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Abstract

We study the fibrewise (pointed) homotopy, fibrewise (pointed) fibration and fibrewise (pointed)
cofibration in the categoryMAP.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For a base spaceB, the categoryTOPB is the fibrewise topology overB. For general
topology of continuous maps or fibrewise general topology, see Pasynkov [6]. InTOPB ,
the fibrewise homotopy was studied by many mathematicians; for this, see [3,5]. In [1,2],
Buhagiar studied fibrewise topology in the category of all continuous maps, calledMAP
by him (as a way of thinking of a category,MAP can be seen in earlier works, see, for
example, [7]). The study of fibrewise topology inMAP is a generalization of it in the
categoryTOPB . In this study, we clarify that in treating fibrewise homotopy and fibrewise
pointed homotopy, we can freely considerI × B as base spaces, and therefore need not
consider some complicated procedures((I ×B)×B X = I ×X and the reduced fibrewise
cylinderI×̃X for constructing sections).

The objects ofMAP are continuous maps from any topological space into any
topological space. For two objectsp1 :X1→ B1 andp2 :X2→ B2, a morphism from
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p1 into p2 is a pair(φ,α) of continuous mapsφ :X1→ X2, α :B1→ B2 such that the
diagram

X1
φ

p1

X2

p2

B1
α

B2

is commutative. We note that this situation is a generalization of the categoryTOPB since
the categoryTOPB is isomorphic to the particular case ofMAP in which the spaces
B1 = B2 = B and α = idB. We call an objectp :X → B an M-fibrewise space and
denote(X,p,B). Also, for twoM-fibrewise spaces(X1,p1,B1), (X2,p2,B2), we call the
morphism(φ,α) fromp1 intop2 an M-fibrewise map, and denote(φ,α) : (X1,p1,B1)→
(X2,p2,B2).

In this paper, we assume that all spaces are topological spaces, and all maps are
continuous. The spaceI = [0,1] and id is the identity map ofI into I . Moreover, we
use the following notation: For anyt ∈ I, the mapsσt :X→ I ×X andδt :B→ I ×B are
defined by

σt (x)= (t, x), δt (b)= (t, b) (x ∈X, b ∈ B).
For other undefined terminology, see [4,5].

2. M-fibrewise homotopy

In this section, we shall define anM-fibrewise homotopy, which is an extended version
of fibrewise homotopy [5, §18].

Definition 2.1. Let (φ,α), (θ,β) : (X1,p1,B1)→ (X2,p2,B2) beM-fibrewise maps. The
M-fibrewise homotopy of (φ,α) into (θ,β) is anM-fibrewise map(H,h) : (I ×X1, id×
p1, I ×B1)→ (X2,p2,B2) such thatHσ0= φ, Hσ1= θ, hδ0= α, hδ1= β.

If there exists anM-fibrewise homotopy of(φ,α) into (θ,β), we say(φ,α) is M-
fibrewise homotopic to(θ,β) and denote(φ,α)�M (θ,β).

Remark. For fibrewise mapsφ, θ :X→ Y overB, the fibrewise homotopyf : I ×X→ Y

is of course coincident with theM-fibrewise homotopy(H,h) : (I ×X, id× p, I ×B)→
(Y, q,B) such thatH(t, x) = f (t, x) and h(t, b) = b. Therefore the concept ofM-
fibrewise homotopy is an extension one of the fibrewise homotopy.

Lemma 2.1. The relation �M is an equivalence relation.

The proof can be easy to see, and so is ommited.

Definition 2.2. An M-fibrewise map(θ,α) : (X1,p1,B1)→ (X2,p2,B2) is called anM-
fibrewise homotopy equivalence if there exists anM-fibrewise map(φ,β) : (X2,p2,B2)→
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(X1,p1,B1) such that(φθ,βα)�M (idX1, idB1), (θφ,αβ)�M (idX2, idB2). We call(φ,β)
theM-fibrewise homotopy inverse of(θ,α).

If there exists anM-fibrewise homotopy equivalence(θ,α) : (X1,p1,B1)→ (X2,p2,

B2), we denote(X1,p1,B1)∼=M (X2,p2,B2).

Lemma 2.2. The relation ∼=M is an equivalence relation.

The proof can be easily verified, and so is ommited.

Definition 2.3. Let (X,p,B) be anM-fibrewise space. IfA⊂X, B0⊂ B andp(A)⊂ B0,

we call(A,p|A,B0) anM-fibrewise subspace of (X,p,B). We sometimes use the notation
(A,p0,B0) instead of(A,p|A,B0).

Definition 2.4. Let (A,p1|A,B0) be an M-fibrewise subspace of(X1,p1,B1), let
(φ,α), (θ,β) : (X1,p1,B1)→ (X2,p2,B2) an M-fibrewise maps such thatφ(x) = θ(x)

andα(b)= β(b) for x ∈A andb ∈ B0. By anM-fibrewise homotopy of (φ,α) into (θ,β)

under (A,p1|A,B0) we mean anM-fibrewise homotopy(H,h) of (φ,α) into (θ,β) such
that for fixedx ∈A, b ∈ B0, H(t, x) andh(t, b) are constant for anyt ∈ I.

Definition 2.5. Let (X,p,B) anM-fibrewise space. AnM-fibrewise subspace(A,p1|A,
B0) is anM-fibrewise retract of (X,p,B) if there exists anM-fibrewise map(R, r) : (X,p,
B)→ (A,p1|A,B0) such thatR(x) = x and r(b) = b for any x ∈ A, b ∈ B0. We call
(R, r) anM-fibrewise retraction.

Definition 2.6. Let (X,p,B) be an M-fibrewise space. AnM-fibrewise subspace
(A,p1|A,B0) is an M-fibrewise deformation retract of (X,p,B) if there exists anM-
fibrewise homotopy(H,h) : (I ×X, id× p, I ×B)→ (X,p,B) of (idX, idB) into anM-
fibrewise retraction(R, r) under(A,p1|A,B0),where(R, r) : (X,p,B)→ (A,p1|A,B0).

Theorem 2.3. Let (X,p,B) be an M-fibrewise space and (A,p1|A,B0) an M-fibrewise
subspace of (X,p,B). If ({0} ×X ∪ I ×A, id× p, {0} × B ∪ I × B0) is an M-fibrewise
retract of (X,p,B), then ({0} ×X ∪ I ×A, id× p, {0} × B ∪ I ×B0) is an M-fibrewise
deformation retract of (I ×X, id× p, I ×B).

