

brought to you by

Topology and its Applications 122 (2002) 205-222

www.elsevier.com/locate/topol

A new approach to fibrewise fibrations and cofibrations

Takashi Hotta, Takuo Miwa*

Department of Mathematics, Shimane University, Matsue 690-8504, Japan Received 4 January 2000; received in revised form 13 November 2000

Abstract

We study the fibrewise (pointed) homotopy, fibrewise (pointed) fibration and fibrewise (pointed) cofibration in the category **MAP**. © 2002 Elsevier Science B.V. All rights reserved.

AMS classification: Primary 55R65; 55P05, Secondary 55S37

Keywords: Fibrewise topology; Category **MAP**; Fibrewise (pointed) homotopy; Fibrewise (pointed) cofibration; Fibrewise (pointed) fibration

1. Introduction

For a base space *B*, the category **TOP**_{*B*} is the fibrewise topology over *B*. For general topology of continuous maps or fibrewise general topology, see Pasynkov [6]. In **TOP**_{*B*}, the fibrewise homotopy was studied by many mathematicians; for this, see [3,5]. In [1,2], Buhagiar studied fibrewise topology in the category of all continuous maps, called **MAP** by him (as a way of thinking of a category, **MAP** can be seen in earlier works, see, for example, [7]). The study of fibrewise topology in **MAP** is a generalization of it in the category **TOP**_{*B*}. In this study, we clarify that in treating fibrewise homotopy and fibrewise pointed homotopy, we can freely consider $I \times B$ as base spaces, and therefore need not consider some complicated procedures $((I \times B) \times_B X = I \times X$ and the reduced fibrewise cylinder $I \times X$ for constructing sections).

The objects of **MAP** are continuous maps from any topological space into any topological space. For two objects $p_1: X_1 \rightarrow B_1$ and $p_2: X_2 \rightarrow B_2$, a morphism from

^{*} Corresponding author.

E-mail address: miwa@math.shimane-u.ac.jp (T. Miwa).

^{0166-8641/02/}\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0166-8641(01)00144-4

 p_1 into p_2 is a pair (ϕ, α) of continuous maps $\phi: X_1 \to X_2, \alpha: B_1 \to B_2$ such that the diagram

$$\begin{array}{c|c} X_1 & \xrightarrow{\phi} & X_2 \\ p_1 & & & & \\ p_1 & & & & \\ B_1 & \xrightarrow{\alpha} & B_2 \end{array}$$

is commutative. We note that this situation is a generalization of the category **TOP**_B since the category **TOP**_B is isomorphic to the particular case of **MAP** in which the spaces $B_1 = B_2 = B$ and $\alpha = id_B$. We call an object $p: X \to B$ an **M**-fibrewise space and denote (X, p, B). Also, for two **M**-fibrewise spaces $(X_1, p_1, B_1), (X_2, p_2, B_2)$, we call the morphism (ϕ, α) from p_1 into p_2 an **M**-fibrewise map, and denote $(\phi, \alpha): (X_1, p_1, B_1) \to$ (X_2, p_2, B_2) .

In this paper, we assume that all spaces are topological spaces, and all maps are continuous. The space I = [0, 1] and *id* is the identity map of I into I. Moreover, we use the following notation: For any $t \in I$, the maps $\sigma_t : X \to I \times X$ and $\delta_t : B \to I \times B$ are defined by

$$\sigma_t(x) = (t, x), \quad \delta_t(b) = (t, b) \quad (x \in X, b \in B).$$

For other undefined terminology, see [4,5].

2. M-fibrewise homotopy

In this section, we shall define an **M**-fibrewise homotopy, which is an extended version of fibrewise homotopy [5, §18].

Definition 2.1. Let (ϕ, α) , (θ, β) : $(X_1, p_1, B_1) \rightarrow (X_2, p_2, B_2)$ be **M**-fibrewise maps. The **M**-fibrewise homotopy of (ϕ, α) into (θ, β) is an **M**-fibrewise map (H, h): $(I \times X_1, id \times p_1, I \times B_1) \rightarrow (X_2, p_2, B_2)$ such that $H\sigma_0 = \phi$, $H\sigma_1 = \theta$, $h\delta_0 = \alpha$, $h\delta_1 = \beta$.

If there exists an **M**-fibrewise homotopy of (ϕ, α) into (θ, β) , we say (ϕ, α) is **M**-fibrewise homotopic to (θ, β) and denote $(\phi, \alpha) \simeq^{\mathbf{M}} (\theta, \beta)$.

Remark. For fibrewise maps ϕ , θ : $X \to Y$ over B, the fibrewise homotopy $f : I \times X \to Y$ is of course coincident with the **M**-fibrewise homotopy $(H, h) : (I \times X, id \times p, I \times B) \to (Y, q, B)$ such that H(t, x) = f(t, x) and h(t, b) = b. Therefore the concept of **M**-fibrewise homotopy is an extension one of the fibrewise homotopy.

Lemma 2.1. The relation $\simeq^{\mathbf{M}}$ is an equivalence relation.

The proof can be easy to see, and so is ommited.

Definition 2.2. An **M**-fibrewise map $(\theta, \alpha) : (X_1, p_1, B_1) \rightarrow (X_2, p_2, B_2)$ is called an **M**-fibrewise homotopy equivalence if there exists an **M**-fibrewise map $(\phi, \beta) : (X_2, p_2, B_2) \rightarrow$

 (X_1, p_1, B_1) such that $(\phi \theta, \beta \alpha) \simeq^{\mathbf{M}} (\mathrm{id}_{X_1}, \mathrm{id}_{B_1}), (\theta \phi, \alpha \beta) \simeq^{\mathbf{M}} (\mathrm{id}_{X_2}, \mathrm{id}_{B_2})$. We call (ϕ, β) the **M**-fibrewise homotopy inverse of (θ, α) .

If there exists an **M**-fibrewise homotopy equivalence $(\theta, \alpha) : (X_1, p_1, B_1) \to (X_2, p_2, B_2)$, we denote $(X_1, p_1, B_1) \cong^{\mathbf{M}} (X_2, p_2, B_2)$.

Lemma 2.2. The relation $\cong^{\mathbf{M}}$ is an equivalence relation.

The proof can be easily verified, and so is ommited.

Definition 2.3. Let (X, p, B) be an **M**-fibrewise space. If $A \subset X$, $B_0 \subset B$ and $p(A) \subset B_0$, we call $(A, p|A, B_0)$ an **M**-fibrewise subspace of (X, p, B). We sometimes use the notation (A, p_0, B_0) instead of $(A, p|A, B_0)$.

Definition 2.4. Let $(A, p_1|A, B_0)$ be an **M**-fibrewise subspace of (X_1, p_1, B_1) , let $(\phi, \alpha), (\theta, \beta) : (X_1, p_1, B_1) \rightarrow (X_2, p_2, B_2)$ an **M**-fibrewise maps such that $\phi(x) = \theta(x)$ and $\alpha(b) = \beta(b)$ for $x \in A$ and $b \in B_0$. By an **M**-fibrewise homotopy of (ϕ, α) into (θ, β) under $(A, p_1|A, B_0)$ we mean an **M**-fibrewise homotopy (H, h) of (ϕ, α) into (θ, β) such that for fixed $x \in A$, $b \in B_0$, H(t, x) and h(t, b) are constant for any $t \in I$.

Definition 2.5. Let (X, p, B) an **M**-fibrewise space. An **M**-fibrewise subspace $(A, p_1|A, B_0)$ is an **M**-fibrewise retract of (X, p, B) if there exists an **M**-fibrewise map $(R, r) : (X, p, B) \rightarrow (A, p_1|A, B_0)$ such that R(x) = x and r(b) = b for any $x \in A$, $b \in B_0$. We call (R, r) an **M**-fibrewise retraction.

Definition 2.6. Let (X, p, B) be an **M**-fibrewise space. An **M**-fibrewise subspace $(A, p_1|A, B_0)$ is an **M**-fibrewise deformation retract of (X, p, B) if there exists an **M**-fibrewise homotopy $(H, h) : (I \times X, id \times p, I \times B) \to (X, p, B)$ of (id_X, id_B) into an **M**-fibrewise retraction (R, r) under $(A, p_1|A, B_0)$, where $(R, r) : (X, p, B) \to (A, p_1|A, B_0)$.

Theorem 2.3. Let (X, p, B) be an **M**-fibrewise space and $(A, p_1|A, B_0)$ an **M**-fibrewise subspace of (X, p, B). If $(\{0\} \times X \cup I \times A, id \times p, \{0\} \times B \cup I \times B_0)$ is an **M**-fibrewise retract of (X, p, B), then $(\{0\} \times X \cup I \times A, id \times p, \{0\} \times B \cup I \times B_0)$ is an **M**-fibrewise deformation retract of $(I \times X, id \times p, I \times B)$.

