relevant sequences (p, 1,¢ + 1,1V}, X, X), in
which r = 1 and f(f) = ¢t — A where A # =1, and sequences in
which r>2 are treated in exactly the same way as in Section 8.
Thus, the contribution from those in which » = 1 and V], is totally
singular is smaller than (q — 3)/2q(q — 1)(¢*> — 1). The contribution
from those in which r>2 and 1 is totally singular is smaller than
Ys2(q — @)/r x 1/(¢* — 1)(¢* — ¢") + E, where E accounts for cases
where 4r = d—1. Now E =0 if d = 2 (mod 4) and if d = 4m + 1
then E <2(q" — q)/m x 1/(g*" — 1)(¢*" — q™), since [O(V) : Q(V)| = 2.
Therefore this contribution turns out to be less than 1/g(q + 1)(¢* — 1).
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Since G<SO(V), w is 1, which is square, and so there is no contri-
bution from relevant sequences in which f(¢) = > — u. The contri-
bution from those in which r>2 and V| is non-degenerate is less than
1/2q(q*> — 1)+ 1/¢*(q¢* — 1) and that from sequences in which r>2 and
rank(};) = r is less than 1/2¢*(¢*> — 1) + 1/q*(¢* — 1). Treating terms of
order ¢g~° or less in the same way as in Section 8 we find that

q* 3 qg-—3
MO < @D T 2@ =D T 2q(q - D@~ 1)
1 2

+ + ,
2¢%(¢> - 1) q*(q¢*—1)

and routine algebra yields Theorem 9.1.

10. ORTHOGONAL GROUPS OF SMALL DIMENSION

This section is devoted to orthogonal groups of dimension < 4. They are
treated exactly for two reasons: first, in order to add some insight into why
the estimates of Sections 8, 9 work and; second, in order to confirm that
those estimates are not unrealistic. Notation is the same as in the previous
two sections. For d = 2 the situation is different from the general case and
is this:

THEOREM 10.1. Let G be a group such that Q¢(2, q) < G < GO?(2, q)
and let s'(G) :=|GO?(2, q) : GZ|. Then v(G) = 5'(G)/2(q — ¢).
Proof. The only non-cyclic matrices that can occur are scalar matrices

and so we find that

Gnzl_ |zl _ |z
Gl ~ 1621 T IGO°(2, g)]

s'(G)
2(q—e)

»(G) = |GO®(2, q) : GZ| =

in all cases.

Note (1). 1If g is even then §'(G) = s(G) as defined in Section 8. But if
q is odd then the possibilities for s'(G) depend to some extent upon the
congruence class of ¢ modulo 4. The orthogonal groups O*(2, ¢), 0~(2, q)
are dihedral groups Dy, _y) and D), respectively, the general orthogo-
nal group GO*(2, q) is the monomial group Z,_1wr Z, (wreath product of
F* by Z,), and GO™ (2, gq) is the normaliser of a Singer cycle in GL(2, g),
so that GO™(2,¢) = (t,u | 17" = u? =1, 1* = t4). The groups Q*(2, q),
07(2, q) are cyclic groups Z,_1)2, Z(441)2> TESPectively, if g is odd, and
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they are cyclic groups Z,_;, Z,, if q is even. Since U(V)Z < GZ <GO(V)
the parameter s'(G) is a divisor of |GO(V) : Q(V)Z|. Now

Z, if g is even,
GOM)/QV)YZ =13 Z,x Z, ifg=¢e (mod4),
Dy if g=—¢& (mod 4),

where ¢ is the type of V/, and so s'(G) is 1, 2, 4, or 8. Asymptotically we
have v(G) <4/(q — 1) for all G.

Note (2). For small values of ¢ it can happen that all elements of G are
non-cyclic (i.e., scalar). In fact Q(2,2), Q*(2, 3), and Q*(2,5) consist of
scalar matrices.

