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Abstract
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1. Introduction

For a base spac®, the categoryT OPj is the fibrewise topology oveB. For general
topology of continuous maps or fibrewise general topology, see Pasynkov [BDMg,
the fibrewise homotopy was studied by many mathematicians; for this, see [3,5]. In [1,2],
Buhagiar studied fibrewise topology in the category of all continuous maps, ¢Akd?l
by him (as a way of thinking of a categoiM AP can be seen in earlier works, see, for
example, [7]). The study of fibrewise topology MAP is a generalization of it in the
categoryT OPg. In this study, we clarify that in treating fiborewise homotopy and fibrewise
pointed homotopy, we can freely conside B as base spaces, and therefore need not
consider some complicated proceduf@sx B) x g X = I x X and the reduced fibrewise
cylinder x X for constructing sections).

The objects of MAP are continuous maps from any topological space into any
topological space. For two objecis : X1 — B1 and p2: X2 — B», a morphism from
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p1 into po is a pair(¢, «) of continuous map# : X1 — X2, «: B1 — B> such that the
diagram

X1i>X2

L

B1—*—=B>
is commutative. We note that this situation is a generalization of the caté@Py since
the categoryTOPp is isomorphic to the particular case bfAP in which the spaces
B1 = B> = B and« = idg. We call an objectp: X — B an M-fibrewise space and
denote(X, p, B). Also, for two M -fibrewise space€X1, p1, B1), (X2, p2, B2), we call the
morphism(¢, «) from p1 into p, an M-fibrewise map, and denotég, «) : (X1, p1, B1) —
(X2, p2, B2).

In this paper, we assume that all spaces are topological spaces, and all maps are
continuous. The spack= [0, 1] andid is the identity map off into 7. Moreover, we
use the following notation: For anye I, the maps;: X — I x X and$,;: B — I x B are
defined by

or(x)=(t,x), &WB)=(tb) (xeX, beB).

For other undefined terminology, see [4,5].

2. M-fibrewise homotopy

In this section, we shall define an-fibrewise homotopy, which is an extended version
of fibrewise homotopy [5, §18].

Definition 2.1. Let(¢, «), (0, B): (X1, p1, B1) — (X2, p2, B2) beM-fibrewise maps. The
M -fibrewise homotopy of (¢, ) into (6, B) is anM-fibrewise map(H, k) : (I x X1,id x
p1, I x B1) — (X2, p2, B2) suchthatHog=¢, Ho1 =60, hdo=«a, hd1=p.

If there exists arM-fibrewise homotopy of¢, @) into (@, B), we say(¢,a) is M-
fibrewise homotopic t@¢, 8) and denotég, o) ~M (6, B).

Remark. For fibrewise map#, 6 : X — Y over B, the fibrewise homotopy: I x X — Y
is of course coincident with thigl -fibrewise homotopyH, #): (I x X,id x p, I x B) —
(Y,q, B) such thatH(t,x) = f(¢t,x) and h(t,b) = b. Therefore the concept dfl-
fibrewise homotopy is an extension one of the fibrewise homotopy.

Lemma2.1. Therelation ~M isan equivalencerelation.
The proof can be easy to see, and so is ommited.

Definition 2.2. An M-fibrewise map@, «) : (X1, p1, B1) — (X2, p2, B2) is called arM -
fibrewise homotopy equivalenceif there exists a -fibrewise mag¢, B) : (X2, p2, B2) —
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(X1, p1, B1) such thated, o) ~M (idx,,idg,), (0¢, ap) =M (idx,,idp,). We call(¢, )
the M -fibrewise homotopy inverse @f, «).

If there exists arM-fibrewise homotopy equivalendé, «) : (X1, p1, B1) — (X2, p2,
By), we denote& X1, p1, B1) =M (X2, p2, B).

Lemma 2.2. Therelation =M isan equivalencerelation.
The proof can be easily verified, and so is ommited.

Definition 2.3. Let (X, p, B) be anM -fibrewise space. 1A ¢ X, Bo C B andp(A) C Bo,
we call(A, p|A, Bp) anM -fibrewise subspace of (X, p, B). We sometimes use the notation
(A, po, Bo) instead of(A, p|A, Bo).