Proof. Let (R, r): $(I \times X, id \times p, I \times B) \rightarrow (\{0\} \times X \cup I \times A, id \times p, \{0\} \times B \cup I \times B_0)$ be an **M**-fibrewise retraction. We put

 $R(t, x) = (R_1(t, x), R_2(t, x)), \qquad r(t, b) = (r_1(t, b), r_2(t, b)).$

We define (H, h): $(I \times I \times X, id \times id \times p, I \times I \times B) \rightarrow (I \times X, id \times p, I \times B)$ by

$$H(s, t, x) = ((1 - s)t + sR_1(t, x), R_2(st, x))$$

$$h(s, t, b) = ((1 - s)t + sr_1(t, b), r_2(st, b)).$$

Then it is easy to see that (H, h) is an **M**-fibrewise homotopy of (id_X, id_B) into (R, r)under $(\{0\} \times X \cup I \times A, id \times p, \{0\} \times B \cup I \times B_0)$. \Box

3. M-fibrewise cofibrations

In this section, we consider an extended version of fibrewise cofibrations, and obtain some generalized theorems of fibrewise version [5, §20]. We begin with the following definition.

Definition 3.1. An **M**-fibrewise map $(u, \gamma) : (A, p_0, B_0) \to (X_1, p_1, B_1)$ is an **M**-fibrewise *cofibration* if (u, γ) has the following **M**-fibrewise extension property. Let $(\phi, \alpha) : (X_1, p_1, B_1) \to (X_2, p_2, B_2)$ be an **M**-fibrewise map and $(G, g) : (I \times A, \text{id} \times \gamma, I \times B_0) \to (X_2, p_2, B_2)$ an **M**-fibrewise homotopy such that diagrams

are commutative. Then there exists an **M**-fibrewise homotopy $(H, h): (I \times X_1, \text{id} \times p_1, I \times B_1) \rightarrow (X_2, p_2, B_2)$ such that $H\kappa_0 = \phi$, $H(\text{id} \times u) = G$, $h\rho_0 = \alpha$, $h(\text{id} \times \gamma) = g$, where maps $\kappa_0: X_1 \rightarrow I \times X_1$ and $\rho_0: B_1 \rightarrow I \times B_1$ are defined by $\kappa_0(x) = (0, x)$ and $\rho_0(b) = (0, b)$ for any $x \in X_1, b \in B_1$.

For an **M**-fibrewise map (u, γ) : $(A, p_0, B_0) \rightarrow (X_1, p_1, B_1)$, we can construct the **M**-fibrewise push out (M, p, B) of the cotraids

$$I \times A \stackrel{\sigma_0}{\longleftarrow} A \stackrel{u}{\longrightarrow} X_1$$
$$I \times B_0 \stackrel{\delta_0}{\longleftarrow} B_0 \stackrel{\gamma}{\longrightarrow} B_1$$

as follows: $M = (I \times A + X_1)/\sim$) and $B = (I \times B_0 + B_1)/\approx$, where $(0, a) \sim u(a)$ for $a \in A$ and $(0, b) \approx \gamma(b)$ for $b \in B_0$, and $p: M \to B$ is defined by

$$p(x) = \begin{cases} [\gamma p_0(a)] & \text{if } x = [u(a)], a \in A, \\ [t, p_0(a)] & \text{if } x = [t, a], t \neq 0, \\ [p_1(x)] & \text{if } x \in X_1 - u(A), \end{cases}$$

where [*] is an equivalence class. Then it is easily verified that p is well defined and continuous.

Now we shall consider the case in which (A, p_0, B_0) is an **M**-fibrewise subspace of (X_1, p_1, B_1) with $p_0 = p_1 | A$ and $(u, \gamma) : (A, p_0, B_0) \to (X_1, p_1, B_1)$ is the inclusion. We

can define an **M**-fibrewise map (e, ε) : $(M, p, B) \rightarrow (\{0\} \times X_1 \cup I \times A, id \times p_1, \{0\} \times B_1 \cup I \times B_0)$ by

$$e(x) = \begin{cases} (0,a) & \text{if } x = [u(a)], \ a \in A, \\ (t,a) & \text{if } x = [t,a], \ t \neq 0, \\ (0,x) & \text{if } x \in X_1 - u(A), \end{cases}$$

 $\varepsilon(b)$ is defined by a similar way. Moreover if *A* is closed in X_1 and B_0 is closed in B_1 , the maps *e* and ε are homeomorphisms and we may identity (M, p, B) with $(\{0\} \times X_1 \cup I \times A, \text{id} \times p_1, \{0\} \times B_1 \cup I \times B_0)$. For each **M**-fibrewise map $(u, \gamma) : (A, p_0, B_0) \rightarrow (X_1, p_1, B_1)$, we can define an **M**-fibrewise map $(k, \xi) : (M, p, B) \rightarrow (I \times X_1, \text{id} \times p_1, I \times B_1)$ by

$$k(x) = \begin{cases} (0, u(a)) & \text{if } x = [u(a)], \ a \in A, \\ (t, u(a)) & \text{if } x = [t, a], \ t \neq 0, \\ (0, x) & \text{if } x \in X_1 - u(A), \end{cases}$$
$$\xi(b) = \begin{cases} (0, \gamma(b')) & \text{if } b = [\gamma(b')], \ b' \in B_0, \\ (t, \gamma(b')) & \text{if } x = [t, b'], \ t \neq 0, \\ (0, x) & \text{if } x \in B_1 - \gamma(B_0). \end{cases}$$

Now we can obtain the following.

Theorem 3.1. The **M**-fibrewise map (u, γ) : $(A, p_0, B_0) \rightarrow (X_1, p_1, B_1)$ is an **M**-fibrewise cofibration if and only if there exists an **M**-fibrewise map (L, l): $(I \times X_1, id \times p_1, I \times B_1) \rightarrow (M, p, B)$ such that $Lk = id_M, l\xi = id_B$.

Proof. "If" part: Suppose that there exists an **M**-fibrewise map (L, l) satisfying the condition. Let $(\phi, \alpha) : (X_1, p_1, B_1) \to (X_2, p_2, B_2)$ and $(G, g) : (I \times A, id \times p_0, I \times B_0) \to (X_2, p_2, B_2)$ be **M**-fibrewise maps such that those satisfy the condition of Definition 3.1. We can define an **M**-fibrewise map $(\bar{H}, \bar{h}) : (M, p, B) \to (X_2, p_2, X_2)$ by

$$\bar{H}(z) = \begin{cases} \phi(u(a)) & \text{if } z = [u(a)], \ a \in A, \\ \phi(x) & \text{if } z = [x], \ x \in X_1 - u(A), \\ G(t, a) & \text{if } z = [t, a], \ a \in A, \ t \neq 0, \end{cases}$$
$$\bar{h}(b) = \begin{cases} \alpha(\gamma(b')) & \text{if } b = [\gamma(b')], \ b' \in B_0, \\ \alpha(b') & \text{if } b = [b'], \ b' \in B_1 - \gamma(B_0), \\ g(t, b') & \text{if } b = [t, b'], \ b' \in B_0, \ t \neq 0. \end{cases}$$

We consider $H: I \times X_1 \to X_2$ and $h: I \times B_1 \to B_2$ such that $H = \overline{HL}, h = \overline{hl}$. Then it is easy to see that the diagram

$$\begin{array}{c|c} I \times X_1 \xrightarrow{H} X_2 \\ \downarrow id \times p_1 & \downarrow p_2 \\ I \times B_1 \xrightarrow{h} B_2 \end{array}$$

is commutative. Further we can show that $H(\text{id} \times u) = G$, $H\kappa_0 = \phi$, $h(\text{id} \times \gamma) = g$ and $h\rho_0 = \alpha$. In fact, for any $(t, a) \in I \times A$, $H(\text{id} \times u)(t, a) = H(t, u(a)) = \overline{H}L(t, u(a)) = \overline{H}L(t, u(a))$

 $\bar{H}Lk([t, a]) = \bar{H}([t, a]) = G(t, a)$, and for any $x \in X_1$, $H\kappa_0(x) = \bar{H}L(0, x) = \bar{H}([x]) = \phi(x)$. Also $h(\operatorname{id} \times \gamma) = g$, and $h\rho_0 = \alpha$ can be shown similarly.