Next we treat the three-dimensional case. Since the dimension is odd and
V' is non-degenerate, ¢ must be odd.

THEOREM 10.2. If q is odd and Q(3, q) < G < GO(3, q) then

2
1
L ifs0(3,9)<G,
V(G) — Q(q - 1)
> +mnq+2 .
— otherwise,
q(q* — 1)

where m = (—1)4-D/2,

Proof. 'We may assume (compare Section 9) that G < SO(3, g), that is,
that G = SO(3, q) or G = Q(3, g). A non-cyclic matrix X in SO(3, q)
has an eigenvalue A whose eigenspace V) is of dimension >2. Since X
is orthogonal, A = +1, and since detX = 1, either cy(¢) = (t — 1)° or
cx(t) = (t — 1)(t + 1)>. By a theorem of R. H. Dye (see [10, p. 160]),
dim Ker(X — I) is odd. Therefore the only non-cyclic matrix in SO(3, g)
with characteristic polynomial (¢ — 1), that is, the only non-cyclic unipotent
matrix in SO(3, g), is the identity matrix /. Consider now non-cyclic matri-
ces X with characteristic polynomial (z — 1)(¢ + 1)?. A non-degenerate one-
dimensional subspace of 1V can be assigned to each such matrix, namely,
its 1-eigenspace. Conversely, for each non-degenerate one-dimensional sub-
space V] of V' there is a unique isometry X that fixes I} pointwise and acts
on V;* as multiplication by —1. Thus the number of non-cyclic matrices with
characteristic polynomial (¢ — 1)(¢ 4+ 1)? in SO(3, q) is the same as the num-
ber of one-dimensional non-degenerate subspaces, which is g>. Therefore
¥(SO(3, q)) = (¢ + 1)/ISO(3, 9)| = (¢* + 1)/q(q* = 1).

Taking Q(x;, x,, X3) to be the standard form x? + x3 + x3 and using
Taylor’s description [10, p.163] of the spinor norm, we find that a non-
cyclic matrix X € SO(3, g) with characteristic polynomial (¢ — 1)(¢ + 1)
and two-dimensional (—1)-eigenspace W lies in (3, g) if and only if the
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discriminant of Q[W is a square in F*. Now disc(Q[W) x disc(Q[W+) =
disc(Q) = 1 modulo squares, and so X € (3, g) if and only if O(v;) is
a square in F*, where (v;) = W+; that is, v is a 1-eigenvector for X.
The number of one-dimensional spaces (v) for which Q(v) is square is
%q(q + m). Since |Q(3, q)| = %q(q2 — 1), the formula for v(€)(3, ¢q)) given
in the statement of the theorem follows easily.

For the remainder of this section we take d to be 4. Let X be a non-cyclic
matrix in GO(}) with multiplier u. Then one of the following holds:

(I) for some A such that A> = u the eigenspace V,(X) is of
dimension > 2;

(II) there is a decomposition V' = U; @ U,, in which U,, U, are
totally singular subspaces of dimension 2, and with respect to which X =
A, @ (u/A)I, for some A € F* such that A2 # u;

(IIT)  w is not square in F* and X? = ul,;

(IV) there is a monic quadratic irreducible polynomial f(¢) satisfying
condition C(u) such that f(¢) # t> — u and f(X) = 0.

Matrices of the first kind may be divided into subcategories as follows:

Ii) X ~ AL, & X,, where X, is a 2 x 2 matrix that has neither A
nor —A\ as eigenvalues;

I(i1)) X ~ AL, & (—A)Iy;
I(iif) X ~ A @ (—M);
I(iv) X is A-potent (that is, Al — X is nilpotent).

Of course if g is even then subcategories I(ii) and I(iii) are subsumed
by I(iv) and category III is empty.