Proof. Let (R, r) : (I ×X, id×p, I ×B)→ ({0}×X∪ I ×A, id×p, {0}×B ∪ I ×B0)

be anM-fibrewise retraction. We put

R(t, x)= (
R1(t, x),R2(t, x)

)
, r(t, b)=(

r1(t, b), r2(t, b)
)
.

We define(H,h) : (I × I ×X, id× id× p, I × I ×B)→ (I ×X, id× p, I ×B) by

H(s, t, x)= (
(1− s)t + sR1(t, x),R2(st, x)

)
h(s, t, b)= (

(1− s)t + sr1(t, b), r2(st, b)
)
.
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Then it is easy to see that(H,h) is anM-fibrewise homotopy of(idX, idB) into (R, r)

under({0} ×X ∪ I ×A, id× p, {0} ×B ∪ I ×B0). ✷

3. M-fibrewise cofibrations

In this section, we consider an extended version of fibrewise cofibrations, and obtain
some generalized theorems of fibrewise version [5, §20]. We begin with the following
definition.

Definition 3.1. An M-fibrewise map(u, γ ) : (A,p0,B0)→ (X1,p1,B1) is anM-fibrewise
cofibration if (u, γ ) has the followingM-fibrewise extension property. Let(φ,α) : (X1,p1,

B1) → (X2,p2,B2) be an M-fibrewise map and(G,g) : (I × A, id × γ, I × B0) →
(X2,p2,B2) anM-fibrewise homotopy such that diagrams

A
σ0

u

I ×A

G

X1
φ

X2

B0
δ0

γ

I ×B0

g

B1
α

B2

are commutative. Then there exists anM-fibrewise homotopy(H,h) : (I × X1, id × p1,

I × B1)→ (X2,p2,B2) such thatHκ0 = φ,H(id × u) = G,hρ0 = α,h(id × γ ) = g,

where mapsκ0 :X1→ I × X1 andρ0 :B1→ I × B1 are defined byκ0(x) = (0, x) and
ρ0(b)= (0, b) for anyx ∈X1, b ∈B1.

For anM-fibrewise map(u, γ ) : (A,p0,B0)→ (X1,p1,B1), we can construct theM-
fibrewise push out(M,p,B) of the cotraids

I ×A
σ0←−A

u−→X1

I ×B0
δ0←− B0

γ−→ B1

as follows:M = (I × A+ X1)/∼) andB = (I × B0 + B1)/≈, where(0, a)∼ u(a) for
a ∈A and(0, b)≈ γ (b) for b ∈B0, andp :M→ B is defined by

p(x)=


[γp0(a)] if x = [u(a)], a ∈A,
[t, p0(a)] if x = [t, a], t �= 0,
[p1(x)] if x ∈X1− u(A),

where [∗] is an equivalence class. Then it is easily verified thatp is well defined and
continuous.

Now we shall consider the case in which(A,p0,B0) is an M-fibrewise subspace of
(X1,p1,B1) with p0= p1|A and(u, γ ) : (A,p0,B0)→ (X1,p1,B1) is the inclusion. We
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can define anM-fibrewise map(e, ε) : (M,p,B)→ ({0}×X1∪ I ×A, id×p1, {0}×B1∪
I ×B0) by

e(x)=


(0, a) if x = [u(a)], a ∈A,
(t, a) if x = [t, a], t �= 0,
(0, x) if x ∈X1− u(A),

ε(b) is defined by a similar way. Moreover ifA is closed inX1 andB0 is closed inB1,

the mapse andε are homeomorphisms and we may identity(M,p,B) with ({0} ×X1 ∪
I × A, id × p1, {0} × B1 ∪ I × B0). For eachM-fibrewise map(u, γ ) : (A,p0,B0)→
(X1,p1,B1), we can define anM-fibrewise map(k, ξ) : (M,p,B)→ (I×X1, id×p1, I×
B1) by

k(x)=


(0, u(a)) if x = [u(a)], a ∈A,
(t, u(a)) if x = [t, a], t �= 0,
(0, x) if x ∈X1− u(A),

ξ(b)=


(0, γ (b′)) if b= [γ (b′)], b′ ∈ B0,
(t, γ (b′)) if x = [t, b′], t �= 0,
(0, x) if x ∈B1− γ (B0).

Now we can obtain the following.

Theorem 3.1. The M-fibrewise map (u, γ ) : (A,p0,B0)→ (X1,p1,B1) is an M-fibrewise
cofibration if and only if there exists an M-fibrewise map (L, l) : (I × X1, id × p1,

I ×B1)→ (M,p,B) such that Lk = idM, lξ = idB.

Proof. “If” part: Suppose that there exists anM-fibrewise map(L, l) satisfying the
condition. Let(φ,α) : (X1,p1,B1)→ (X2,p2,B2) and(G,g) : (I×A, id×p0, I×B0)→
(X2,p2,B2) beM-fibrewise maps such that those satisfy the condition of Definition 3.1.
We can define anM-fibrewise map(H̄ , h̄) : (M,p,B)→ (X2,p2,X2) by

H̄ (z)=


φ(u(a)) if z= [u(a)], a ∈A,
φ(x) if z= [x], x ∈X1− u(A),
G(t, a) if z= [t, a], a ∈A, t �= 0,

h̄(b)=


α(γ (b′)) if b = [γ (b′)], b′ ∈B0,
α(b′) if b = [b′], b′ ∈B1− γ (B0),
g(t, b′) if b = [t, b′], b′ ∈B0, t �= 0.

We considerH : I ×X1→X2 andh : I ×B1→B2 such thatH = H̄L,h= h̄l. Then it
is easy to see that the diagram

I ×X1
H

id×p1

X2

p2

I ×B1
h

B2

is commutative. Further we can show thatH(id× u) = G,Hκ0 = φ,h(id × γ ) = g and
hρ0 = α. In fact, for any(t, a) ∈ I × A,H(id× u)(t, a)= H(t,u(a))= H̄L(t, u(a)) =
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H̄Lk([t, a])= H̄ ([t, a])=G(t, a), and for anyx ∈X1,Hκ0(x)= H̄L(0, x)= H̄ ([x])=
φ(x). Also h(id× γ )= g, andhρ0= α can be shown similarly.

“Only if” part: Suppose that(u, γ ) is an M-fibrewise cofibration. Let(G,g) : (I ×
A, id × p0, I × B0) → (M,p,B) and (φ,α) : (X1,p1,B1) → (M,p,B) be two M-
fibrewise maps defined by

G(t, a)=
{ [t, a] if t �= 0,
[u(a)] if t = 0,

g(t, b)=
{ [t, b] if t �= 0,
[γ (b)] if t = 0.