"Only if" part: Suppose that (u, γ) is an **M**-fibrewise cofibration. Let $(G, g): (I \times A, \text{id} \times p_0, I \times B_0) \to (M, p, B)$ and $(\phi, \alpha): (X_1, p_1, B_1) \to (M, p, B)$ be two **M**-fibrewise maps defined by

$$G(t, a) = \begin{cases} [t, a] & \text{if } t \neq 0, \\ [u(a)] & \text{if } t = 0, \end{cases}$$
$$g(t, b) = \begin{cases} [t, b] & \text{if } t \neq 0, \\ [\gamma(b)] & \text{if } t = 0. \end{cases}$$

Then the following two diagrams

are commutative. Since (u, γ) is an **M**-fibrewise cofibration, there exists an **M**-fibrewise homotopy $(H, h) : (I \times X_1, id \times p_1, I \times B_1) \to (M, p, B)$ such that $H(id \times u) = G$, $H\kappa_0 = \phi$, $h(id \times \gamma) = g$ and $h\rho_0 = \alpha$. Then we can show that $Hk = id_M$, $h\xi = id_B$. In fact, for the case $[x] \in M$, $x \in X_1$,

$$Hk([x]) = H(0, x) = H\kappa_0(x) = \phi(x) = [x]$$

and the case $[t, a] \in M$, $t \neq 0$, $a \in A$,

$$Hk([t,a]) = H(t,u(a)) = H(id \times u)(t,a) = G(t,a) = [t,a].$$

Thus $Hk = id_M$. Also we can show similarly that $h\xi = id_B$ \Box

For two **M**-fibrewise spaces (X_1, p_1, B_1) and (A, p_0, B_0) , if $A \subset X_1$, $B_0 \subset B_1$ and $p_0 = p_1 | A$, the pair $((X_1, p_1, B_1), (A, p_0, B_0))$ is called by an **M**-fibrewise pair. If A is closed in X_0 and B_0 is closed in B_1 , it is called a *closed* **M**-fibrewise pair. For an **M**-fibrewise pair $((X_1, p_1, B_1), (A, p_0, B_0))$, if the inclusion map $(u, \gamma) : (A, p_0, B_0) \rightarrow (X_1, p_1, B_1)$ is an **M**-fibrewise cofibration, we call the pair $((X_1, p_1, B_1), (A, p_0, B_0))$ an **M**-fibrewise cofibred pair.

Theorem 3.2. A closed **M**-fibrewise pair $((X_1, p_1, B_1), (A, p_0, B_0))$ is an **M**-fibrewise cofibred pair if and only if there exists an **M**-fibrewise retraction $(R, r): (I \times X_1, id \times p_1, I \times B_1) \rightarrow (\{0\} \times X_1 \cup I \times A, id \times p_1, \{0\} \times B_1 \cup I \times B_0).$

Proof. "Only if" part: Let the inclusion $(u, \gamma): (A, p_0, B_0) \rightarrow (X_1, p_1, B_1)$ be an **M**-fibrewise cofibration. From Theorem 3.1, there exists an **M**-fibrewise map $(L, l): (I \times I)$

 X_1 , id $\times p_1$, $I \times B_1$) $\rightarrow (M, p, B)$ such that $Lk = id_M$, $l\xi = id_B$. Since $((X_1, p_1, B_1), (A, p_0, B_0))$ is a closed **M**-fibrewise pair, (M, p, B) is identified with $(\{0\} \times X_1 \cup I \times A, id \times p_1, \{0\} \times B_1 \cup I \times B_0)$. So there exist homeomorphisms $g: M \rightarrow \{0\} \times X_1 \cup I \times A$ and $\mu: B \rightarrow \{0\} \times B_1 \cup I \times B_0$ such that (g, μ) is an **M**-fibrewise map. Let $(R, r): (I \times X_1, id \times p_1, I \times B_1) \rightarrow (\{0\} \times X_1 \cup I \times A, id \times p_1, \{0\} \times B_1 \cup I \times B_1) \rightarrow (\{0\} \times X_1 \cup I \times A, id \times p_1, \{0\} \times B_1 \cup I \times B_1)$. Then it is easily to verified that (R, r) is an **M**-fibrewise retraction.

"If" part: Let (R, r) be an **M**-fibrewise retraction. Using the same notation (g, μ) in the above, $(g^{-1}, \mu^{-1}) : (\{0\} \times X_1 \cup I \times X_1, \text{ id } \times p_1, \{0\} \times B_1 \cup I \times B_0) \to (M, p, B)$ is a (homeomorphic) **M**-fibrewise map. Let $L = g^{-1}R$ and $l = \mu^{-1}r$. Then it is easy to see that $(L, l) : (I \times X_1, \text{ id } \times p_1, I \times B_1) \to (M, p, B)$ satisfies the condition of Theorem 3.1. Therefore $((X_1, p_1, B_1), (A, p_0, B_0))$ is an **M**-fibrewise cofibred pair. \Box

Corollary 3.3. Let $((X_1, p_1, B_1), (A, p_0, B_0))$ be a closed **M**-fibrewise cofibred pair. Then so is

 $((T \times X_1, \mathrm{id}_T \times p_1, T \times B_1), (T \times A, \mathrm{id}_T \times p_0, T \times B_0))$

for any topological space T.

Proof. Since $((X_1, p_1, B_1), (A, p_0, B_0))$ is a closed **M**-fibrewise cofibred pair, there exists an **M**-fibrewise retraction $(R, r) : (I \times X_1, \text{id} \times p_1, I \times B_1) \rightarrow (\{0\} \times X_1 \cup I \times A, \text{id} \times p_1, \{0\} \times B_1 \cup I \times B_0)$. We define $(f, \alpha) : (I \times (T \times X_1), \text{id} \times (\text{id}_T \times p_1), I \times (T \times B_0)) \rightarrow (T \times (I \times X_1), \text{id}_T \times (\text{id} \times p_1), T \times (I \times B_1))$ by

$$f(t, (z, x)) = (z, (t, x)), \qquad \alpha(t, (z, b)) = (z, (t, b)).$$

Further we define $(g, \beta) : (T \times (\{0\} \times X_1 \cup I \times A), \operatorname{id}_T \times (\operatorname{id} \times p_1), T \times (\{0\} \times B_1 \cup I \times B_0)) \rightarrow (\{0\} \times (T \times X_1) \cup I \times (T \times A), \operatorname{id} \times (\operatorname{id}_T \times p_1), \{0\} \times (T \times B_1) \cup I \times (T \times B_0))$ by

$$g(z, (t, x)) = (t, (z, x)), \qquad \beta(z, (t, b)) = (t, (z, b))$$

Then it is easy to see that (f, α) and (g, β) are **M**-fibrewise maps. We can define an **M**-fibrewise map $(\bar{R}, \bar{r}) : (I \times (T \times X_1), \text{id} \times (\text{id}_T \times p_1), I \times (T \times B_1)) \rightarrow (\{0\} \times (T \times X_1) \cup I \times (T \times A)), \text{id} \times (\text{id}_T \times p_1), (\{0\} \times (T \times B_1) \cup I \times (T \times B_0))$ by

 $\bar{R} = g(\mathrm{id}_T \times R) f, \qquad \bar{r} = \beta(\mathrm{id}_T \times r) \alpha.$

Then it is easily to verified that (\bar{R}, \bar{r}) is an **M**-fibrewise retraction, therefore this completes the proof by Theorem 3.2. \Box

Theorem 3.4. Let $(u_1, \gamma_1): (A, p_0, B_0) \to (X_1, p_1, B_1), (u_2, \gamma_2): (A, p_0, B_0) \to (X_2, p_2, B_2)$ be **M**-fibrewise maps and $(\phi, \alpha): (X_1, p_1, B_1) \to (X_2, p_2, B_2)$ an **M**-fibrewise map such that $(\phi u_1, \alpha \gamma_1) \simeq^{\mathbf{M}} (u_2, \gamma_2)$. If (u_1, γ_1) is an **M**-fibrewise cofibration, then there exists an **M**-fibrewise map $(\psi, \beta): (X_1, p_1, B_1) \to (X_2, p_2, B_2)$ such that $(\phi, \alpha) \simeq^{\mathbf{M}} (\psi, \beta)$ and $\psi u_1 = u_2, \beta \gamma_1 = \gamma_2$.

Proof. Let (H, h): $(I \times A, id \times p_0, I \times B_0) \to (X_2, p_2, B_2)$ be an **M**-fibrewise homotopy such that $H(0, a) = \phi u_1(a), H(1, a) = u_2(1, a), h(0, b) = \alpha \gamma_1(0, b), h(1, b) = \gamma_2(b)$ for

 $a \in A$ and $b \in B_0$. Since (u_1, γ_1) is an **M**-fibrewise cofibration, there exists an **M**-fibrewise homotopy $(K, k) : (I \times X_1, \text{id} \times p_1, I \times B_1) \to (X_2, p_2, B_2)$ such that $K(\text{id} \times u_1) =$ $H, K\kappa_0 = \phi, k(\text{id} \times \gamma_1) = h, k\rho_0 = \alpha$, where $\kappa_t : X_1 \to I \times X_1$ and $\rho_t : B_1 \to I \times B_1$ are defined by $\kappa_t(x) = (t, x)$ and $\rho_t(b) = (t, b)$ for any $t \in I$. Take (ψ, β) be $\psi = K\kappa_1, \beta =$ $k\rho_1$. Then it is easy to see that $(\phi, \alpha) \simeq^{\mathbf{M}} (\psi, \beta)$ by the definition of (ψ, β) . Further for any $x \in X_1, b \in B_1$,

$$\psi u_1(a) = K\kappa_1(u_1(a)) = K(1, u_1(a)) = K(\operatorname{id} \times u_1)(1, a) = H(1, a) = u_2(a),$$

$$\beta \gamma_1(b) = k\rho_1(\gamma_1(b)) = k(1, \gamma_1(b)) = k(\operatorname{id} \times \gamma_1)(1, b) = h(1, b) = \gamma_2(b).$$