Our first goal is to reduce the calculation of »(G) to groups G contained
in O(V). If g is even then that is immediate because GO(V') = O(V) x Z,
v(G) = v(G.Z) = v(G.Z N O(V)). Suppose therefore that g is odd.
The matrix equation X" AX = uX implies that det(X)?> = u* and so
det(X) = +u?. There are two natural homomorphisms GO(V) — Z,:
one maps X to w(X) modulo squares in F*; the other maps X to
w2 det(X). It is not hard to see that the intersection of their kernels is
SO(V).Z. Thus GO(V)/SO(V).Z = Z, x Z, and there are five subgroups
Gy, ..., G4 of GO(V) that contain SO(V').Z. They may be numbered so
that G, = SO(V).Z, G, = GO(V), and G,, G,, G; are the three sub-
groups of index 2 in GO(V'). Of these, one is O(}).Z, which can be
described as {Y € GO(V') | w(Y) is square in F*} and which we take to
be Gy; another is {Y € GO(V) | det(Y) = u(Y)?}, and we take this to be
G,. The third group is less easy to describe and we shall refer to it simply
as G3. All X of type I lie in Gy; those of types II, III, and IV lie in G,.
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From here on we find it prudent to deal separately with orthogonal spaces
of positive and negative type. We treat the case ¢ = — first. If ¢ = — then
=1, ¢ (V) (see, for example, [10, p. 165]) and so SO(V) = (V) x {£I,}
and Q(V).Z = G,. Thus G.Z must be one of the five groups Gy, ..., G,.
In order to reduce our problem to the study of groups contained in O(V)
we consider the disposition of non-cyclic matrices lying outside Gj.

LEmMA 10.3.  Suppose that d = 4, type(V) = —, and q is odd. Define
G, for 0<i<4 as above and define v, := v(XUV)), v; = v(O(V)).
Then V(GO) =7, V(Gl) =7,

1

v(Gy) = YaEn

_
m V(G3) = 3, and V(G4)

Proof. That v(G,) = v, and v(G;) = v; comes directly from the defini-
tions of G as (}).Z and G, as O(}').Z. We have already observed that
there are no non-cyclic matrices in G3\G, and so v(G3) = %V(GO) = %VO
Thus to prove the substance of the lemma we need to find »(G,) and v(G,).

Consider non-cyclic matrices X in GO(}V)\ Gy, in other words, non-cyclic
matrices for which u is non-square, where u := u(X). Since type(}V') = —
there are no totally singular subspaces of dimension 2 and so there are
no X of type II. There are also none of type IV because all their two-
dimensional X-invariant subspaces of V' would have to have type — (see
Lemma 4.5.2) and so V would have type +, contrary to assumption. Thus X
has type III. It follows easily from Lemma 4.5.3 that for a given non-square
w the non-cyclic matrices annihilated by > — u form a single conjugacy
class under the action of O(})') and then, by Lemma 5.4(5), the number
of them is |O(V)|/2(g* + 1). Since there are %(q — 1) choices for u and
|O(V)| = 2¢*(¢* — 1), the number of non-cyclic matrices in GO(V)\G; is
3¢*(q — 1)(¢* — 1). Consequently,

1 _ v(Gy) 1
/G = g (G126 + 3 = e =) = 2
since |G,| = 2¢*(q — 1)(g* — 1). Similarly,

| WGy, 1
162 = 5 (160G + 5P -1 =) = "G oL

since |G,| = ¢*(q — 1)(¢* — 1).

THEOREM 10.4. Suppose that O~ (4, q) < G < GO(4, q). If q is odd and
Gy, ..., Gy are the groups between Q(V') and GO(V') as described above
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then
2¢° —q* +2q -3
q ;+1q if G.Z =G,,
2¢* — ¢ +4¢*> —3q+2 ,
Z =
29(¢* - 1) rez=6
2¢° +2q -2 .
G)=1 —=—-—"F— GZ=G
V( ) 2(q4 _ 1) lf 2
2¢° —¢*+29-3 )
7 =
A1) 1oL=Gs
2g* +4q> —4g+2 .
if G.Z =G,y
49(q* = 1) / *
If q is even then
3
T +qg—-1 .
AT if O(V) G,
v(G) = 4 2
q +2q-—q+1 .
if O(V)<G.
29(q* - 1)

Thus v(G) = s(G)/2q + O(q~?) in all cases.