Then the following two diagrams

A
σ0

u

I ×A

G

X1
φ

M

B0
δ0

γ

I ×B0

g

B1
α

B

are commutative. Since(u, γ ) is anM-fibrewise cofibration, there exists anM-fibrewise
homotopy(H,h) : (I×X1, id×p1, I×B1)→ (M,p,B) such thatH(id×u)=G,Hκ0=
φ,h(id× γ ) = g andhρ0 = α. Then we can show thatHk = idM,hξ = idB . In fact, for
the case[x] ∈M, x ∈X1,

Hk
([x])=H(0, x)=Hκ0(x)= φ(x)= [x]

and the case[t, a] ∈M, t �= 0, a ∈A,
Hk

([t, a])=H
(
t, u(a)

)=H(id× u)(t, a)=G(t, a)= [t, a].
ThusHk = idM. Also we can show similarly thathξ = idB ✷

For two M-fibrewise spaces(X1,p1,B1) and (A,p0,B0), if A ⊂ X1, B0 ⊂ B1 and
p0 = p1|A, the pair ((X1,p1,B1), (A,p0,B0)) is called by anM-fibrewise pair. If A

is closed inX0 andB0 is closed inB1, it is called aclosed M-fibrewise pair. For an
M-fibrewise pair((X1,p1,B1), (A,p0,B0)), if the inclusion map(u, γ ) : (A,p0,B0)→
(X1,p1,B1) is anM-fibrewise cofibration, we call the pair((X1,p1,B1), (A,p0,B0)) an
M-fibrewise cofibred pair.

Theorem 3.2. A closed M-fibrewise pair ((X1,p1,B1), (A,p0,B0)) is an M-fibrewise
cofibred pair if and only if there exists an M-fibrewise retraction (R, r) : (I × X1,

id× p1, I ×B1)→ ({0} ×X1 ∪ I ×A, id× p1, {0} ×B1 ∪ I ×B0).

Proof. “Only if” part: Let the inclusion(u, γ ) : (A,p0,B0)→ (X1,p1,B1) be anM-
fibrewise cofibration. From Theorem 3.1, there exists anM-fibrewise map(L, l) : (I ×
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X1, id × p1, I × B1)→ (M,p,B) such thatLk = idM, lξ = idB. Since((X1,p1,B1),

(A,p0,B0)) is a closedM-fibrewise pair,(M,p,B) is identified with({0} × X1 ∪ I ×
A, id×p1, {0}×B1∪ I ×B0). So there exist homeomorphismsg :M→{0}×X1∪ I ×A

andµ :B→ {0} × B1 ∪ I × B0 such that(g,µ) is anM-fibrewise map. Let(R, r) : (I ×
X1, id×p1, I ×B1)→ ({0}×X1∪I ×A, id×p1, {0}×B1∪I ×B0) beR = gL, r = µl.

Then it is easily to verified that(R, r) is anM-fibrewise retraction.
“If” part: Let (R, r) be anM-fibrewise retraction. Using the same notation(g,µ) in

the above,(g−1,µ−1) : ({0} ×X1 ∪ I ×X1, id× p1, {0} × B1 ∪ I × B0)→ (M,p,B) is
a (homeomorphic)M-fibrewise map. LetL= g−1R andl = µ−1r. Then it is easy to see
that(L, l) : (I ×X1, id×p1, I ×B1)→ (M,p,B) satisfies the condition of Theorem 3.1.
Therefore((X1,p1,B1), (A,p0,B0)) is anM-fibrewise cofibred pair. ✷
Corollary 3.3. Let ((X1,p1,B1), (A,p0,B0)) be a closed M-fibrewise cofibred pair. Then
so is (

(T ×X1, idT × p1, T ×B1), (T ×A, idT × p0, T ×B0)
)

for any topological space T .

Proof. Since((X1,p1,B1), (A,p0,B0)) is a closedM-fibrewise cofibred pair, there exists
an M-fibrewise retraction(R, r) : (I × X1, id× p1, I × B1)→ ({0} × X1 ∪ I × A, id×
p1, {0}×B1∪ I ×B0). We define(f,α) : (I × (T ×X1), id× (idT ×p1), I × (T ×B0))→
(T × (I ×X1), idT × (id× p1), T × (I ×B1)) by

f
(
t, (z, x)

)= (
z, (t, x)

)
, α

(
t, (z, b)

)= (
z, (t, b)

)
.

Further we define(g,β) : (T × ({0} ×X1 ∪ I ×A), idT × (id× p1), T × ({0} ×B1 ∪ I ×
B0))→ ({0}× (T ×X1)∪ I × (T ×A), id× (idT ×p1), {0}× (T ×B1)∪ I × (T ×B0))

by

g
(
z, (t, x)

)= (
t, (z, x)

)
, β

(
z, (t, b)

)= (
t, (z, b)

)
.

Then it is easy to see that(f,α) and (g,β) are M-fibrewise maps. We can define an
M-fibrewise map(R̄, r̄) : (I × (T ×X1), id× (idT × p1), I × (T × B1))→ ({0} × (T ×
X1) ∪ I × (T ×A)), id× (idT × p1), ({0} × (T ×B1)∪ I × (T ×B0)) by

R̄ = g(idT ×R)f, r̄ = β(idT × r)α.

Then it is easily to verified that(R̄, r̄) is anM-fibrewise retraction, therefore this completes
the proof by Theorem 3.2.✷
Theorem 3.4. Let (u1, γ1) : (A,p0,B0)→ (X1,p1,B1), (u2, γ2) : (A,p0,B0)→ (X2,

p2,B2) be M-fibrewise maps and (φ,α) : (X1,p1,B1)→ (X2,p2,B2) an M-fibrewise
map such that (φu1, αγ1) �M (u2, γ2). If (u1, γ1) is an M-fibrewise cofibration, then
there exists an M-fibrewise map (ψ,β) : (X1,p1,B1)→ (X2,p2,B2) such that (φ,α)�M

(ψ,β) and ψu1= u2, βγ1= γ2.