This completes the proof. \Box

Let $(u, \gamma): (A, p_0, B_0) \to (X_1, p_1, B_1)$ be an **M**-fibrewise map. Let $(\phi, \alpha), (\psi, \beta): (X_1, p_1, B_1) \to (X_2, p_2, B_2)$ be **M**-fibrewise maps such that $\phi u = \psi u$ and $\alpha \gamma = \beta \gamma$. By an **M**-fibrewise homotopy of (ϕ, α) into (ψ, β) under (A, p_0, B_0) we mean an **M**-fibrewise homotopy (H, h) of (ϕ, α) into (ψ, β) such that $H(\text{id} \times u(t, a))$ and $h(\text{id} \times \gamma)(t, b)$ are independent of $t \in I$. When such an **M**-fibrewise homotopy exists we say that (ϕ, α) and (ψ, β) are **M**-fibrewise homotopic under (A, p_0, B_0) and write $(\phi, \alpha) \simeq^{\mathbf{M}} (\psi, \beta)$ under (A, p_0, B_0) . For the case (A, p_0, B_0) is an **M**-fibrewise subspace of (X_1, p_1, B_1) , see Definitions 2.4 and 2.6.

Theorem 3.5. Let (u, γ) : $(A, p_0, B_0) \rightarrow (X_1, p_1, B_1)$ be an **M**-fibrewise cofibration. Let (θ, α) : $(X_1, p_1, B_1) \rightarrow (X_1, p_1, B_1)$ be an **M**-fibrewise map under (A, p_0, B_0) such that $(\theta, \alpha) \simeq^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1})$. Then there exists an **M**-fibrewise map (θ', α') : $(X_1, p_1, B_1) \rightarrow (X_1, p_1, B_1)$ under (A, p_0, B_0) such that $(\theta'\theta, \alpha'\alpha) \simeq^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1})$ under (A, p_0, B_0) .

Proof. Let (H, h): $(I \times X_1, id \times p_1, I \times B_1) \rightarrow (X_1, p_1, B_1)$ be an **M**-fibrewise homotopy of (θ, α) into (id_{X_1}, id_{B_1}) . Then the following two diagrams

$$A \xrightarrow{\sigma_0} I \times A$$

$$u \bigvee_{V} \stackrel{id_{X_1}}{\longrightarrow} X_1$$

$$B_0 \xrightarrow{\delta_0} I \times B_0$$

$$u \bigvee_{V} \stackrel{id_{B_1}}{\longrightarrow} B_1$$

$$h(id \times \gamma)$$

are commutative. Since (u, γ) is an **M**-fibrewise cofibration, there exists an **M**-fibrewise homotopy (K, k): $(I \times X_1, id \times p_1, I \times B_1) \rightarrow (X_1, p_1, B_1)$ such that

$$K(\mathrm{id} \times u) = H(\mathrm{id} \times u), \qquad K\kappa_0 = \mathrm{id}_{X_1},$$

$$k(\mathrm{id} \times \gamma) = h(\mathrm{id} \times \gamma), \qquad k\rho_0 = \mathrm{id}_{B_1},$$

where $\kappa_t : X_1 \to I \times X_1$, $\rho : B_1 \to I \times B_1$ are defined by $\kappa_t(x) = (t, x)$ and $\rho_t(b) = (t, b)$ for any $t \in I$, respectively. Let $\theta' = K\kappa_1$ and $\alpha' = k\rho_1$. We can define an **M**-fibrewise map $(G, g) : (I \times X_1, \text{id} \times p_1, I \times B_1) \to (X_1, p_1, B_1)$ as follows:

$$G(s, x) = \begin{cases} K(1 - 2s, \theta(x)) & \text{if } 0 \le s \le \frac{1}{2} \\ H(2s - 1, x) & \text{if } \frac{1}{2} \le s \le 1 \end{cases}$$
$$g(s, b) = \begin{cases} k(1 - 2s, \alpha(b)) & \text{if } 0 \le s \le \frac{1}{2} \\ h(2s - 1, b) & \text{if } \frac{1}{2} \le s \le 1. \end{cases}$$

Then it is easy to see that $G\kappa_0 = \theta'\theta$, $G\kappa_1 = id_{X_1}$, $g\rho_0 = \alpha'\alpha$, $g\rho_1 = id_{B_1}$.

Now we shall prove that $(\theta'\theta, \alpha'\alpha) \simeq^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1})$ under (A, p_0, B_0) . We consider $(M, m) : (I \times I \times A, \operatorname{id} \times \operatorname{id} \times p_0, I \times I \times B_0) \to (X_1, p_1, B_1)$ such that

$$M(s,t,x) = \begin{cases} K(1-2s(1-t), u(a)) & \text{if } 0 \le s \le \frac{1}{2}, \\ H(1-2(1-s)(1-t), u(a)) & \text{if } \frac{1}{2} \le s \le 1, \end{cases}$$
$$m(s,t,b) = \begin{cases} k(1-2s(1-t), \gamma(b)) & \text{if } 0 \le s \le \frac{1}{2}, \\ h(1-2(1-s)(1-t), \gamma(b)) & \text{if } \frac{1}{2} \le s \le 1. \end{cases}$$

Let any $s \in I$ fix. Let (M_s, m_s) : $(I \times A, id \times p_0, I \times B_0) \rightarrow (X_1, p_1, B_1)$ be an **M**-fibrewise map defined by

$$M_s(t,a) = M(s,t,a), \qquad m_s(t,b) = m(s,t,b)$$

and $(G_s, g_s): (X_1, p_1, B_1) \rightarrow (X_1, p_1, B_1)$ an **M**-fibrewise map defined by

$$G_s(x) = G(s, x), \qquad g_s = g(s, b).$$

Then the following two diagrams

$$A \xrightarrow{\sigma_0} I \times A$$

$$u \downarrow \qquad \qquad \downarrow M_s$$

$$X_1 \xrightarrow{G_s} X_1$$

$$B_0 \xrightarrow{\delta_0} I \times B_0$$

$$u \downarrow \qquad \qquad \qquad \downarrow m_s$$

$$B_1 \xrightarrow{g_s} B_1$$

are commutative. Since (u, γ) is an **M**-fibrewise cofibration, there exists an **M**-fibrewise homotopy $(N_s, n_s): (I \times X_1, \text{id} \times p_1, I \times B_1) \to (X_1, p_1, B_1)$ such that $N_s(\text{id} \times u) = M_s$, $N_s \kappa_0 = G_s$, $n_s(\text{id} \times \gamma) = m_s$, $n_s \rho_0 = g_s$. Then it is easily verified that

$$\begin{pmatrix} \theta'\theta, \alpha'\alpha \end{pmatrix} = (G_0, g_0) = (N_0\kappa_0, n_0\rho_0) \simeq^{\mathbf{M}} (N_0\kappa_1, n_0\rho_1) \simeq^{\mathbf{M}} (N_1\kappa_1, n_1\rho_1) \\ \simeq^{\mathbf{M}} (N_1\kappa_0, n_1\rho_0) = (G_1, g_1) = (\mathrm{id}_{X_1}, \mathrm{id}_{B_1}),$$

where each $\simeq^{\mathbf{M}}$ is **M**-fibrewise homotopic under (A, p_0, B_0) . This completes the proof. \Box

Using this theorem, we shall prove the following.

Theorem 3.6. Let $(u_1, \gamma_1): (A, p_0, B_0) \rightarrow (X_1, p_1, B_1)$ and $(u_2, \gamma_2): (A, p_0, B_0) \rightarrow (X_2, p_2, B_2)$ be **M**-fibrewise cofibrations. Let $(\phi, \alpha): (X_1, p_1, B_1) \rightarrow (X_2, p_2, B_2)$ be an **M**-fibrewise map such that $(\phi u_1, \alpha \gamma_1) = (u_2, \gamma_2)$. Suppose that (ϕ, α) is an **M**-fibrewise homotopy equivalence. Then (ϕ, α) is an **M**-fibrewise homotopy equivalence under (A, p_0, B_0) .