Proof. The lemma tells us that for odd ¢ we need only compute v, and
vy, where vy = v(Q(})) and v; = v(O(V')). The same is of course true if
q is even, for then GO(V') = O(V) x Z and |O(V') : (V)| = 2. Adapting
the argument in the first paragraph of the proof of the preceding lemma
to matrices with multiplier 1, we see that if a matrix in O(}") is non-cyclic
then it is of type I with A = £1.

For the matrices of type I(i) there is a decomposition V' = U & W with
respect to which X = Al, & X,, where A = +1. Then U L W and U, W
must be non-degenerate. The elements of O() that cannot serve as X, are
those that have an eigenvalue £1, namely £/, together with all elements
of O(W)\SO(W). Thus we may count matrices of type I(i) by enumerat-
ing pairs (W, X,), where W is a non-degenerate two-dimensional subspace
of V' and X, € SO(W)\{+£l,}. For a given type & the number of possi-
bilities for W of type & is 1¢°(¢*> + 1). Then the number of possibilities
for AL ® X, is 2(q—2—¢') if g is odd and ¢ — 1 — &’ if g is even, and
so the number of pairs (W, X,) is ¢*(¢* + 1)(¢ — 2 — &') if q is odd and
%612(6]2 +1)(g — 1 — &) if q is even. Hence the number of non-cyclic matri-
ces X of type I(i) is

205> + 1) (g —2) i g is odd,
(> +1)(g—1) if g is even.
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If g is odd then X € (V) if and only if —X ¢ Q(V), and it follows
that exactly half of these matrices lie in Q(V'). If ¢ is even then, since
dim Ker(/, — X) = 2, which is even, they all do. Therefore, since |O(}')| =
2¢*(¢* — 1), while [Q(V)| = 14°(¢* — 1) if g is odd and |Q(V)| = ¢*(¢* — 1)
if g is even, there are contributions

to v, of { (g—2)/(¢*—1) ifqis odd,

1/2(g+1) if g is even,
2(q-2)/(¢* = 1) if g is odd,
to vy of { 1/(g+1) if g is even,

from non-cyclic matrices of type I(i).

For the matrices of type I(ii) (when ¢ is odd) there is a unique decompo-
sition V' = U @ W with respect to which X =, & —L,. lfue U, we W,
then ¢(u, w) = o(uX, wX) = —¢(u, w). Therefore U L W (that is, U, W
are orthogonal to each other), and both U, W must be non-degenerate,
one of positive type, the other of negative type. There are two conjugacy
classes of elements X in O()'), depending on & where &' := type(W) and,
since Coy(X) = 0~?(2, q) x O%(2, q), the number of matrices X in each
class is |O(V)|/4(q*> — 1). A class lies in Q(V) if and only if —I, € Q(W),
that is, if and only if & = (—1)@~1/2 (see, for example, [10, p. 165]). Thus
one class lies in (), the other does not, and the contributions to v, v, are
1/2(¢* — 1) and 1/(g* — 1), respectively.

IfV =U®W and X = Al; ® (—A)I; with respect to this decomposition,
where A = £1, then U L W and U, W must be non-degenerate. There are
four conjugacy classes of such matrices in O(})'), one for each choice of
the pair (A, type(W)). Since they have determinant —1, these matrices do
not lie in Q(V). Clearly, Coy(X) = O(U) x O(W), and so the number of
matrices in each class is |O(V)|/(2g(g* — 1) x 2). Thus the contribution to
vy is 1/g(g* — 1) and the contribution to v, is 0 from matrices of type I(iii).