Proof. Let (H,h) : (I ×A, id×p0, I ×B0)→ (X2,p2,B2) be anM-fibrewise homotopy
such thatH(0, a)= φu1(a),H(1, a)= u2(1, a), h(0, b)= αγ1(0, b), h(1, b)= γ2(b) for
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a ∈A andb ∈ B0. Since(u1, γ1) is anM-fibrewise cofibration, there exists anM-fibrewise
homotopy(K, k) : (I × X1, id × p1, I × B1)→ (X2,p2,B2) such thatK(id × u1) =
H, Kκ0= φ, k(id× γ1)= h, kρ0= α, whereκt :X1→ I ×X1 andρt :B1→ I ×B1 are
defined byκt (x)= (t, x) andρt (b)= (t, b) for any t ∈ I. Take(ψ,β) beψ =Kκ1, β =
kρ1. Then it is easy to see that(φ,α) �M (ψ,β) by the definition of(ψ,β). Further for
anyx ∈X1, b ∈ B1,

ψu1(a)=Kκ1
(
u1(a)

)=K
(
1, u1(a)

)=K(id× u1)(1, a)=H(1, a)= u2(a),

βγ1(b)= kρ1
(
γ1(b)

)= k
(
1, γ1(b)

)= k(id× γ1)(1, b)= h(1, b)= γ2(b).

This completes the proof.✷
Let (u, γ ) : (A,p0,B0)→ (X1,p1,B1) be anM-fibrewise map. Let(φ,α), (ψ,β) : (X1,

p1,B1)→ (X2,p2,B2) be M-fibrewise maps such thatφu = ψu andαγ = βγ. By an
M-fibrewise homotopy of (φ,α) into (ψ,β) under (A,p0,B0) we mean anM-fibrewise
homotopy(H,h) of (φ,α) into (ψ,β) such thatH(id× u(t, a)) andh(id× γ )(t, b) are
independent oft ∈ I. When such anM-fibrewise homotopy exists we say that(φ,α) and
(ψ,β) areM-fibrewise homotopicunder (A,p0,B0) and write(φ,α) �M (ψ,β) under
(A,p0,B0). For the case(A,p0,B0) is anM-fibrewise subspace of(X1,p1,B1), see De-
finitions 2.4 and 2.6.

Theorem 3.5. Let (u, γ ) : (A,p0,B0)→ (X1,p1,B1) be an M-fibrewise cofibration. Let
(θ,α) : (X1,p1,B1)→ (X1,p1,B1) be an M-fibrewise map under (A,p0,B0) such that
(θ,α) �M (idX1, idB1). Then there exists an M-fibrewise map (θ ′, α′) : (X1,p1,B1)→
(X1,p1,B1) under (A,p0,B0) such that (θ ′θ,α′α)�M (idX1, idB1) under (A,p0,B0).

Proof. Let (H,h) : (I×X1, id×p1, I ×B1)→ (X1,p1,B1) be anM-fibrewise homotopy
of (θ,α) into (idX1, idB1). Then the following two diagrams

A
σ0

u

I ×A

H(id×u)

X1
idX1

X1

B0
δ0

u

I ×B0

h(id×γ )

B1
idB1

B1

are commutative. Since(u, γ ) is anM-fibrewise cofibration, there exists anM-fibrewise
homotopy(K, k) : (I ×X1, id× p1, I ×B1)→ (X1,p1,B1) such that

K(id× u)=H(id× u), Kκ0= idX1,

k(id× γ )= h(id× γ ), kρ0= idB1,
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whereκt :X1→ I ×X1, ρ :B1→ I ×B1 are defined byκt (x)= (t, x) andρt (b)= (t, b)

for anyt ∈ I , respectively. Letθ ′ =Kκ1 andα′ = kρ1. We can define anM-fibrewise map
(G,g) : (I ×X1, id× p1, I ×B1)→ (X1,p1,B1) as follows:

G(s, x)=
{
K(1− 2s, θ(x)) if 0 � s � 1

2,
H(2s − 1, x) if 1

2 � s � 1,

g(s, b)=
{
k(1− 2s,α(b)) if 0 � s � 1

2,
h(2s − 1, b) if 1

2 � s � 1.

Then it is easy to see thatGκ0= θ ′θ, Gκ1= idX1, gρ0= α′α, gρ1= idB1.

Now we shall prove that(θ ′θ,α′α) �M (idX1, idB1) under(A,p0,B0). We consider
(M,m) : (I × I ×A, id× id× p0, I × I ×B0)→ (X1,p1,B1) such that

M(s, t, x)=
{
K(1− 2s(1− t), u(a)) if 0 � s � 1

2,
H(1− 2(1− s)(1− t), u(a)) if 1

2 � s � 1,

m(s, t, b)=
{
k(1− 2s(1− t), γ (b)) if 0 � s � 1

2,
h(1− 2(1− s)(1− t), γ (b)) if 1

2 � s � 1.

Let anys ∈ I fix. Let (Ms,ms) : (I ×A, id×p0, I ×B0)→ (X1,p1,B1) be anM-fibre-
wise map defined by

Ms(t, a)=M(s, t, a), ms(t, b)=m(s, t, b)

and(Gs, gs) : (X1,p1,B1)→ (X1,p1,B1) anM-fibrewise map defined by

Gs(x)=G(s, x), gs = g(s, b).

Then the following two diagrams

A
σ0

u

I ×A

Ms

X1
Gs

X1

B0
δ0

u

I ×B0

ms

B1
gs

B1

are commutative. Since(u, γ ) is anM-fibrewise cofibration, there exists anM-fibrewise
homotopy(Ns, ns) : (I × X1, id × p1, I × B1)→ (X1,p1,B1) such thatNs(id × u) =
Ms, Nsκ0=Gs, ns(id× γ )=ms, nsρ0= gs. Then it is easily verified that(

θ ′θ,α′α
)= (G0, g0)= (N0κ0, n0ρ0)�M (N0κ1, n0ρ1)�M (N1κ1, n1ρ1)

�M (N1κ0, n1ρ0)= (G1, g1)= (idX1, idB1),

where each�M is M-fibrewise homotopic under(A,p0,B0). This completes the
proof. ✷
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Using this theorem, we shall prove the following.

Theorem 3.6. Let (u1, γ1) : (A,p0,B0) → (X1,p1,B1) and (u2, γ2) : (A,p0,B0) →
(X2,p2,B2) be M-fibrewise cofibrations. Let (φ,α) : (X1,p1,B1) → (X2,p2,B2) be
an M-fiberwise map such that (φu1, αγ1) = (u2, γ2). Suppose that (φ,α) is an M-
fibrewise homotopy equivalence. Then (φ,α) is an M-fibrewise homotopy equivalence
under (A,p0,B0).

Proof. Since (φ,α) is an M-fibrewise homotopy equivalence, there exists anM-
fibrewise homotopy inverse(ψ,β) : (X2,p2,B2) → (X1,p1,B1). Then (ψu2, βγ2) =
(ψφu1, βαγ1)�M (u1, γ1). From Theorem 3.4, there exists anM-fibrewise map(ψ ′, β ′) :
(X2,p2,B2)→ (X1,p1,B1) such that(ψ,β) �M (ψ ′, β ′) and (ψ ′u2, β

′γ2) = (u1, γ1).