Proof. Since (ϕ, α) is an **M**-fibrewise homotopy equivalence, there exists an **M**-fibrewise homotopy inverse $(\psi, \beta) : (X_2, p_2, B_2) \to (X_1, p_1, B_1)$. Then $(\psi u_2, \beta \gamma_2) = (\psi \phi u_1, \beta \alpha \gamma_1) \simeq^{\mathbf{M}} (u_1, \gamma_1)$. From Theorem 3.4, there exists an **M**-fibrewise map $(\psi', \beta') : (X_2, p_2, B_2) \to (X_1, p_1, B_1)$ such that $(\psi, \beta) \simeq^{\mathbf{M}} (\psi', \beta')$ and $(\psi' u_2, \beta' \gamma_2) = (u_1, \gamma_1)$. Since $(\psi \phi, \beta \alpha) \simeq^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1})$ and $(\psi' \phi, \beta' \alpha) \simeq^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1})$, from Theorem 3.5 there exists an **M**-fibrewise map $(\psi'', \beta'') : (X_1, p_1, B_1) \to (X_1, p_1, B_1)$ such that $(\psi'', \beta'') \simeq^{\mathbf{M}} (\psi' \phi, \beta' \alpha)$ and $(\psi'' \psi' \phi, \beta'' \beta' \alpha) \simeq^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1})$ under (A, p_0, B_0) . Let $\overline{\psi} = \psi'' \psi'$ and $\overline{\beta} = \beta'' \beta'$. Then $(\overline{\psi} \phi, \overline{\beta} \alpha) \simeq^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1})$ under (A, p_0, B_0) .

Now we shall prove that there exists an **M**-fibrewise map $(\bar{\phi}, \bar{\alpha}) : (X_1, p_1, B_1) \rightarrow (X_2, p_2, B_2)$ such that $(\bar{\phi}\bar{\psi}, \bar{\alpha}\bar{\beta}) \simeq^{\mathbf{M}} (\operatorname{id}_{X_2}, \operatorname{id}_{B_2})$. Since $(\phi\bar{\psi}, \alpha\bar{\beta}) = (\phi\psi''\psi', \alpha\beta''\beta') \simeq^{\mathbf{M}} (\phi(\psi'\phi)\psi', \alpha(\beta'\alpha)\beta') = ((\phi\psi')(\phi\psi'), (\alpha\beta')(\alpha\beta')) \simeq^{\mathbf{M}} (\operatorname{id}_{X_2}, \operatorname{id}_{B_2})$, from Theorem 3.5 there exists an **M**-fibrewise map $(\phi', \alpha') : (X_2, p_2, B_2) \rightarrow (X_2, p_2, B_2)$ such that $(\phi'\phi\bar{\psi}, \alpha'\alpha\bar{\beta}) \simeq^{\mathbf{M}} (\operatorname{id}_{X_2}, \operatorname{id}_{B_2})$ under (A, p_0, B_0) . Let $\bar{\phi} = \phi'\phi$ and $\bar{\alpha} = \alpha'\alpha$. Then $(\bar{\phi}\bar{\psi}, \bar{\alpha}\bar{\beta}) \simeq^{\mathbf{M}} (\operatorname{id}_{X_2}, \operatorname{id}_{B_2})$. Since

$$(\phi, \alpha) \simeq^{\mathbf{M}} \left(\left(\bar{\phi} \bar{\psi} \right) \phi, \left(\bar{\alpha} \bar{\beta} \right) \alpha \right) = \left(\bar{\phi} \left(\bar{\psi} \phi \right), \bar{\alpha} \left(\bar{\beta} \alpha \right) \right) \simeq^{\mathbf{M}} \left(\bar{\phi}, \bar{\alpha} \right),$$

 $(\bar{\psi}, \bar{\beta})$ is an **M**-fibrewise homotopy inverse of (ϕ, α) under (A, p_0, B_0) . \Box

Definition 3.2. Let $((X_1, p_1, B_1), (A, p_0, B_0))$ be a closed **M**-fibrewise pair. An **M**fibrewise Strøm structure on $((X_1, p_1, B_1), (A, p_0, B_0))$ is a pair $((\alpha, \beta), (H, h))$ consisting of maps $\alpha : X_1 \to I$, $\beta : B_1 \to I$ which satisfy $\beta p_1 = \alpha$ and are zero throughout (A, p_0, B_0) and an **M**-fibrewise homotopy $(H, h) : (I \times X_1, id \times p_1, I \times B_1) \to$ (X_1, p_1, B_1) under (A, p_0, B_0) of (id_{X_1}, id_{B_1}) such that $H(t, x) \in A$, $h(s, b) \in B_0$ for any $t \leq \alpha(x), s \leq \beta(b)$.

We obtain the following theorems.

Theorem 3.7. A closed **M**-fibrewise pair $((X_1, p_1, B_1), (A, p_0, B_0))$ is **M**-fibrewise cofibred if and only if there exists an **M**-fibrewise Strøm structure on $((X_1, p_1, B_1), (A, p_0, B_0))$.

Proof. "If" part: Let $((\alpha, \beta), (H, h))$ be an **M**-fibrewise Strøm structure on $((X_1, p_1, B_1), (A, p_0, B_0))$. We can define an **M**-fibrewise map

$$(R, r): (I \times X_1, \operatorname{id} \times p_1, I \times B_1)$$

$$\to (\{0\} \times X_1 \cup I \times A, \operatorname{id} \times p_1, \{0\} \times B_1 \cup I \times B_0)$$

by

$$R(t,x) = \begin{cases} (0, H(t,x)) & \text{if } t \leq \alpha(x), \\ (t - \alpha(x), H(t,x)) & \text{if } t \geq \alpha(x), \end{cases}$$
$$r(t,b) = \begin{cases} (0, h(t,b)) & \text{if } t \leq \beta(b), \\ (t - \beta(b), h(t,b)) & \text{if } t \geq \beta(b). \end{cases}$$

Then (R, r) is an **M**-fibrewise retraction. In fact, for any $(0, x) \in \{0\} \times X_1$, R(0, x) = (0, H(0, x)) = (0, x) since $0 \leq \alpha(x)$. Next, for any $(t, a) \in I \times A$, R(t, a) = (t - 0, H(t, a)) = (t, a) since $t \geq \alpha(a) = 0$, and (H, h) is an **M**-fibrewise map under (A, p_0, B_0) . Thus *R* is a retraction. By the same way, *r* is also a retraction.

"Only if" part: Suppose that $((X_1, p_1, B_1), (A, p_0, B_0))$ is a closed **M**-fibrewise cofibred pair. Then from Theorem 3.2 there exists an **M**-fibrewise retraction $(R, r): (I \times X_1, \text{id} \times p_1, I \times B_1) \rightarrow (\{0\} \times X_1 \cup I \times A, \text{id} \times p_1, \{0\} \times B_1 \cup I \times B_0)$. Let $R(t, x) = (R_1(t, x), R_2(t, x))$ and $r(t, b) = (r_1(t, b), r_2(t, b))$. Then we define maps $\alpha : X_1 \rightarrow I$ and $\beta : B_1 \rightarrow I$ by

$$\alpha(x) = \sup_{t \in I} \left| R_1(t, x) - t \right| \quad (x \in X_1),$$

$$\beta(b) = \sup_{t \in I} \left| r_1(t, b) - t \right| \quad (b \in B_1).$$

Then it is easily verified that $((\alpha, \beta), (R_2, r_2))$ constitutes an **M**-fibrewise Strøm structure on $((X_1, p_1, B_1), (A, p_0, B_0))$. \Box

Theorem 3.8. Let $((X_1, p_1, B_1), (X'_1, p_1, B'_1))$ and $((X_2, p_2, B_2), (X'_2, p_2, B'_2))$ be a closed **M**-fibrewise cofibred pair. Then

$$\left((X_1 \times X_2, p_1 \times p_2, B_1 \times B_2), \\ \left(X'_1 \times X_2 \cup X_1 \times X'_2, p_1 \times p_2, B'_1 \times B_2 \cup B_1 \times B'_2 \right) \right)$$

is also an M-fibrewise cofibred pair.

Proof. Let $((\alpha_1, \beta_1), (H_1, h_1))$ and $((\alpha_2, \beta_2), (H_2, h_2))$ be **M**-fibrewise Strøm structures on $((X_1, p_1, B_1), (X'_1, p_1, B'_1))$ and $((X_2, p_2, B_2), (X'_2, p_2, B'_2))$, respectively. Define $\gamma: X_1 \times X_2 \to I$ and $\eta: B_1 \times B_2 \to I$ by

$$\gamma(x, y) = \min(\alpha_1(x), \alpha_2(y)) \quad ((x, y) \in X_1 \times X_2)$$

$$\eta(b, c) = \min(\beta_1(b), \beta_2(c)) \quad ((b, c) \in B_1 \times B_2)$$

and define $(K, k): (I \times (X_1 \times X_2), id \times (p_1 \times p_2), I \times (B_1 \times B_2)) \rightarrow (X_1 \times X_2, p_1 \times p_2, B_1 \times B_2)$ by

$$K(t, (x, y)) = (H_1(\min(t, \alpha_2(y)), x), H_2(\min(t, \alpha_1(x)), y))$$

$$k(t, (b, c)) = (h_1(\min(t, \beta_2(c)), b), k_2(\min(t, \beta_1(b)), c)),$$

where $(x, y) \in X_1 \times X_2$ and $(b, c) \in B_1 \times B_2$. Then it is easily verified that $((\gamma, \eta), (K, k))$ constitutes an **M**-fibrewise Strøm structure. Thus this completes the proof from Theorem 3.7. \Box

Definition 3.3. Let us describe an **M**-fibrewise Strøm structure $((\alpha, \beta), (H, h))$ on the closed **M**-fibrewise pair $((X_1, p_1, B_1), (A, p_0, B_0))$ as *strict* if $\alpha < 1$ throughout X_1 and $\beta < 1$ throughout B_1 .