Definition 2.4. Let (A, p1|A, Bp) be an M-fibrewise subspace ofX1, p1, B1), let
(¢,a), (0, B): (X1, p1, B1) = (X2, p2, B2) an M-fibrewise maps such that(x) = 6(x)
anda(b) = B(b) for x € A andb € By. By an M -fibrewise homotopy of (¢, «) into (6, B)
under (A, p1]|A, Bp) we mean amM -fibrewise homotopyH, /) of (¢, @) into (6, B) such
that for fixedx € A, b € Bo, H(t,x) andh(t, b) are constant for anye 1.

Definition 2.5. Let (X, p, B) anM-fibrewise space. AM -fibrewise subspacei, pi1|A,
Bo) is anM -fibrewiseretract of (X, p, B) if there exists atM -fibrewise magR, r) : (X, p,
B) — (A, p1|A, Bog) such thatR(x) =x andr(b) = b for anyx € A, b € Bg. We call
(R, r) anM -fibrewise retraction.

Definition 2.6. Let (X, p, B) be an M-fibrewise space. AnM-fibrewise subspace
(A, p1|A, Bo) is an M-fibrewise deformation retract of (X, p, B) if there exists arM -
fibrewise homotopyH, k) : (I x X,id x p,I x B) — (X, p, B) of (idx, idg) into anM-
fibrewise retractioR, r) under(A, p1|A, Bo), where(R,r): (X, p, B) — (A, p1]A, Bo).

Theorem 2.3. Let (X, p, B) be an M-fibrewise space and (A, p1]|A, Bp) an M-fibrewise
subspaceof (X, p, B). If ({0} x XUI x A,id x p,{0} x BUI x Bg) isan M-fibrewise
retract of (X, p, B), then ({0} x X UI x A,id x p, {0} x BU I x Bp) isan M-fibrewise
deformation retract of (I x X, id x p, I x B).

Proof. Let(R,r):(I x X,idx p,I x B) > ({0} x XUI x A,id x p,{0} x BUI x Bp)
be anM -fibrewise retraction. We put
R(t,x) = (R1(t,x), Ra(t, x)), r(t,b) =(ri(t, b), ra(t, b)).
We define(H,h): (I x I x X,idxidx p,I xI xB)— (I x X,idx p,I x B) by
H(s,t,x)=((1—s)t +sRa(t, x), Ra(st, x))
h(s,t,b) = ((L—s)t + sr1(t, b), ra(st, b)).
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Then it is easy to see th&H, h) is an M-fibrewise homotopy ofidy, idg) into (R, r)
under({0} x XUI x A,idx p,{0} x BUI x Bg). O

3. M-fibrewise cofibrations

In this section, we consider an extended version of fibrewise cofibrations, and obtain
some generalized theorems of fibrewise version [5, §20]. We begin with the following
definition.

Definition 3.1. An M-fibrewise magu, y): (A, po, Bo) — (X1, p1, B1) is anM-fibrewise
cofibrationif (u, y) has the followingM -fibrewise extension property. Lép, ) : (X1, p1,
B1) — (X2, p2, B2) be anM-fibrewise map andG, g): (I x A,id x y,I x Bg) —
(X2, p2, B2) anM-fibrewise homotopy such that diagrams

A—2 T xA

i lo

X1L>X2

B()LI X Bg

/| I

B1—*—=B>

are commutative. Then there exists Mnfibrewise homotopy(H, i) : (I x X1,id x p1,
I x B1) — (X2, p2, B2) such thatHxg = ¢, H(id x u) = G, hpp = «, h(id x y) = g,
where mapsp: X1 — I x X1 andpg: B1 — I x Bi are defined by(x) = (0, x) and
po(b) = (0, b) foranyx € X1, b € Bi.

For anM -fibrewise map(u, y) : (A, po, Bo) — (X1, p1, B1), we can construct thd-
fibrewise push outM, p, B) of the cotraids

IxAZ A% x,
Y
I x Bo <2 By By

as follows:M = (I x A+ X1)/~) andB = (I x Bg + B1)/~, where(0,a) ~ u(a) for
a € A and(0,b) ~ y(b) for b € By, andp: M — B is defined by

[yro(@] if x =[u(a)],a € A,
px) =1 [t po(@] if x=[t,al,t #0,
[pa(x)]  if x € X1 —u(A),
where[x] is an equivalence class. Then it is easily verified thas well defined and
continuous.
Now we shall consider the case in whi¢, po, Bo) is an M-fibrewise subspace of
(X1, p1, B1) with po = p1|A and(u, ) : (A, po, Bo) — (X1, p1, B1) is the inclusion. We
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can define aM -fibrewise mage, ¢) : (M, p, B) > ({0} x X1UI x A, id x p1, {0} x B1U
I x Bp) by