Since(ψφ,βα)�M (idX1, idB1) and(ψ ′φ,β ′α)�M (idX1, idB1), from Theorem 3.5 there
exists anM-fibrewise map(ψ ′′, β ′′) : (X1,p1,B1)→ (X1,p1,B1) such that(ψ ′′, β ′′)�M

(ψ ′φ,β ′α) and(ψ ′′ψ ′φ,β ′′β ′α) �M (idX1, idB1) under(A,p0,B0). Let ψ̄ = ψ ′′ψ ′ and
β̄ = β ′′β ′. Then(ψ̄φ, β̄α)�M (idX1, idB1) under(A,p0,B0).

Now we shall prove that there exists anM-fibrewise map(φ̄, ᾱ) : (X1,p1,B1) →
(X2,p2,B2) such that(φ̄ψ̄, ᾱβ̄)�M (idX2, idB2). Since(φψ̄,αβ̄)= (φψ ′′ψ ′, αβ ′′β ′)�M

(φ(ψ ′φ)ψ ′, α(β ′α)β ′) = ((φψ ′)(φψ ′), (αβ ′)(αβ ′)) �M (idX2, idB2), from Theorem 3.5
there exists anM-fibrewise map(φ′, α′) : (X2,p2,B2)→ (X2,p2,B2) such that(φ′φψ̄,

α′αβ̄)�M (idX2, idB2) under(A,p0,B0). Let φ̄ = φ′φ andᾱ = α′α. Then(φ̄ψ̄, ᾱβ̄)�M

(idX2, idB2). Since

(φ,α)�M ((
φ̄ψ̄

)
φ,

(
ᾱβ̄

)
α
)= (

φ̄
(
ψ̄φ

)
, ᾱ

(
β̄α

))�M (
φ̄, ᾱ

)
,

(ψ̄, β̄) is anM-fibrewise homotopy inverse of(φ,α) under(A,p0,B0). ✷
Definition 3.2. Let ((X1,p1,B1), (A,p0,B0)) be a closedM-fibrewise pair. AnM-
fibrewise Strøm structure on ((X1,p1,B1), (A,p0,B0)) is a pair ((α,β), (H,h)) con-
sisting of mapsα :X1→ I, β :B1→ I which satisfyβp1 = α and are zero through-
out (A,p0,B0) and anM-fibrewise homotopy(H,h) : (I × X1, id × p1, I × B1) →
(X1,p1,B1) under(A,p0,B0) of (idX1, idB1) such thatH(t, x) ∈ A, h(s, b) ∈ B0 for
anyt � α(x), s � β(b).

We obtain the following theorems.

Theorem 3.7. A closed M-fibrewise pair ((X1,p1,B1), (A,p0,B0)) is M-fibrewise
cofibred if and only if there exists an M-fibrewise Strøm structure on ((X1,p1,B1), (A,p0,

B0)).

Proof. “If” part: Let ((α,β), (H,h)) be anM-fibrewise Strøm structure on((X1,p1,B1),

(A,p0,B0)). We can define anM-fibrewise map

(R, r) : (I ×X1, id× p1, I ×B1)

→ ({0} ×X1 ∪ I ×A, id× p1, {0} ×B1 ∪ I ×B0
)
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by

R(t, x)=
{
(0,H(t, x)) if t � α(x),
(t − α(x),H(t, x)) if t � α(x),

r(t, b)=
{
(0, h(t, b)) if t � β(b),
(t − β(b),h(t, b)) if t � β(b).

Then(R, r) is anM-fibrewise retraction. In fact, for any(0, x) ∈ {0} ×X1, R(0, x)=
(0,H(0, x)) = (0, x) since 0� α(x). Next, for any (t, a) ∈ I × A, R(t, a) = (t −
0,H(t, a)) = (t, a) since t � α(a) = 0, and (H,h) is an M-fibrewise map under
(A,p0,B0). ThusR is a retraction. By the same way,r is also a retraction.

“Only if” part: Suppose that((X1,p1,B1), (A,p0,B0)) is a closedM-fibrewise
cofibred pair. Then from Theorem 3.2 there exists anM-fibrewise retraction(R, r) : (I ×
X1, id× p1, I × B1)→ ({0} ×X1 ∪ I × A, id× p1, {0} × B1 ∪ I × B0). Let R(t, x) =
(R1(t, x),R2(t, x)) andr(t, b)= (r1(t, b), r2(t, b)). Then we define mapsα :X1→ I and
β :B1→ I by

α(x)= sup
t∈I

∣∣R1(t, x)− t
∣∣ (x ∈X1),

β(b)= sup
t∈I

∣∣r1(t, b)− t
∣∣ (b ∈B1).

Then it is easily verified that((α,β), (R2, r2)) constitutes anM-fibrewise Strøm structure
on ((X1,p1,B1), (A,p0,B0)). ✷
Theorem 3.8. Let ((X1,p1,B1), (X

′
1,p1,B

′
1)) and ((X2,p2,B2), (X

′
2,p2,B

′
2)) be a

closed M-fibrewise cofibred pair. Then(
(X1×X2,p1× p2,B1×B2),(
X′1×X2 ∪X1×X′2,p1× p2,B

′
1×B2 ∪B1×B ′2

))
is also an M-fibrewise cofibred pair.

Proof. Let ((α1, β1), (H1, h1)) and((α2, β2), (H2, h2)) be M-fibrewise Strøm structures
on ((X1,p1,B1), (X

′
1,p1,B

′
1)) and ((X2,p2,B2), (X

′
2,p2,B

′
2)), respectively. Define

γ :X1×X2→ I andη :B1×B2→ I by

γ (x, y)=min
(
α1(x),α2(y)

) (
(x, y) ∈X1×X2

)
η(b, c)=min

(
β1(b),β2(c)

) (
(b, c) ∈ B1×B2

)
and define(K, k) : (I × (X1 × X2), id × (p1 × p2), I × (B1 × B2))→ (X1 × X2,p1 ×
p2,B1×B2) by

K
(
t, (x, y)

)= (
H1

(
min

(
t, α2(y)

)
, x

)
,H2

(
min

(
t, α1(x)

)
, y

))
k
(
t, (b, c)

)= (
h1

(
min

(
t, β2(c)

)
, b

)
, k2

(
min

(
t, β1(b)

)
, c

))
,

where(x, y) ∈X1×X2 and(b, c) ∈ B1×B2. Then it is easily verified that((γ, η), (K, k))

constitutes anM-fibrewise Strøm structure. Thus this completes the proof from Theo-
rem 3.7. ✷
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Definition 3.3. Let us describe anM-fibrewise Strøm structure((α,β), (H,h)) on the
closedM-fibrewise pair((X1,p1,B1), (A,p0,B0)) asstrict if α < 1 throughoutX1 and
β < 1 throughoutB1.