Theorem 3.9. Let $((X_1, p_1, B_1), (A, p_0, B_0))$ be a closed **M**-fibrewise cofibred pair. Then there exists a strict **M**-fibrewise Strøm structure on this pair if and only if there exists an **M**-fibrewise deformation retraction of (X_1, p_1, B_1) onto (A, p_0, B_0)).

Proof. "Only if" part: Let $((\alpha, \beta), (H, h))$ be an **M**-fibrewise Strøm structure on $((X_1, p_1, B_1), (A, p_0, B_0))$. Then we shall prove that (H, h) is an **M**-fibrewise deformation retraction. In fact, from the definition of an **M**-fibrewise Strøm structure, $H\kappa_0 = id_{X_1}$, $h\rho_0 = id_{B_0}$, where $\kappa_t : X_1 \to I \times X_1$ and $\rho_t : B_1 \to I \times B_1$ are defined by $\kappa_t(x) = (t, x)$ and $\rho_t(b) = (t, b)$. Next for any $a \in A$, $a = H(1, a) = H\kappa_1(a) \in H\kappa_1(X_1)$. For any $x \in X_1$, since $1 \ge \alpha(x)$, $H\kappa_1(x) = H(1, x) \in A$. $h\rho_1(B_1) = B_0$ is similarly proved.

"If" part: Let $(H, h): (I \times X_1, \text{id} \times p_1, I \times B_1) \to (X_1, p_1, B_1)$ be an **M**-fibrewise deformation retraction and $((\alpha, \beta), (K, k))$ an **M**-fibrewise Strøm structure. We can define maps $\alpha': X_1 \to I$ and $\beta': B_1 \to I$ by

$$\alpha'(x) = \min\left(\alpha(x), \frac{1}{2}\right), \quad \beta'(b) = \min\left(\beta(b), \frac{1}{2}\right) \quad (x \in X_1, \ b \in B_1).$$

Take (H', h'): $(I \times X_1, \text{id} \times p_1, I \times B_1) \rightarrow (X_1, p_1, B_1)$ to be

$$H'(t, x) = H(\min(2t, 1), K(t, x)), \qquad h'(t, b) = h(\min(2t, 1), k(t, b))$$

 $(t \in I, x \in X_1, b \in B_1)$. Then it is easy to see that $((\alpha', \beta'), (H', h'))$ is a strict **M**-fibrewise Strøm structure. \Box

Returning to the proof of Theorem 3.8, we observe that if $\alpha_1 < 1$, $\beta_1 < 1$ or $\alpha_2 < 1$, $\beta_2 < 1$, then $\gamma < 1$, $\eta < 1$, so we obtain

Theorem 3.10. Let $((X_1, p_1, B_1), (X'_1, p_1, B'_1))$ and $((X_2, p_2, B_2), (X'_2, p_2, B'_2))$ be an closed **M**-fibrewise cofibred pairs. If (X'_1, p_1, B'_1) or (X'_2, p_2, B'_2) is an **M**-fibrewise deformation retract of (X_1, p_1, B_1) or (X_2, p_2, B_2) respectively, then $(X'_1 \times X_2 \cup X_1 \times X'_2, p_1 \times p_2, B'_1 \times B_2 \cup B_1 \times B'_2)$ is an **M**-fibrewise deformation retract of $(X_1 \times X_2, p_1 \times P_2, B'_1 \times B_2)$.

4. M-fibrewise fibrations

In this section, we consider an extended version of fibrewise fibrations, and obtain some generalized theorems of fibrewise version [5, §23]. We begin with the following definition.

Definition 4.1. An **M**-fibrewise map $(\phi, \alpha) : (E, p_1, B_1) \rightarrow (F, p_2, B_2)$ is an **M**-fibrewise fibration if (ϕ, α) has the following property for any **M**-fibrewise space (X, p_0, B_0) : Let

 $(f, \beta): (X, p_0, B_0) \to (E, p_1, B_1)$ be an M-fibrewise map and $(H, h): (I \times X, id \times p_0, I \times B_0) \to (F, p_2, B_2)$ an M-fibrewise homotopy such that following diagrams

are commutative. Then there exists an **M**-fibrewise homotopy (K, k): $(I \times X, id \times p_0, I \times B_0) \rightarrow (E, p_1, B_1)$ such that $\phi K = H, K \sigma_0 = f, \alpha k = h, k \delta_0 = \beta$.

The property involved here is called the **M**-*fibrewise homotopy lifting property*; the **M**-fibrewise homotopy (H, h) of $(\phi f, \alpha \beta)$ is lifted to an **M**-fibrewise homotopy (K, k) of (f, β) itself.

Theorem 4.1. Let (X, p, B) be an **M**-fibrewise space, $\alpha : X \to I, \beta : B \to I$ maps such that $\alpha = \beta p$ and for $A = \alpha^{-1}(0), B_0 = \beta^{-1}(0), (A, p_0, B_0)$ an **M**-fibrewise deformation retract of (X, p, B), where $p_0 = p|A$. Let $(\phi, \eta) : (E_1, p_1, B_1) \to (E_2, p_2, B_2)$ be an **M**-fibrewise fibration. For two **M**-fibrewise maps $(f_1, \mu_1) : (A, p_0, B_0) \to (E_1, p_1, B_1),$ $(f_2, \mu_2) : (X, p, B) \to (E_2, p_2, B_2)$ such that $\phi f_1 = f_2 |A$ and $\eta \mu_1 = \mu_2 |B_0$, there exists an **M**-fibrewise map $(h, \zeta) : (X, p, B) \to (E_1, p_1, B_1)$ such that $h|A = f_1, \phi h = f_2,$ $\zeta |B_0 = \mu_1, \eta \zeta = \mu_2.$

Proof. Let $(R, r): (X, p, B) \to (A, p_0, B_0)$ be an **M**-fibrewise retraction and $(K, k): (I \times X, \text{id} \times p, I \times B) \to (X, p, B)$ an **M**-fibrewise deformation retraction of (iR, jr) into $(\text{id}_X, \text{id}_B)$, where $i: A \to X$ and $j: B_0 \to B$ are inclusions. Take $D: I \times X$ and $d: I \times B_1 \to B_1$ to be

$$D(t, x) = \begin{cases} K\left(\min\left(1, \frac{t}{\alpha(x)}\right), x\right) & \text{if } x \notin A, \\ K(t, x) & \text{if } x \in A, \end{cases}$$
$$d(t, b) = \begin{cases} k\left(\min\left(1, \frac{t}{\beta(b)}\right), b\right) & \text{if } b \notin B_0, \\ k(t, b) & \text{if } b \in B_0. \end{cases}$$

Then following two diagrams

$$X \xrightarrow{f_1 K \sigma_0} E_1$$

$$\downarrow^{\sigma_0} \qquad \qquad \downarrow^{\phi}$$

$$I \times X \xrightarrow{f_2 D} E_2$$

are commutative. Since (ϕ, η) is an **M**-fibrewise fibration, there exists an **M**-fibrewise homotopy $(G, g): (I \times X, \text{id} \times p, I \times B) \rightarrow (E_1, p_1, B_1)$ such that $\phi G = f_2 D$, $G\sigma_0 = f_1 K \sigma_0$, $\eta g = \mu_2 d$, $g\delta_0 = \mu_1 k \delta_0$. Then take $h: X \rightarrow E_1$ and $\zeta: B \rightarrow B_1$ to be

 $h(x) = G(\alpha(x), x), \quad \zeta(b) = (\beta(b), b) \quad (x \in X, b \in B)$

Then it is easy to see that (h, ζ) is the required one. \Box

Theorem 4.2. Let (ϕ, μ) : $(E, p_1, B_1) \rightarrow (F, p_2, B_2)$ be an **M**-fibrewise fibration and $((F, p_2, B_2), (F', p_2, B'_2))$ an **M**-fibrewise cofibred pair. Then $((E, p_1, B_1), (E', p_1, B'_1))$, where $E' = \phi^{-1}F'$, $B'_1 = \mu^{-1}B'_2$ is an **M**-fibrewise cofibred pair.