0,a) fx=[u(@@)], acA,
e(x)= l (t,a) if x=[t,a], t#0,

0,x) ifxeX1—u(A)),
e(b) is defined by a similar way. Moreover # is closed inX1 and By is closed inBq,
the maps ande are homeomorphisms and we may identity, p, B) with ({0} x X3 U
I x A,id x p1,{0} x B1 U I x Bp). For eachM-fibrewise map(u, y): (A, po, Bo) —
(X1, p1, B1), we can define aM -fibrewise magk, &) : (M, p, B) —> (I x X1,idx p1, I x
B1) by

O, u(a)) if x=[u()l], acA,
k(x)=1{ (t,u(a)) if x=[t,a], t#0,
0, x) if xeX1—u(A),

O,y @) ifb=[y®d"], b€ Bo,
ED)=1{ (t,y®)) ifx=[t,b], t #0,
(0, x) if x € B1 — y(Bo).

Now we can obtain the following.

Theorem 3.1. TheM-fibrewisemap (u, y) : (A, po, Bo) — (X1, p1, B1) isan M-fibrewise
cofibration if and only if there exists an M-fibrewise map (L,1):(I x X1,id x p1,
I x B1) = (M, p, B) suchthat Lk =idy,, (& =idp.

Proof. “If” part: Suppose that there exists avi-fibrewise map(L,!) satisfying the
condition. Let(¢, o) : (X1, p1, B1) = (X2, p2, B2) and(G, g): (I x A, id x po, I X Bg) —

(X2, p2, B2) be M-fibrewise maps such that those satisfy the condition of Definition 3.1.
We can define aM -fibrewise map(H, k) : (M, p, B) — (X2, p2, X») by

B pu(a)) ifz=[ua)], acA,
H(z) =1 ¢(x) if z=1[x], x € X1 —u(A),
G(t,a) fz=1[t,a],acA, t+#0,

[ a(y®)) ifb=[y®"], b’ € Bo,

h(b) = { a(b) if b=[b], b’ € B1 — y(Bo),
g, by ifb=[t,b'], b € By, t #0.
We conside : I x X1 — Xz andh:I x By — By suchthatd = HL,h = hl. Thenit

is easy to see that the diagram
I x X1-L~X,
idxpli ipz
Ix BB,

is commutative. Further we can show thétid x u) = G, Hxo = ¢, h(id x y) = g and
hpo = a. In fact, for any(t,a) € I x A, H(id x u)(t,a) = H(t,u(a)) = HL(t,u(a)) =
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HLk([t,al) = H([t,al) = G(t,a), and for anyx € X1, Hxo(x) = HL(0, x) = H([x]) =
¢ (x). Also h(id x y) = g, andhpg = @ can be shown similarly.

“Only if” part: Suppose thatu, y) is an M-fibrewise cofibration. Le{(G, g): (I x
A,id x po,I x Bg) > (M, p,B) and (¢, «): (X1, p1, B1) - (M, p, B) be two M-
fibrewise maps defined by

| lt,al ift#0,
G(t’a)_{[u(a)] if £ =0,
| [e,b] ift#£0,
g(t’b)_{[y(b)] if £ = 0.

Then the following two diagrams

A—2 T xA

ui(ﬁla

X1—M

Bo—2 - I x By

/| l

B1—*—B

are commutative. Sincét, y) is anM -fibrewise cofibration, there exists &h-fibrewise
homotopy(H, h): (I x X1,id x p1, I x B1) — (M, p, B) suchthat’ (id xu) = G, Hxg =
¢, h(id x y) = g andhpg = @. Then we can show thafk =id,s, h& =idp. In fact, for
the casdx] e M, x € X1,

Hk([x]) = H(0,x) = Hko(x) = ¢ (x) = [x]
andthecas@,ale M, t #0, ac A,
Hk([t,al) = H (t,u(a)) = H(id x u)(t,a) = G(t,a) =1, al.