If X is A-potent then X = AX; where X, is unipotent. When ¢ is
odd, all unipotent matrices lie in Q(}’) and they are all non-cyclic. By
Steinberg’s theorem the number of them is g*. Since ' has negative type,
—1I, ¢ Q(V) and if X, is unipotent then —X; ¢ (V). Thus the contri-
butions to v, v, are 2¢*/|O(V)| and ¢*/|Q(V)|, that is, ¢>/(¢* — 1) and
2¢%/(q* — 1), respectively. If g is even then X € (V) if and only if
dim Ker(I — X)) is even. It follows that all unipotent matrices in (}) are
non-cyclic. By Steinberg’s theorem the number of these is g* and they con-
tribute ¢*/2(g* — 1) and ¢*/(q* — 1) respectively to v;, v,. There are, how-
ever, non-cyclic unipotent matrices also in O(}V)\Q(}"). For such a matrix
Ker(/ — X') has dimension 3 and rank 2. Let U be a two-dimensional non-
degenerate subspace of Ker(I — X) and let W := U*. Then X is in Jordan
canonical form I, @ J, with respect to the decomposition V = U &+ W.
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There are two conjugacy classes of these matrices in O(})') determined
by the type & of U. Since there are ¢*> choices for U in Ker(I — X),
while |Cy(1,)| = 2(qg — ¢') and |Cy,(J,)| = 2, the corresponding centralis-
ers have order 4¢%>(q — &'). The contribution to v, therefore is 1/4¢*(q — 1)
+1/4¢*(q + 1), which is 1/2g(¢q* — 1) (and the contribution to v, is of
course 0). Thus v; acquires a contribution

7/(¢* - 1) if ¢ is odd,
*/2(q" — 1) +1/2q(¢* - 1) if g is even,

and v, acquires a contribution

2¢°/(¢* = 1) if g is odd,
/(g - 1) if g is even.

from matrices of type I(iv).
Adding the four contributions we find that if g is odd then

qg—2 1 1 q*
(A Rl P ) S pr ) R |
24— ¢ +44° —3q+2
29(¢q* - 1) ’
V0=2(c2]—2) 1 24° :2q3—q2+2q—3’
-1 ¢-1 g*-1 gt -1

while if g is even then
1 q* 1 ' +2¢*—q+1
= T 504 + ) = 7 ’
20q+1)  2q*-1)  24(¢* 1) 2q(q* — 1)
_ ¢ _dtg-l
g+1 g*-1 gt —1

Yy

>

and, substituting into the formulae of Lemma 10.3, we get the theorem.

Suppose from now on that ¢ = +; that is, (V; Q) is of positive type. Then
—1, € V') and Q(V').Z is a subgroup G_; of index 2 in G. In this case
G,/G_; is dihedral of order 8, G,/G_; and G,/G_; are its two elementary
abelian maximal subgroups of order 4, and G;/G_; is cyclic of order 4. Its
centre is Gy/G_; and conjugation by elements of O(}') interchanges the
two cosets of G_; in G,\Gy,.

LEmMA 10.5. Suppose that d = 4, type(V) = +, and q is odd. Define
G, for —1<i<4 as above and define v_; := v(QUV)), vy, := v(SO(V),
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vy 1= v(O(V)). If (V)< G<GO(V) and G.Z £ G, then

2

vy q-—q+4 :

. if G.Z = G,,

2 7 4q(q-1)(g* - 1) )

% if G.Z = G,
V(G) = 2

vy g —q+4 .

—+ if G.Z = Gy,

2 24(q - (g y 1) ?

v_y g —q+ .

— 4 otherwise.