Proof. Let $((\alpha, \beta), (H, h))$ be an **M**-fibrewise Strøm structure on $((F, p_2, B_2), (F', p_2, B'_2))$. Then following two diagrams

are commutative. Since (ϕ, μ) is an **M**-fibrewise fibration, there exists an **M**-fibrewise homotopy $(K, k): (I \times E, id \times p_1, I \times B_1) \to (E, p_1, B_1)$ such that $\phi K = H(id \times \phi)$, $K\sigma_0 = id_E$, $\mu k = h(id \times \mu)$, $k\delta_0 = id_{B_1}$. Take $\gamma: E \to I$ and $\xi: B_1 \to I$ to be

 $\gamma(x) = \min(2\alpha(\phi(x)), 1), \quad \xi(b) = \min(2\beta(\mu(b)), 1) \quad (x \in E, b \in B_1).$

Then for any $e \in E' = \phi^{-1}F'$, $\alpha\phi(e) = 0$, so $\gamma(e) = 0$. Similarly, for any $b \in B'_1$, $\xi(b) = 0$. Next take $(L, l) : (I \times E, id \times p_1, I \times B_1) \to (E, p_1, B_1)$ to be

$$L(t, x) = K\left(\min(t, \alpha\phi(x)), x\right),$$

$$l(t, b) = k\left(\min(t, \beta\mu(b)), b\right) \quad (t \in I, \ x \in E, \ b \in B_1).$$

Then it is easy to see that $((\gamma, \xi), (L, l))$ is an **M**-fibrewise Strøm structure on $((E, p_1, B_1), (E', p_1, B'_1))$ so $((E, p_1, B_1), (E', p_1, B'_1))$ is an **M**-fibrewise cofibred pair by Theorem 3.7. \Box

Theorem 4.3. Let (ξ, α) : $(X_1, p_1, B_1) \rightarrow (E, p, B)$, (η, β) : $(X_2, p_2, B_2) \rightarrow (E, p, B)$ be **M**-fibrewise maps and (ϕ, γ) : $(X_1, p_1, B_1) \rightarrow (X_2, p_2, B_2)$ an **M**-fibrewise map such that

218

 $(\eta\phi, \beta\gamma) \simeq^{\mathbf{M}} (\xi, \alpha)$. If (η, β) is an **M**-fibrewise fibration, then there exists an **M**-fibrewise map $(\psi, \varepsilon) : (X_1, p_1, B_1) \to (X_2, p_2, B_2)$ such that $(\phi, \gamma) \simeq^{\mathbf{M}} (\psi, \varepsilon)$ and $(\eta\psi, \beta\varepsilon) = (\xi, \alpha)$.

Proof. From $(\eta\phi, \beta\gamma) \simeq^{\mathbf{M}} (\xi, \alpha)$, there exists an **M**-fibrewise homotopy $(G, g): (I \times X_1, \operatorname{id} \times p_1, I \times B_1) \to (E, p, B)$ such that $G\sigma_0 = \eta\phi$, $g\delta_0 = \beta\gamma$, $G\sigma_1 = \xi$, $g\delta_1 = \alpha$. Since (η, β) is an **M**-fibrewise fibration, there exists an **M**-fibrewise homotopy $(H, h): (I \times X_1, \operatorname{id} \times p_1, I \times B_1) \to (X_2, p_2, B_2)$ such that $H\sigma_0 = \phi$, $h\delta_0 = \gamma$, $\eta H = G$, $\beta h = g$. Put $\psi = H\sigma_1$ and $\varepsilon = h\delta_1$. Then it is easy to see that $(\phi, \gamma) = (H\sigma_0, h\delta_0) \simeq^{\mathbf{M}} (H\sigma_1, h\delta_1) = (\psi, \varepsilon)$ and $(\eta\psi, \beta\varepsilon) = (\eta H\sigma_1, \beta h\delta_1) = (G\sigma_1, g\delta_1) = (\xi, \alpha)$.

5. M-fibrewise pointed homotopy

In this section, we consider an extended version of fibrewise pointed homotopy, and obtain some generalized results of fibrewise version [5, §19, 21]. The proofs of theorems of this section are very similar to those of the theorems of the previous Sections 3 and 4, so we omit the proofs.

When an **M**-fibrewise space (X, p, B) has a section $s: B \to X$, we call it an **M**-fibrewise pointed space and denote (X, p, B, s). For two **M**-fibrewise pointed spaces $(X_1, p_1, B_1, s_1), (X_2, p_2, B_2, s_2)$, if an **M**-fibrewise map $(f, \alpha): (X_1, p_1, B_1) \to (X_2, p_2, B_2)$ satisfies $fs_1 = s_2\alpha$, we call it an **M**-fibrewise pointed map and denote $(f, \alpha): (X_1, p_1, B_1, s_1) \to (X_2, p_2, B_2, s_2)$.

Definition 5.1. Let $(\phi, \alpha), (\theta, \beta) : (X_1, p_1, B_1, s_1) \to (X_2, p_2, B_2, s_2)$ be **M**-fibrewise pointed maps. If there exists an **M**-fibrewise pointed map $(H, h) : (I \times X_1, id \times p_1, I \times B_1, id \times s_1) \to (X_2, p_2, B_2, s_2)$ such that (H, h) is an **M**-fibrewise homotopy of (ϕ, α) into (θ, β) , we call it an **M**-fibrewise pointed homotopy of (ϕ, α) into (θ, β) .

If there exists an **M**-fibrewise pointed homotopy of (ϕ, α) into (θ, β) , we say (ϕ, α) is **M**-fibrewise pointed homotopic to (θ, β) and write $(\phi, \alpha) \simeq_{(\mathbf{P})}^{\mathbf{M}} (\theta, \beta)$.

Lemma 5.1. The relation $\simeq_{(\mathbf{P})}^{\mathbf{M}}$ is an equivalence relation.

Definition 5.2. An **M**-fibrewise pointed map $(\theta, \alpha) : (X_1, p_1, B_1, s_1) \to (X_2, p_2, B_2, s_2)$ is called an **M**-fibrewise pointed homotopy equivalence if there exists an **M**-fibrewise pointed map $(\phi, \beta) : (X_2, p_2, B_2, s_2) \to (X_1, p_1, B_1, s_1)$ such that $(\phi\theta, \beta\alpha) \simeq_{(\mathbf{P})}^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1}), (\theta\phi, \alpha\beta) \simeq_{(\mathbf{P})}^{\mathbf{M}} (\operatorname{id}_{X_2}, \operatorname{id}_{B_2})$. Then we denote $(X_1, p_1, B_1, s_1) \cong_{(\mathbf{P})}^{\mathbf{M}} (X_2, p_2, B_2, s_2)$.

Lemma 5.2. The relation $\cong_{(\mathbf{P})}^{\mathbf{M}}$ is an equivalence relation.

Definition 5.3. Let $(\theta, \alpha), (\phi, \beta) : (X_1, p_1, B_1, s_1) \to (X_2, p_2, B_2, s_2)$ be **M**-fibrewise pointed maps. Further let A be a subspace of X_1 and B_0 a subspace of B_1 such that

 $p_1(A) = B_0$ and $\theta(x) = \phi(x)$ for any $x \in A$, $\alpha(b) = \beta(b)$ for any $b \in B_0$. By an **M**fibrewise pointed homotopy of (θ, α) into (ϕ, β) under $(A, p_1|A, B_0, s_1|B_0)$ we mean an **M**-fibrewise pointed homotopy (H, h) of (θ, α) into (ϕ, β) such that for fixed $x \in A$ and $b \in B_0$, $H\sigma_t(x)$ and $h\delta_t(b)$ are constant for any $t \in I$. Moreover $(A, p_1|A, B_0, s_1|B_0)$ is called an **M**-fibrewise pointed subspace of (X_1, p_1, B_1, s_1) .

Definition 5.4. Let (X_1, p_1, B_1, s_1) be an **M**-fibrewise pointed space, and (A, p_0, B_0, s_0) a subspace of (X_1, p_1, B_1, s_1) such that $p_1(A) = B_0$, where $p_0 = p_1 | A$ and $s_0 = s_1 | B_0$. An **M**-fibrewise pointed retraction we mean an **M**-fibrewise pointed map $(R, r) : (X_1, p_1, B_1, s_1) \rightarrow (A, p_0, B_0, s_0)$ such that (R, r) is an **M**-fibrewise retraction.

Definition 5.5. Let (X_1, p_1, B_1, s_1) be an **M**-fibrewise pointed space. An **M**-fibrewise pointed subspace $(A, p_1|A, B_0, s_1|B_0)$ of (X_1, p_1, B_1, s_1) is an **M**-fibrewise pointed deformation retract of (X_1, p_1, B_1, s_1) if there exists an **M**-fibrewise pointed homotopy $(H, h): (I \times X_1, id \times p_1, I \times B_1, id \times s_1) \rightarrow (X_1, p_1, B_1, s_1)$ of (id_{X_1}, id_{B_1}) into (R, r) which is an **M**-fibrewise deformation retraction, where $(R, r): (X_1, p_1, B_1, s_1) \rightarrow$ (A, p_0, B_0, s_0) is an **M**-fibrewise pointed retraction.