ThusHk =id,;. Also we can show similarly thatt =idg O

For two M -fibrewise space$X1, p1, B1) and (A, po, Bo), if A C X1, Bo C By and
po = p1lA, the pair ((X1, p1, B1), (A, po, Bg)) is called by anM-fibrewise pair. If A
is closed inXg and Bg is closed inBjy, it is called aclosed M-fibrewise pair. For an
M -fibrewise pair((X1, p1, B1), (A, po, Bo)), if the inclusion map(u, y) : (A, po, Bo) —
(X1, p1, B1) is anM-fibrewise cofibration, we call the paitX1, p1, B1), (A, po, Bo)) an
M -fibrewise cofibred pair.

Theorem 3.2. A closed M-fibrewise pair ((X1, p1, B1), (A, po, Bo)) is an M-fibrewise
cofibred pair if and only if there exists an M-fibrewise retraction (R,r): (I x X1,
idx p1,I x B1) > ({0} x X2UI x A,id x p1,{0} x BLU I x Bp).

Proof. “Only if” part: Let the inclusion(u, y): (A, po, Bo) — (X1, p1, B1) be anM-
fibrewise cofibration. From Theorem 3.1, there existavidfibrewise map(L,1): (I x
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X1,id x p1,1 x B1) - (M, p, B) such thatLk = idy,, /& =idp. Since((X1, p1, B1),
(A, po, Bo)) is a closedM -fibrewise pair,(M, p, B) is identified with ({0} x X1 U I x
A,id x p1, {0} x B1UI x Bp). So there existhomeomorphisgisM — {0} x X1UI x A
andu:B — {0} x B1 UI x Bg such that(g, u) is anM-fibrewise map. LetR,r): (I x
X1,idx p1,I x B1) > ({0} x X2UI x A,id x p1,{0} x BiUI x Bo) beR=gL, r = ul.
Then it is easily to verified thatR, r) is anM -fibrewise retraction.

“If” part: Let (R, r) be anM-fibrewise retraction. Using the same notati@n ) in
the above(g=1, u=1): ({0} x X1 U T x X1,id x p1,{0} x BLUI x Bg) — (M, p, B) is
a (homeomorphicM -fibrewise map. Lef. = g~ 1R and! = . ~1r. Then it is easy to see
that(L,l): (I x X1,id x p1, I x B1) — (M, p, B) satisfies the condition of Theorem 3.1.
Therefore((X1, p1, B1), (A, po, Bo)) is anM-fibrewise cofibred pair. O

Corollary 3.3. Let (X1, p1, B1), (A, po, Bo)) bea closed M -fibrewise cofibred pair. Then
S0is
((T x X1,id7 x p1, T x B1), (T x A,idr x po, T x Bo))

for any topological spaceT.

Proof. Since((X1, p1, B1), (A, po, Bo)) is a closedV -fibrewise cofibred pair, there exists
an M-fibrewise retraction(R,r): (I x X1,id x p1,I x B1) - ({0} x X1 U I x A,id x
p1, {0} x B1U I x Bp). We define(f, «) : (I x (T x X1),id x (idr x p1), I x (T x Bg)) —

(T x (I x X1),idr x (id x p1),T x (I x B1)) by

f(t, z.x) = (z, (t,x)), a(r, (z,0) = (z, (¢, b)).
Further we defingg, 8) : (T x ({0} x X1 U I x A),idr x (id x p1), T x ({0} x BiU I x
Bo)) — ({0} x (T x X)) U x (T x A),id x (idr x p1), {0} x (T x B1) U x (T x Bg))
by

g(z, . 0)) = (1. (z,x)), B(z. (t,b)) = (t, (z,b)).
Then it is easy to see thdl, «) and (g, 8) are M-fibrewise maps. We can define an
M-fibrewise map(R, 7): (I x (T x X1),id x (id7 x p1), I x (T x B1)) — ({0} x (T x
X1 UI x (T x A)),id x (id7 x p1), ({0} x (T x B1) UI x (T x Bp)) by

R=g(idr x R) f, F=B(idr x r)a.

Thenitis easily to verified thatR, 7) is anM -fibrewise retraction, therefore this completes
the proof by Theorem 3.2.0

Theorem 3.4. Let (u1,y1): (A, po, Bo) — (X1, p1, B1), (u2,y2):(A, po, Bo) — (X2,
p2, B2) be M-fibrewise maps and (¢, o) : (X1, p1, B1) — (X2, p2, B2) an M-fibrewise
map such that (¢ur, ay1) =M (u2, y2). If (u1,y1) is an M-fibrewise cofibration, then
there exists an M -fibrewise map (v, B) : (X1, p1, B1) — (X2, p2, B2) suchthat (¢, ) ~M
(W, B) and Yu1 =uz, By1=y2.