2 29(qg—-1)(¢*-1)

Proof.  'We count the non-cyclic matrices in GO(V)\O(V').Z. These are
of types II, III, and IV. Consider first matrices X of type II; that is, X =
A, @ (m/A)1, with totally singular eigenspaces U;, U,. For a given pair
{A, w/A} (with A2 # ) these matrices form a single class under conjugacy
by elements of O(V'). It is not hard to see that they lie in G_; if u is
a square in F* and otherwise they lie in G,\G, and are equally divided
between the two cosets of G_; in G,\G,. The centraliser of one of them
in O(V) is isomorphic to GL(2, q) and therefore the number of them is
2¢%(q* — 1)*/q(q* — 1)(q — 1), which is 2g(q + 1). Since the number of
pairs {A, u/A} is 3(¢ — 1) if w is not square, it follows that the number of
such matrices is g(¢q> — 1) and the number in each of the two cosets of G_;
in G,\Gy is 1q(¢* — 1).

All matrices of type III lie in G,\G,,. For each non-square u € F* they
form a single conjugacy class under O(}’), and therefore the number of
them is %(q —1)|O(V) : C|, where, by Lemma 5.4, |C| = 2(¢* — 1). They
are equally divided between the two cosets of G_; in G,\G,, and so each
of those cosets contains g*(q — 1)(g> — 1)/4 of these matrices.

For a given quadratic minimal polynomial f(¢) satisfying C(u) the matri-
ces of type IV form a single class under conjugation by elements of O(}).
Since det(X) = u? they lie in G, if and only if u is a square. Those
for which u is non-square are equally divided between the two cosets of
G_; in G,\Gy. The size of the class is |O(}V) : C|, where, by Lemma 5.4,
IC| = q(¢* — 1)(g + 1). It is not difficult to see that the number of monic
irreducible quadratic polynomials satisfying C(w) is %(q + 1) if p is non-
square. Therefore each coset of G_; in G,\G, contains %q(q2 — 1) such
matrices.

Now let G be a group such that G_; < G< Gy, and G £ G,. Define
H := G N G,. The possibilities are that H = G and G is G, or Gj, or
H =G, and G = G4, or H = G_; and G is one of the two conjugate
groups contained in G, such that G/G_; = Z,. If H = Gy and G = G,
then all the matrices treated above lie in G and so the number of non-
cyclic matrices in G is |Gylvy + q(q> — 1) + 2¢°(q — 1)(¢* = 1) + q(¢* — 1),
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which is 4Gl + 1a(¢? — 1)(¢* — q +4) and, since |G| = 1|GO(V)| =
(g —Dg*(q* - 1)%,

¢ —q+4
2q(q = 1)(q* = 1)’
If H = Gy and G = Gj then, since G3\G( contains no non-cyclic matrices,

v(G) = 11,. The calculations for the cases where G = G, and where H =
G_, and G/H = Z, are very similar to that for G, and are omitted.

V(G):%Jr

In the light of this lemma, what remains is to analyse groups G such that
G.Z<G,. Since G.Z = (G.ZNO(V)).Z it is sufficient to treat groups H
such that Q(V)< H <O(V). When g iseven H = Q(V) or H = O(V'). But
when ¢ is odd O(V)/Q(V) = Z, x Z, and so there are five such groups.
We label them H,, ..., H,, where Hy, = Q(V'), H; = SO(V'), H, and H;
are the other two subgroups of index 2 in O(V), and Hy, = O(V). The
groups H,, H; are conjugate in GO(}') and therefore v(H,) = v(H;). It
will be useful to distinguish the cosets of (1) in O(}) and they will be
listed as €y, ..., Q3, where Qy = (V) and Q; = SOV )\Q(V). The cosets
Q, and 3, which may be taken to be H,\H, and H;\H,, respectively,
and whose union is O(V)\SO(V'), are conjugate in GO(}V') and therefore
contain the same number of non-cyclic matrices.

LEMMA 10.6. Let H be a group such that O (4, q) < H < O% (4, q). When
q is odd,

2¢" —q® —2(n —1)g* —13q — 4

if H=0(V),
q(q* — 1)?
24 —q® —7g -2
-9~ if H=S0(V),
W(H) = q(q®> = 1)
2¢* — ¢’ —2(n—2)¢* —13g—6 .
H=H,orH=H
2q(q2_1)2 lf 2 Or 3
2" — @ +2¢> -7 —4 .
H=0V

where H,, H; are the subgroups of index 2 in O(V') other than SO(V'). And
if q is even then

q'+q*—3q-2
q(q> =1~

" +2¢>-3q-3
29(q* — 1)?