Theorem 5.3. Let (X_1, p_1, B_1, s_1) be an **M**-fibrewise pointed space and $(A, p_1|A, B_0, s_1|B_0)$ an **M**-fibrewise pointed subspace of (X_1, p_1, B_1, s_1) . If $(\{0\} \times X_1 \cup I \times A, \text{id} \times p_1, \{0\} \times B_1 \cup I \times B_0, \text{id} \times s_1)$ is an **M**-fibrewise pointed retract of $(I \times X_1, \text{id} \times p_1, I \times B_1, \text{id} \times s_1)$, then $(\{0\} \times X_1 \cup I \times A, \text{id} \times p_1, \{0\} \times B_1 \cup I \times B_0, \text{id} \times s_1)$ is an **M**-fibrewise pointed retract of $(X_1, X_1, \text{id} \times p_1, I \times B_1, \text{id} \times s_1)$, then $(\{0\} \times X_1 \cup I \times A, \text{id} \times p_1, \{0\} \times B_1 \cup I \times B_0, \text{id} \times s_1)$ is an **M**-fibrewise pointed deformation retract of $(I \times X_1, \text{id} \times p_1, I \times B_1, \text{id} \times s_1)$.

Definition 5.6. An **M**-fibrewise pointed map $(u, \gamma) : (A, p_0, B_0, s_0) \to (X_1, p_1, B_1, s_1)$ is an **M**-fibrewise pointed cofibration if (u, γ) has the following property: Let $(\phi, \alpha) : (X_1, p_1, B_1, s_1) \to (X_2, p_2, B_2, s_2)$ be an **M**-fibrewise pointed map and $(H, h) : (I \times A, id \times \gamma, I \times B_0, id \times s_0) \to (X_2, p_2, X_2, s_2)$ an **M**-fibrewise pointed homotopy such that the following two diagrams

$$A \xrightarrow{\sigma_0} I \times A$$

$$u \downarrow \qquad \qquad \downarrow H$$

$$X_1 \xrightarrow{\phi} X_2$$

$$B_0 \xrightarrow{\delta_0} I \times B_0$$

$$\gamma \downarrow \qquad \qquad \downarrow h$$

$$B_1 \xrightarrow{\alpha} B_2$$

are commutative. Then there exists an **M**-fibrewise pointed homotopy (K, k): $(I \times X_1, id \times p_1, I \times B_1, id \times s_1) \rightarrow (X_2, p_2, B_2, s_2)$ such that $K\kappa_0 = \phi$, $K(id \times u) = H$, $k\rho_0 = \alpha$, $k(id \times \gamma) = h$, where $\kappa_0: X_1 \rightarrow I \times X_1$ and $\rho_0: B_1 \rightarrow I \times B_1$ are defined by $\kappa_0(x) = (0, x)$ and $\rho_0(b) = (0, b)$ for $x \in X_1$, $b \in B_1$.

For an **M**-fibrewise pointed map (u, γ) : $(A, p_0, B_0, s_0) \rightarrow (X_1, p_1, X_1, s_1)$, we can construct the **M**-fibrewise push out (M, p, B, s) of the cotraids

$$I \times A \stackrel{\delta_0}{\longleftrightarrow} A \stackrel{u}{\longrightarrow} X_1$$
$$I \times B_0 \stackrel{\delta_0}{\longleftrightarrow} B_0 \stackrel{\gamma}{\longrightarrow} B_1$$

by the same methods in Section 3. In this case, it is enough to add that $s: B \to M$ is defined by

$$s(b) = \begin{cases} [s_0(b')] & \text{if } b = [\gamma(b')], \ b' \in B_0, \\ [t, s_0(b')] & \text{if } b = [t, b'], \ t \neq 0, \ b' \in B_0, \\ [s_1(b)] & \text{if } b \in B_1 - \gamma(B_0). \end{cases}$$

Lemma 5.4. The map s is a section. So (M, p, B, s) is an **M**-fibrewise pointed space.

In the case in which (A, p_0, B_0, s_0) is an **M**-fibrewise pointed subspace of (X_1, p_1, B_1, s_1) such that $p_1(A) \subset B_0$ and (u, γ) is inclusion, by the same methods as Section 3, we can define an **M**-fibrewise pointed map $(e, \varepsilon) : (M, p, B, s) \rightarrow (\{0\} \times X_1 \cup I \times A, \text{ id } \times p_1, \{0\} \times B_1 \cup I \times B_0, \text{ id } \times s_1)$. Further it is obvious that e and ε are homeomorphisms.

We use the same notation as Section 3.

Theorem 5.5. An **M**-fibrewise pointed map (u, γ) : $(A, p_0, B_0, s_0) \rightarrow (X_1, p_1, B_1, s_1)$ is an **M**-fibrewise pointed cofibration if and only if there exists an **M**-fibrewise pointed map (L, l): $(I \times X_1, \text{id} \times p_1, I \times B_1, \text{id} \times s_1) \rightarrow (M, p, B, s)$ such that $Lk = \text{id}_M, l\xi = \text{id}_B$.

Corollary 5.6. Let $((X_1, p_1, B_1, s_1), (A, p_0, B_0, s_0))$ be a closed **M**-fibrewise pointed cofibred pair. Then so is

 $((T \times X_1, \mathrm{id} \times p_1, T \times B_1, \mathrm{id} \times s_1), (T \times A, \mathrm{id} \times p_0, T \times B_0, \mathrm{id} \times s_0))$

for any topological space T.

Theorem 5.7. Let (u_0, γ_0) : $(A, p_0, B_0, s_0) \rightarrow (X_1, p_1, B_1, s_1)$, (u_1, γ_1) : $(A, p_0, B_0, s_0) \rightarrow (X_2, p_2, B_2, s_2)$ be **M**-fibrewise pointed maps and (ϕ, α) : $(X_1, p_1, B_1, s_1) \rightarrow (X_2, p_2, B_2, s_2)$ an **M**-fibrewise pointed map such that $(\phi u_1, \alpha \gamma_1) \simeq_{(\mathbf{P})}^{\mathbf{M}} (u_2, \gamma_2)$. If (u_1, γ_1) is an **M**-fibrewise pointed cofibration, then there exists an **M**-fibrewise pointed map (ψ, β) : $(X_1, p_1, B_1, s_1) \rightarrow (X_2, p_2, B_2, s_2)$ such that $\psi u_1 = u_2, \beta \gamma_1 = \gamma_2$.

Theorem 5.8. Let (u, γ) : $(A, p_0, B_0, s_0) \rightarrow (X_1, p_1, B_1, s_1)$ be an **M**-fibrewise pointed cofibration. Let (θ, α) : $(X_1, p_1, B_1, s_1) \rightarrow (X_1, p_1, B_1, s_1)$ be an **M**-fibrewise pointed map under (A, p_0, B_0, s_0) such that $(\theta, \alpha) \simeq_{(\mathbf{P})}^{\mathbf{M}} (\operatorname{id}_{X_1}, \operatorname{id}_{B_1})$. Then there exists an **M**-fibrewise pointed map (θ', α') : $(X_1, p_1, B_1, s_1) \rightarrow (X_1, p_1, B_1, s_1)$ under (A, p_0, B_0, s_0) such that $(\theta, \varphi, \varphi, \varphi)$.

Theorem 5.9. Let $(u_1, \gamma_1) : (A, p_0, B_0, s_0) \to (X_1, p_1, B_1, s_1)$ and $(u_2, \gamma_2) : (A, p_0, B_0, s_0) \to (X_2, p_2, B_2, s_2)$ be **M**-fibrewise pointed cofibrations. Let $(\phi, \alpha) : (X_1, p_1, B_1, s_1) \to (X_1, p_1, B_1, s_1)$

 (X_2, p_2, B_2, s_2) be an **M**-fibrewise pointed map such that $(\phi u_1, \alpha \gamma_1) = (u_2, \gamma_2)$. Suppose that (ϕ, α) is an **M**-fibrewise pointed homotopy equivalence. Then (ϕ, α) is an **M**-fibrewise pointed homotopy equivalence under (A, p_0, B_0, s_0) .

References

- [1] D. Buhagiar, A category of continuous maps, RIMS Kokyuroku 1107 (1999) 70-83.
- [2] D. Buhagiar, The category \mathcal{MAP} , Mem. Fac. Sci. & Eng., Shimane Univ. 34 (2001) 1–19.
- [3] M. Crabb, I.M. James, Fibrewise Homotopy Theory, Springer Monographs in Mathematics, Springer, Berlin, 1998.
- [4] R. Engelking, General Topology, rev. edn., Heldermann, Berlin, 1989.
- [5] I.M. James, Fibrewise Topology, Cambridge Univ. Press, Cambridge, 1989.
- [6] B.A. Pasynkov, Elements of the general topology of continuous maps, in: On Compactness and Completeness Properties of Topological Spaces, "FAN" Acad. Sci. of Uzbek Republic, Tashkent, 1994, pp. 50–120 (in Russian).
- [7] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.