Proof. Let (H,h): (I x A,id x po, I x Bg) — (X2, p2, B2) be anM -fibrewise homotopy
such that (0, a) = ¢ui(a), H(1,a) = u2(1, a), h(0,b) = ay1(0, b), h(1, b) = y2(b) for
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a € A andb € Bg. Since(u1, y1) is anM-fibrewise cofibration, there exists &h-fibrewise
homotopy (K, k):(I x X1,id x p1,1 x B1) — (X2, p2, B2) such thatK (id x uj) =
H, Kko=¢, k(id x y1) = h, kpo = o, wherex; : X1 — I x X1 andp,: B1 — I x By are
defined byk;(x) = (¢, x) andp,(b) = (¢, b) for anyr € I. Take (¢, B) bey = Kk1, B =
kp1. Then it is easy to see th&p, o) ~M (v, B) by the definition of(y, 8). Further for
anyx € X1, b € By,

Yur(a) = K1 (u1(@)) = K (L ur(@) = K (id x u)(1, a) = H(L, @) = ua(a),

By1(b) = kp1(y1(b)) = k(L, y1(b)) = k(id x y1)(1, b) = h(1, b) = y2(b).

This completes the proof.O

Let(u, y): (A, po, Bo) — (X1, p1, B1) be anM -fibrewise map. Leto, o), (¢, B) : (X1,
p1, B1) — (X2, p2, B2) be M-fibrewise maps such thatu = vu anday = y. By an
M -fibrewise homotopy of (¢, «) into (v, ) under (A, po, Bo) we mean arM -fibrewise
homotopy(H, h) of (¢, ) into (¥, B) such thatH (id x u(z, a)) andha(id x y)(¢, b) are
independent of € 1. When such aM -fibrewise homotopy exists we say that, «) and
(y, B) are M-fibrewise homotopiander (A, po, Bo) and write (¢, o) ~M (v, 8) under

(A, po, Bo). For the cas€A, po, Bp) is anM-fibrewise subspace @¥1, p1, B1), see De-
finitions 2.4 and 2.6.

Theorem 3.5. Let (u, y): (A, po, Bo) — (X1, p1, B1) be an M -fibrewise cofibration. Let
0, a): (X1, p1, B1) = (X1, p1, B1) be an M-fibrewise map under (A, po, Bo) such that
0, a) =M (idx,, idp,). Then there exists an M-fibrewise map (6’, o’) : (X1, p1, B1) —
(X1, p1, B1) under (A, po, Bo) suchthat (6'6, o’ar) ~M (idx,, idp,) under (A, po, Bo).

Proof. Let(H,h): (I x X1,id x p1, I x B1) — (X1, p1, B1) be anM -fibrewise homotopy
of (9, @) into (idx,, idp,). Then the following two diagrams

A—L ST xA

ui \LH (idxu)
idx,

X1——=X1

)

Bo I x Bg

ui J/h(idxy)
idg,

B1——B;

are commutative. Sincet, y) is anM-fibrewise cofibration, there exists &m-fibrewise
homotopy(K, k) : (I x X1,id x p1,1 x B1) — (X1, p1, B1) such that

K(id x u) = H(id x u), Kko=idy,,
k@id x y) =h(id x p), kpo =idp,,
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wherek; : X1 — I x X1, p:B1— I x B are defined by, (x) = (¢, x) andp, (b) = (¢, b)
foranyr € 1, respectively. Let’ = K«1 ando’ = kp1. We can define aM -fibrewise map
(G,g):(I x X1,id x p1,I x B1) — (X1, p1, B1) as follows:

K(1—-25,0(x)) ifO<s<3,

G(S’X)Z{H(Zs—l,x) if 1<s<1,

k(1—2s,a(b)) fO<s<3,

g(s’b):{h(Zs—l,b) if 1<s<1.

Then it is easy to see th@txo =06, Gk1=idx,, goo=c'o, gp1 =idp,.
Now we shall prove that6’d, o’a) ~M (idx,, idp,) under(A, po, Bg). We consider
M,m):(IxIxA,idxidx pg,I xI x Bg) — (X1, p1, B1) such that

K(1—2s(1—1),u(a)) ifo<s<3,

M(S’t’x)z{H(l—Z(l—S)(l_t),u(a)) |f%<s<l,

k(1—25(1=1).7() ifO<s<3,
h(1—2(1—s5)(1—1),y(®b) if 3<s<1.