Theorem 3.9. Let ((X1,p1,B1), (A,p0,B0)) be a closed M-fibrewise cofibred pair. Then
there exists a strict M-fibrewise Strøm structure on this pair if and only if there exists an
M-fibrewise deformation retraction of (X1,p1,B1) onto (A,p0,B0)).

Proof. “Only if” part: Let ((α,β), (H,h)) be an M-fibrewise Strøm structure on
((X1,p1,B1), (A,p0,B0)). Then we shall prove that(H,h) is anM-fibrewise deformation
retraction. In fact, from the definition of anM-fibrewise Strøm structure,Hκ0 =
idX1, hρ0 = idB0, whereκt :X1→ I ×X1 andρt :B1→ I × B1 are defined byκt (x)=
(t, x) andρt (b)= (t, b). Next for anya ∈A, a =H(1, a)=Hκ1(a) ∈Hκ1(X1). For any
x ∈X1, since 1� α(x), Hκ1(x)=H(1, x) ∈A. hρ1(B1)= B0 is similarly proved.

“If” part: Let (H,h) : (I × X1, id × p1, I × B1)→ (X1,p1,B1) be anM-fibrewise
deformation retraction and((α,β), (K, k)) anM-fibrewise Strøm structure. We can define
mapsα′ :X1→ I andβ ′ :B1→ I by

α′(x)=min
(
α(x), 1

2

)
, β ′(b)=min

(
β(b), 1

2

)
(x ∈X1, b ∈ B1).

Take(H ′, h′) : (I ×X1, id× p1, I ×B1)→ (X1,p1,B1) to be

H ′(t, x)=H
(
min(2t,1),K(t, x)

)
, h′(t, b)= h

(
min(2t,1), k(t, b)

)
(t ∈ I, x ∈ X1, b ∈ B1). Then it is easy to see that((α′, β ′), (H ′, h′)) is a strict M-
fibrewise Strøm structure.✷

Returning to the proof of Theorem 3.8, we observe that ifα1 < 1, β1 < 1 or α2 <

1, β2 < 1, thenγ < 1, η < 1, so we obtain

Theorem 3.10. Let ((X1,p1,B1), (X
′
1,p1,B

′
1)) and ((X2,p2,B2), (X

′
2,p2,B

′
2)) be an

closed M-fibrewise cofibred pairs. If (X′1,p1,B
′
1) or (X′2,p2,B

′
2) is an M-fibrewise

deformation retract of (X1,p1,B1) or (X2,p2,B2) respectively, then (X′1 × X2 ∪ X1 ×
X′2,p1 × p2,B

′
1 × B2 ∪ B1 × B ′2) is an M-fibrewise deformation retract of (X1 × X2,

p1× p2,B1×B2).

4. M-fibrewise fibrations

In this section, we consider an extended version of fibrewise fibrations, and obtain some
generalized theorems of fibrewise version [5, §23]. We begin with the following definition.

Definition 4.1. An M-fibrewise map(φ,α) : (E,p1,B1)→ (F,p2,B2) is anM-fibrewise
fibration if (φ,α) has the following property for anyM-fibrewise space(X,p0,B0): Let
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(f,β) : (X,p0,B0)→ (E,p1,B1) be anM-fibrewise map and(H,h) : (I × X, id × p0,

I ×B0)→ (F,p2,B2) anM-fibrewise homotopy such that following diagrams

X
f

σ0

E

φ

I ×X
H

F

B0
β

δ0

B1

α

I ×B0
h

B2

are commutative. Then there exists anM-fibrewise homotopy(K, k) : (I × X, id × p0,

I ×B0)→ (E,p1,B1) such thatφK =H,Kσ0= f,αk = h, kδ0= β.

The property involved here is called theM-fibrewise homotopy lifting property; theM-
fibrewise homotopy(H,h) of (φf,αβ) is lifted to anM-fibrewise homotopy(K, k) of
(f,β) itself.

Theorem 4.1. Let (X,p,B) be an M-fibrewise space, α :X→ I,β :B → I maps such
that α = βp and for A= α−1(0), B0 = β−1(0), (A,p0,B0) an M-fibrewise deformation
retract of (X,p,B), where p0 = p|A. Let (φ, η) : (E1,p1,B1)→ (E2,p2,B2) be an
M-fibrewise fibration. For two M-fibrewise maps (f1,µ1) : (A,p0,B0)→ (E1,p1,B1),
(f2,µ2) : (X,p,B)→ (E2,p2,B2) such that φf1 = f2|A and ηµ1 = µ2|B0, there exists
an M-fibrewise map (h, ζ ) : (X,p,B) → (E1,p1,B1) such that h|A = f1, φh = f2,
ζ |B0= µ1, ηζ = µ2.

Proof. Let (R, r) : (X,p,B)→ (A,p0,B0) be anM-fibrewise retraction and(K, k) : (I ×
X, id × p, I × B)→ (X,p,B) an M-fibrewise deformation retraction of(iR, jr) into
(idX, idB), wherei :A→ X and j :B0→ B are inclusions. TakeD : I × X andd : I ×
B1→ B1 to be

D(t, x)=
{
K

(
min

(
1, t

α(x)

)
, x

)
if x /∈A,

K(t, x) if x ∈A,

d(t, b)=
{
k
(
min

(
1, t

β(b)

)
, b

)
if b /∈B0,

k(t, b) if b ∈B0.

Then following two diagrams

X
f1Kσ0

σ0

E1

φ

I ×X
f2D

E2
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B
µ1kδ0

δ0

B1

η

I ×B
µ2d

B2

are commutative. Since(φ, η) is an M-fibrewise fibration, there exists anM-fibrewise
homotopy(G,g) : (I × X, id× p, I × B)→ (E1,p1,B1) such thatφG = f2D, Gσ0 =
f1Kσ0, ηg = µ2d, gδ0= µ1kδ0. Then takeh :X→E1 andζ :B→ B1 to be

h(x)=G
(
α(x), x

)
, ζ(b)= (

β(b), b
)

(x ∈X, b ∈ B)
Then it is easy to see that(h, ζ ) is the required one. ✷
Theorem 4.2. Let (φ,µ) : (E,p1,B1)→ (F,p2,B2) be an M-fibrewise fibration and
((F,p2,B2), (F

′,p2,B
′
2)) an M-fibrewise cofibred pair. Then ((E,p1,B1), (E

′,p1,B
′
1)),

where E′ = φ−1F ′, B ′1= µ−1B ′2 is an M-fibrewise cofibred pair.