(V) =

v(O(V)) =
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Proof.  Our group H contains no matrices of type III; the only matrices
of types I, II, and IV that are relevant are those with u = 1. For the
matrices of type I(i) there is a decomposition V' = U & W with respect
to which X = A, & X,. As in the proof of Theorem 10.4, we may count
matrices of type I(i) by enumerating pairs (W, X,), where W is a non-
degenerate two-dimensional subspace of V' and X, € SO(W)\{+£[,}. But
now for a given type & the number of possibilities for W of type &' is
1¢*(q + £')%; then the number of possibilities for AI, ® X, is 2(q —2 — &')
if g is odd and ¢ — 1 — ¢’ if g is even, and so the number of pairs (W, X,)
is ¢*(g+ &) (g—2—¢)if gis odd, 3¢*(q+ &)*(q—1— &) if q is even.
Hence the number of non-cyclic matrices X of type 1(i) is

2¢(¢* — 24 —q—2) if qis odd,
(- —q-1) if g is even.

When ¢ is even all these matrices lie in (}'), but when g is odd the
situation is more complicated. They all lie in SO(}'), but Al, & X, lies
in Q(V) if and only if Al, € Q(U), X, € Q(W) or A, ¢ QU), X, ¢
Q(W). Now —1I, € Q%(2, q) if and only if & = n, where n = (—1)(¢"D/2
(see [10, p. 165]). If & = n then A, € UU), 1, € (W) and so, mul-
tiplying together the number of possibilities for W, A, and X, we find
that the number of our matrices that lie in Q(V) is 1¢°(q + n)* x 2x
(3(g—m)—2).1If & = —n then —1, ¢ QU), —I, ¢ Q(W) and the number
of our matrices in (V) is %q2(q —1)?x2x (%(q + n) —1). Adding these
two contributions we find that when ¢ is odd the number of X of type I(i)
lying in Q is ¢*(¢* — 3¢> — (2m + 1)g — 3) and the remainder lie in Q.

The matrices of type I(ii) are of interest only when ¢ is odd. As in
the case when ¢ = —, the eigenspaces U, W are orthogonal and non-
degenerate, but now type(U) = type(W) = &/, say. There are two con-
jugacy classes of elements X in O(}'), one for each value of &'. Since
Co)(X) = 0%(2, ) x O°(2, q) the number of matrices X in the class is
|O(V)|/4(q — €')?, which is 1¢*(q + &')%. Both classes lie in SO(V); a class
lies in (1) if and only if —I, € (W), that is, if and only if & = 7, where
n := (—1)14~Y/2_ Thus there are $¢°(q + n)? of these matrices in (), and
1q*(g — m)?* of them in Q.

For the matrices of type I(iii) when ¢ is odd, V = U &' W, where U, W
are non-degenerate, and X = Al; & (—A)I; with respect to this decomposi-
tion. Since they have determinant —1, these matrices lie in €, U );. There
are four conjugacy classes of them in O(}), one for each choice of the
pair (A, type(W)). The conjugacy classes corresponding to pairs (A, +) and
(A, —) are, however, interchanged by conjugation by an element of GO(}V)
with non-square multiplier and therefore one of these classes lies in {),; the
other lies in €);. Clearly, Coy(X) = O(U) x O(W), and so the number
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of matrices in each class is |O(V)|/(2q(g* — 1) x 2), that is, 1g(¢* — 1).
Therefore the number in each coset €),, ;5 is g(g*> — 1).