Letanys e I fix. Let (Mg, my) : (I x A, id x po, I x Bg) — (X1, p1, B1) be anM-fibre-
wise map defined by

m(s,t,b):{

Ms(t,a) =M(s,t,a), mg(t,b) =m(s,t,b)

and(Gg, g5) : (X1, p1, B1) — (X1, p1, B1) anM-fibrewise map defined by
Gs(x) =G(s, x), 8s =8(s,D).

Then the following two diagrams

A—L T xA

X —8 Xy

BQLI X Bog

Bi—% =B

are commutative. Sincet, y) is anM-fibrewise cofibration, there exists &m-fibrewise
homotopy(Ny, ng): (I x X1,id x p1,I x B1) — (X1, p1, B1) such thatv,(id x u) =
M;, Nsko= Gy, ns(id x y) =my, ngpo= gs. Then it is easily verified that
(66, a'er) = (Go. g0) = (Noko, nopo) =M (Nok1, nop1) =M (Nik1, n1p1)
~M (N1ko, n1p0) = (G1, g1) = (idx,, idp,),

where each~M is M-fibrewise homotopic undeXA, po, Bg). This completes the
proof. O
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Using this theorem, we shall prove the following.

Theorem 3.6. Let (u1,y1): (A, po, Bo) — (X1, p1, B1) and (up, y2): (A, po, Bo) —
(X2, p2, B2) be M-fibrewise cofibrations. Let (¢, «): (X1, p1, B1) — (X2, p2, B2) be
an M-fiberwise map such that (¢u1, ay1) = (u2, y2). Suppose that (¢, @) is an M-
fibrewise homotopy equivalence. Then (¢, «) is an M-fibrewise homotopy eguivalence
under (A, po, Bo).

Proof. Since (¢,«) is an M-fibrewise homotopy equivalence, there exists Mn
fibrewise homotopy inverséy, ) : (X2, p2, B2) — (X1, p1, B1). Then (Yuz, By2) =
(You1, Bayr) =M (u1, y1). From Theorem 3.4, there exists Birfibrewise mapgy’, 8'):
(X2, p2. B2) — (X1, p1, By) such that(y,, ) =M ¢/, g") and (¥/'uz, B'y2) = (u1. y1).
Since(y¢, pa) ~M (idy,, idp,) and(y’'¢, B'a) ~M (idy,,ids,), from Theorem 3.5 there
exists anVl -fibrewise map(y”, 8”): (X1, p1. B1) — (X1, p1, B1) such thaty”, g”) =M
W'¢, B'e) and (¥ y'¢, B B'a) =M (idx,. id,) under(A, po, Bo). Let ¥ = "y’ and
B=p"B.Then(y¢, o) =M (idx,,idp,) under(A, po, Bo).

Now we shall prove that there exists an-fiorewise map(¢, @): (X1, p1, B1) —
(X2, p2. B2) such thatgyr, @B) ~M (idx,.idg,). Since(@¥r, ) = (¢ v, ap"p’) =M
@OV, a(B')p) = (@Y (@Y, (@) (@p)) =M (idx,,idg,), from Theorem 3.5
there exists aM -fibrewise map(¢’, @) : (X2, p2, B2) — (X2, p2, B2) such that(¢'¢vr,
o'aB) =M (idy,,idp,) under(A, po, Bo). Let ¢ = ¢'¢ anda = o’a. Then (v, af) =M
(idx,, idp,). Since

(¢, ) =M ((89)9, (aB)e) = ($(¥9). a(Ber)) =M (¢, @),
(¥, B) is anM -fibrewise homotopy inverse @, «) under(A, po, Bo). O

Definition 3.2. Let ((X1, p1, B1), (A, po, Bo)) be a closedM -fibrewise pair. AnM-
fibrewise Strgm structure on ((X1, p1, B1), (A, po, Bo)) is a pair ((«, 8), (H, h)) con-
sisting of mapsx: X1 — I, B:B1 — I which satisfy8p1 = « and are zero through-
out (A, po, Bp) and anM-fibrewise homotopy(H,h): (I x X1,id x p1,1 x B1) —
(X1, p1, B1) under (A, po, Bo) of (idx,,idp,) such thatH(¢,x) € A, h(s,b) € Bg for
anyr < a(x), s < B(b).