Proof. Let ((α,β), (H,h)) be anM-fibrewise Strøm structure on((F,p2,B2), (F
′,p2,

B ′2)). Then following two diagrams

E
idE

σ0

E

φ

I ×E
H(id×φ)

F

B1
idB1

δ0

B1

µ

I ×B1
h(id×µ)

B2

are commutative. Since(φ,µ) is an M-fibrewise fibration, there exists anM-fibrewise
homotopy (K, k) : (I × E, id × p1, I × B1) → (E,p1,B1) such thatφK = H(id ×
φ), Kσ0= idE, µk = h(id×µ), kδ0= idB1. Takeγ :E→ I andξ :B1→ I to be

γ (x)=min
(
2α

(
φ(x)

)
,1

)
, ξ(b)=min

(
2β

(
µ(b)

)
,1

)
(x ∈E, b ∈B1).

Then for anye ∈E′ = φ−1F ′, αφ(e)= 0, soγ (e)= 0. Similarly, for anyb ∈ B ′1, ξ(b)=
0. Next take(L, l) : (I ×E, id× p1, I ×B1)→ (E,p1,B1) to be

L(t, x) = K
(
min

(
t, αφ(x)

)
, x

)
,

l(t, b) = k
(
min

(
t, βµ(b)

)
, b

)
(t ∈ I, x ∈E, b ∈ B1).

Then it is easy to see that((γ, ξ), (L, l)) is an M-fibrewise Strøm structure on
((E,p1,B1), (E

′,p1,B
′
1)) so ((E,p1,B1), (E

′,p1,B
′
1)) is anM-fibrewise cofibred pair

by Theorem 3.7. ✷
Theorem 4.3. Let (ξ,α) : (X1,p1,B1)→ (E,p,B), (η,β) : (X2,p2,B2)→ (E,p,B) be
M-fibrewise maps and (φ, γ ) : (X1,p1,B1)→ (X2,p2,B2) an M-fibrewise map such that
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(ηφ,βγ )�M (ξ,α). If (η,β) is an M-fibrewise fibration, then there exists an M-fibrewise
map (ψ, ε) : (X1,p1,B1)→ (X2,p2,B2) such that (φ, γ ) �M (ψ, ε) and (ηψ,βε) =
(ξ,α).

Proof. From (ηφ,βγ ) �M (ξ,α), there exists anM-fibrewise homotopy(G,g) : (I ×
X1, id × p1, I × B1)→ (E,p,B) such thatGσ0 = ηφ, gδ0 = βγ, Gσ1 = ξ , gδ1= α.
Since(η,β) is anM-fibrewise fibration, there exists anM-fibrewise homotopy(H,h) : (I×
X1, id×p1, I ×B1)→ (X2,p2,B2) such thatHσ0= φ, hδ0= γ, ηH =G, βh= g. Put
ψ =Hσ1 andε = hδ1. Then it is easy to see that(φ, γ )= (Hσ0, hδ0)�M (Hσ1, hδ1)=
(ψ, ε) and(ηψ,βε)= (ηHσ1, βhδ1)= (Gσ1, gδ1)= (ξ,α). ✷

5. M-fibrewise pointed homotopy

In this section, we consider an extended version of fibrewise pointed homotopy, and
obtain some generalized results of fibrewise version [5, §19, 21]. The proofs of theorems
of this section are very similar to those of the theorems of the previous Sections 3 and 4,
so we omit the proofs.

When an M-fibrewise space(X,p,B) has a sections :B → X, we call it an
M-fibrewise pointed space and denote(X,p,B, s). For two M-fibrewise pointed spaces
(X1,p1,B1, s1), (X2,p2,B2, s2), if an M-fibrewise map(f,α) : (X1,p1,B1)→ (X2,p2,

B2) satisfiesf s1= s2α, we call it anM-fibrewise pointed map and denote(f,α) : (X1,p1,

B1, s1)→ (X2,p2,B2, s2).

Definition 5.1. Let (φ,α), (θ,β) : (X1,p1,B1, s1) → (X2,p2,B2, s2) be M-fibrewise
pointed maps. If there exists anM-fibrewise pointed map(H,h) : (I × X1, id × p1,

I ×B1, id× s1)→ (X2,p2,B2, s2) such that(H,h) is anM-fibrewise homotopy of(φ,α)
into (θ,β), we call it anM-fibrewise pointed homotopy of (φ,α) into (θ,β).

If there exists anM-fibrewise pointed homotopy of(φ,α) into (θ,β), we say(φ,α) is
M-fibrewise pointed homotopic to (θ,β) and write(φ,α)�M

(P) (θ, β).

Lemma 5.1. The relation �M
(P) is an equivalence relation.

Definition 5.2. An M-fibrewise pointed map(θ,α) : (X1,p1,B1, s1)→ (X2,p2,B2, s2) is
called anM-fibrewise pointed homotopy equivalence if there exists anM-fibrewise pointed
map (φ,β) : (X2,p2,B2, s2) → (X1,p1,B1, s1) such that(φθ,βα) �M

(P) (idX1, idB1),

(θφ,αβ)�M
(P) (idX2, idB2). Then we denote(X1,p1,B1, s1)∼=M

(P) (X2,p2,B2, s2).

Lemma 5.2. The relation ∼=M
(P) is an equivalence relation.

Definition 5.3. Let (θ,α), (φ,β) : (X1,p1,B1, s1) → (X2,p2,B2, s2) be M-fibrewise
pointed maps. Further letA be a subspace ofX1 andB0 a subspace ofB1 such that
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p1(A) = B0 and θ(x) = φ(x) for any x ∈ A, α(b) = β(b) for any b ∈ B0. By an M-
fibrewise pointed homotopy of (θ,α) into (φ,β) under (A,p1|A,B0, s1|B0) we mean an
M-fibrewise pointed homotopy(H,h) of (θ,α) into (φ,β) such that for fixedx ∈ A and
b ∈ B0, Hσt (x) andhδt (b) are constant for anyt ∈ I. Moreover(A,p1|A,B0, s1|B0) is
called anM-fibrewise pointed subspace of (X1,p1,B1, s1).