The matrices of type I(iv) have the form AX; where X, is unipotent.
When ¢ is odd, all unipotent matrices lie in (}), they are all non-cyclic,
and by Steinberg’s theorem the number of them is ¢*. Since V' has positive
type, —1, € Q(V) and so all 2¢* of the matrices of type I(iv) lie in €.
When g is even the analysis is very similar to that when type(})) = — (see
above). All the unipotent matrices in (V') are non-cyclic and there are
q* of them. The non-cyclic unipotent matrices in O(V)\Q(}') have Jordan
canonical form I, @ J, with respect to a decomposition V' = U &+ W and
there are two conjugacy classes of these matrices in O(}’) determined by
the type & of U. The corresponding centralisers have order 4¢*(q — €')
and so the classes have sizes 3(q + &')(¢> — 1). Thus there are g(¢> — 1)
non-cyclic unipotent matrices in O(V)\Q(}') when ¢ is even.

Matrices X of type II have the form AI, @ A~'I, with totally singu-
lar eigenspaces U;, U,. They all lie in ((V): if ¢ is even this is because
dimKer(/ — X) is even, while if g is odd it can be calculated using
the method given by Taylor in [10, p.163]. For a given pair {A, A~'}
(with A% # 1) they form a single conjugacy class in O(V). The centraliser
of one of them in O(}") is isomorphic to GL(2, ¢) and therefore the num-
ber in each class is 2¢%(q> — 1)?/q(¢*> — 1)(q — 1), which is 2g(q + 1). Since
the number of pairs {A, A7} is %(q —3) if ¢ is odd and %(q —2)if g is
even, it follows that the number of such matrices is g(g + 1)(g — 3) if ¢ is
odd, and g(q + 1)(g — 2) if ¢ is even.

For a given quadratic minimal polynomial f(¢) the matrices of type IV in
O(V) form a single conjugacy class which lies in )(}"). The size of the class
is |O(V) : C|, where, by Lemma 5.4, |C| = g(¢> — 1)(q + 1). The number
of monic irreducible quadratic polynomials satisfying C(1) is %(q —1)if g
is odd and it is %q if g is even. Therefore there are g(g — 1)? such matrices
in Q(V) if ¢ is odd and ¢*(g — 1) of them if g is even.

By this census we have found that when ¢ is odd the number of non-
cyclic matrices in Qg is ¢*(¢* —3¢> — (2n — 1)g — 3) + 3¢*(g + m)* + 2¢* +
q(q+1)(q¢ —3) + q(q — 1), which is 39(2¢* — ¢* — 2(n — 1)¢* — 13g — 4).
Similarly, the number of them in Q; is 1¢*(2¢* — ¢* +2(n — 1)g — 1) and
there are g(q*> — 1) in each of €,, ;. When g is even there are ¢>(q*> — ¢ —
qg—1)+q*+q(q+1)(q —2) + ¢*(q — 1) non-cyclic matrices in Q(V) and
a further g(g*> — 1) in O(V)\Q(V). That is, there are q(q* + ¢*> — 3q — 2)
in Q(V) and q(q* + 2¢* — 3q — 3) in O(V). Elementary algebra yields the
lemma.

Putting Lemmas 10.5 and 10.6 together we get exact values for »(G)
when Q*(4, q) <G<GO'(4, q). Theorem 10.4 gives exact values when
07(4,9)<G<GO (4, q). We are very grateful to Alice Niemeyer for
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enumerating the cyclic matrices in O%(4, q), SO®(4, q), and Q°(4, q) for
q :=3,4,5 to confirm that our formulae give the correct probabilities in
these cases. Finally, recall the parameter s(G) introduced in the first para-
graph of Section 8. When ¢ is odd it has the following values:

4 if G.Z <G,
s(G)=11 if G.Z = G,,
2 otherwise.

And combining this with Theorem 10.4, Lemma 10.5, and Lemma 10.6 we
have the following as a crude summary.

THEOREM 10.7. If Q%(4, 9) < G < GO®(4, q) then v(G) = 3s(G)q~' +
0(q7?).
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