We obtain the following theorems.

Theorem 3.7. A closed M-fibrewise pair ((X1, p1, B1), (A, po, Bo)) is M-fibrewise
cofibredif and only if there existsan M -fibrewise Srem structureon ((X1, p1, B1), (A, po,
Bo)).

Proof. “If” part: Let ((«, B), (H, h)) be anM -fibrewise Strgm structure qitX1, p1, B1),
(A, po, Bo)). We can define aM -fibrewise map

(R,r):(I x X1,id x p1,I x B1)
—>({O}XX1UIxA,idxpl,{O}xBluleo)
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by
|, H(z,x)) if t <a(x),
R(t’x)_{(t—oz(x),H(t,x)) if £ > a(x),
by — (O, h(t, b)) if 1t < B(b),
PED= = By h by it 1> Bb).

Then(R, r) is anM-fibrewise retraction. In fact, for an, x) € {0} x X1, R(0,x) =
(0, H(O, x)) = (0,x) since 0< a(x). Next, for any(t,a) € I x A, R(t,a) = (t —
0, H(t,a)) = (t,a) sincet > a(a) = 0, and (H,h) is an M-fibrewise map under
(A, po, Bo). ThusR is a retraction. By the same wayijs also a retraction.

“Only if” part: Suppose that((X1, p1, B1), (A, po, Bo)) is a closedM -fibrewise
cofibred pair. Then from Theorem 3.2 there existdvifibrewise retractioR, r) : (I x
X1,id x p1,1I x B1) > ({0} x X3 U I x A,id x p1,{0} x B1UI x Bp). Let R(z,x) =
(R1(t, x), Ro(t, x)) andr(z, b) = (r1(¢, b), r2(¢, b)). Then we define maps: X1 — I and
B:B1— I by

a(x) =sugRi(t, x) —t| (x € X1),
tel

B(b) = su[qu(t, b)—t| (beBy).
te

Then it is easily verified that(«, 8), (R2, r2)) constitutes amM -fibrewise Strgm structure
on((X1, p1, B1), (A, po, Bo)). O

Theorem 3.8. Let ((X1, p1, B1). (X7, p1. B)) and ((X2, p2, B2), (X5, p2, By)) be a
closed M -fibrewise cofibred pair. Then

((X1 % X2, p1 X p2, B1 x B2),

(X} x X2U X1 x X5, p1 X p2, By X B2U By x Bj))

isalso an M -fibrewise cofibred pair.

Proof. Let ((a1, 1), (H1, h1)) and ((«2, B2), (H2, h2)) be M -fibrewise Strgm structures
on ((X1, p1, B1), (X}, p1, BY)) and (X2, p2, B2), (X}, p2, B,)), respectively. Define
y:X1x Xo— I andn: By x Bp — I by

y(x, y) =min(az(x), 2(y)) ((x,y) € X1 x X2)
n(b,c) =min(B1(b). B2(c))  ((b.c) € B1 x Bo)
and define(K, k): (I x (X1 x X2),id x (p1 x p2),I x (B1 X B2)) = (X1 x X2, p1 X
p2, B1 x B2) by
K(t, (x, y)) = (Hl(min(t, otz(y)), x), Hz(min(t, otl(x)), y))
k(t, (b, ) = (ha(min(z, B2(c)), b), k2(min(z, B1()), ¢)),

where(x, y) € X1 x X2 and(b, ¢) € By x Bz. Thenitis easily verified thai(y, n), (K, k))
constitutes arM -fibrewise Strgm structure. Thus this completes the proof from Theo-
rem3.7. O
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Definition 3.3. Let us describe aM-fibrewise Strem structur€e, 8), (H, h)) on the
closedM -fibrewise pair((X1, p1, B1), (A, po, Bo)) asstrict if o < 1 throughoutX; and
B < 1 throughoutB;.

Theorem 3.9. Let ((X1, p1, B1), (A, po, Bo)) beaclosed M -fibrewise cofibred pair. Then
there exists a strict M -fibrewise Stregm structure on this pair if and only if there exists an
M -fibrewise deformation retraction of (X1, p1, B1) onto (A, po, Bo)).