Definition 5.4. Let (X1,p1,B1, s1) be anM-fibrewise pointed space, and(A,p0,B0, s0)

a subspace of(X1,p1,B1, s1) such thatp1(A)= B0, wherep0= p1|A ands0= s1|B0. An
M-fibrewise pointed retraction we mean anM-fibrewise pointed map(R, r) : (X1,p1,B1,

s1)→ (A,p0,B0, s0) such that(R, r) is anM-fibrewise retraction.

Definition 5.5. Let (X1,p1,B1, s1) be anM-fibrewise pointed space. AnM-fibrewise
pointed subspace(A,p1|A,B0, s1|B0) of (X1,p1,B1, s1) is an M-fibrewise pointed
deformation retract of (X1,p1,B1, s1) if there exists anM-fibrewise pointed homo-
topy (H,h) : (I × X1, id × p1, I × B1, id × s1)→ (X1,p1,B1, s1) of (idX1, idB1) into
(R, r) which is anM-fibrewise deformation retraction, where(R, r) : (X1,p1,B1, s1)→
(A,p0,B0, s0) is anM-fibrewise pointed retraction.

Theorem 5.3. Let (X1,p1,B1, s1) be an M-fibrewise pointed space and (A,p1|A,B0,

s1|B0) an M-fibrewise pointed subspace of (X1,p1,B1, s1). If ({0} × X1 ∪ I × A, id ×
p1, {0} ×B1 ∪ I ×B0, id× s1) is an M-fibrewise pointed retract of (I ×X1, id× p1, I ×
B1, id× s1), then ({0}×X1∪ I ×A, id×p1, {0}×B1∪ I ×B0, id× s1) is an M-fibrewise
pointed deformation retract of (I ×X1, id× p1, I ×B1, id× s1).

Definition 5.6. An M-fibrewise pointed map(u, γ ) : (A,p0,B0, s0)→ (X1,p1,B1, s1) is
anM-fibrewise pointed cofibration if (u, γ ) has the following property: Let(φ,α) : (X1,p1,

B1, s1)→ (X2,p2,B2, s2) be anM-fibrewise pointed map and(H,h) : (I × A, id × γ,

I × B0, id× s0)→ (X2,p2,X2, s2) an M-fibrewise pointed homotopy such that the fol-
lowing two diagrams

A
σ0

u

I ×A

H

X1
φ

X2

B0
δ0

γ

I ×B0

h

B1
α

B2

are commutative. Then there exists anM-fibrewise pointed homotopy(K, k) : (I × X1,

id×p1, I ×B1, id× s1)→ (X2,p2,B2, s2) such thatKκ0= φ,K(id× u)=H,kρ0= α,

k(id×γ )= h, whereκ0 :X1→ I ×X1 andρ0 :B1→ I ×B1 are defined byκ0(x)= (0, x)
andρ0(b)= (0, b) for x ∈X1, b ∈ B1.
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For an M-fibrewise pointed map(u, γ ) : (A,p0,B0, s0)→ (X1,p1,X1, s1), we can
construct theM-fibrewise push out(M,p,B, s) of the cotraids

I ×A
σ0←−A

u−→X1

I ×B0
δ0←− B0

γ−→B1

by the same methods in Section 3. In this case, it is enough to add thats :B→M is defined
by

s(b)=


[s0(b′)] if b= [γ (b′)], b′ ∈ B0,
[t, s0(b′)] if b= [t, b′], t �= 0, b′ ∈ B0,
[s1(b)] if b ∈ B1− γ (B0).

Lemma 5.4. The map s is a section. So (M,p,B, s) is an M-fibrewise pointed space.

In the case in which(A,p0,B0, s0) is an M-fibrewise pointed subspace of(X1,p1,

B1, s1) such thatp1(A)⊂ B0 and(u, γ ) is inclusion, by the same methods as Section 3,
we can define anM-fibrewise pointed map(e, ε) : (M,p,B, s)→ ({0}×X1∪ I ×A, id×
p1, {0} ×B1 ∪ I ×B0, id× s1). Further it is obvious thate andε are homeomorphisms.

We use the same notation as Section 3.

Theorem 5.5. An M-fibrewise pointed map (u, γ ) : (A,p0,B0, s0)→ (X1,p1,B1, s1) is
an M-fibrewise pointed cofibration if and only if there exists an M-fibrewise pointed map
(L, l) : (I ×X1, id× p1, I ×B1, id× s1)→ (M,p,B, s) such that Lk = idM, lξ = idB.

Corollary 5.6. Let ((X1,p1,B1, s1), (A,p0,B0, s0)) be a closed M-fibrewise pointed
cofibred pair. Then so is(

(T ×X1, id× p1, T ×B1, id× s1), (T ×A, id× p0, T ×B0, id× s0)
)

for any topological space T .

Theorem 5.7. Let (u0, γ0) : (A,p0,B0, s0) → (X1,p1,B1, s1), (u1, γ1) : (A,p0,B0,

s0) → (X2,p2,B2, s2) be M-fibrewise pointed maps and (φ,α) : (X1,p1,B1, s1) →
(X2,p2,B2, s2) an M-fibrewise pointed map such that (φu1, αγ1)�M

(P)
(u2, γ2). If (u1, γ1)

is an M-fibrewise pointed cofibration, then there exists an M-fibrewise pointed map
(ψ,β) : (X1,p1,B1, s1)→ (X2,p2,B2, s2) such that ψu1= u2, βγ1= γ2.

Theorem 5.8. Let (u, γ ) : (A,p0,B0, s0)→ (X1,p1,B1, s1) be an M-fibrewise pointed
cofibration. Let (θ,α) : (X1,p1,B1, s1)→ (X1,p1,B1, s1) be an M-fibrewise pointed map
under (A,p0,B0, s0) such that (θ,α) �M

(P)
(idX1, idB1). Then there exists an M-fibrewise

pointed map (θ ′, α′) : (X1,p1,B1, s1)→ (X1,p1,B1, s1) under (A,p0,B0, s0) such that
(θ ′θ,α′α)�M

(P)
(idX1, idB1) under (A,p0,B0, s0).

Theorem 5.9. Let (u1, γ1) : (A,p0,B0, s0)→ (X1,p1,B1, s1) and (u2, γ2) : (A,p0,B0,

s0)→ (X2,p2,B2, s2) be M-fibrewise pointed cofibrations. Let (φ,α) : (X1,p1,B1, s1)→
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(X2,p2,B2, s2) be an M-fibrewise pointed map such that (φu1, αγ1)= (u2, γ2). Suppose
that (φ,α) is an M-fibrewise pointed homotopy equivalence. Then (φ,α) is an M-fibrewise
pointed homotopy equivalence under (A,p0,B0, s0).
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