Proof. “Only if” part: Let ((«, 8), (H,h)) be an M-fibrewise Strgm structure on
((X1, p1, B1), (A, po, Bo)). Then we shall prove th&#, ) is anM -fibrewise deformation
retraction. In fact, from the definition of aM-fibrewise Strogm structureH«g =
idx,, hpo =idp,, wherex;: X1 — I x X1 andp;: By — I x Bj are defined by, (x) =
(t,x) andp,; (b) = (¢, b). Nextforanya € A, a= H(1,a) = Hx1(a) € Hx1(X1). For any
x € X1, since 1> a(x), Hrk1(x) = H(1,x) € A. hp1(B1) = Bg is similarly proved.

“If" part: Let (H,h): (I x X1,id x p1,I x B1) — (X1, p1, B1) be anM-fibrewise
deformation retraction ande, 8), (K, k)) anM-fibrewise Strgm structure. We can define
mapse’: X3 — I andp’: By — I by

o (x) =min(a(x), 3), B/ B)=min(Bb), 1) (xeX1, be By).
Take(H’,h'): (I x X1,id x p1, I x B1) — (X1, p1, B1) to be
H'(t,x) = H(min(2:, 1), K (¢, x)), W' (t,b) = h(min(2t, 1), k(1, b))

(tel, x € X1, b€ By). Then it is easy to see thato’, 8/), (H',h')) is a strictM-
fibrewise Strgm structure.

Returning to the proof of Theorem 3.8, we observe thaijif< 1, 1 <1 oraz <
1, B2 <1 theny <1, n <1, sowe obtain

Theorem 3.10. Let ((X1, p1, B1), (Xa_, P1, Bi)) and ((X2, p2, B2), (X/z, P2, Bé)) be an
closed M-fibrewise cofibred pairs. If (X}, p1, B]) or (X5, p2, By) is an M-fibrewise
deformation retract of (X1, p1, B1) or (X2, p2, B2) respectively, then (X7 x Xp U X3 x
X5, p1 X p2, B} x B2 U By x Bj) is an M-fibrewise deformation retract of (X1 x Xa,
P1 X p2, B1 x B2).

4. M-fibrewisefibrations

In this section, we consider an extended version of fibrewise fibrations, and obtain some
generalized theorems of fibrewise version [5, 823]. We begin with the following definition.

Definition 4.1. An M-fibrewise map¢, @) : (E, p1, B1) — (F, p2, B2) is anM-fibrewise
fibration if (¢, ) has the following property for anyl-fibrewise spacé€X, po, Bo): Let
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(f, B): (X, po, Bo) > (E, p1, B1) be anM-fibrewise map andH, h):(I x X,id x po,
I x Bo) — (F, p2, B2) anM-fibrewise homotopy such that following diagrams

X
goi
H

I x X———

f

_—

o

-
<

~

BO*ﬂ>Bl

aol l

I x Bp—"~ B,

are commutative. Then there exists lrfibrewise homotopy K, k): (I x X,id x po,
I x Bo) — (E, p1, B1) suchthavK = H, Kog = f,ak = h,kdo = 8.

The property involved here is called tie-fibrewise homotopy lifting property; the M-
fibrewise homotopy(H, h) of (¢f, ap) is lifted to anM-fibrewise homotopy K, k) of
(f, B) itself.

Theorem 4.1. Let (X, p, B) be an M-fibrewise space, «: X — I, 8: B — I maps such
that o = Bp and for A = «~1(0), Bo = B~1(0), (A, po, Bo) an M-fibrewise deformation
retract of (X, p, B), where pg = p|A. Let (¢, n):(E1, p1, B1) — (E2, p2, B2) be an
M -fibrewise fibration. For two M-fibrewise maps (f1, u1) : (A, po, Bo) — (E1, p1, B1),
(f2, u2) 1 (X, p, B) — (E2, p2, B2) such that ¢f1 = f2|A and nu1 = 2| Bo, there exists
an M-fibrewise map (4, ¢): (X, p, B) — (E1, p1, B1) such that h|A = f1, ¢h = fo,
¢|Bo= 1, n¢ = p2.

Proof. Let(R,r): (X, p, B) — (A, po, Bo) be anM -fibrewise retraction antk, k) : (I x
X,id x p,I x B) — (X, p, B) an M-fibrewise deformation retraction @i R, jr) into
(idx,idpg), wherei: A — X andj:Bg — B are inclusions. Také:I x X andd: [ x
B1— Bj to be

D(t.x) = { K(min(L, 75).x) if x ¢ 4,
K(t,x) if x €A,
d(t,b) = {k(min(l, ﬁ) b) ?f b ¢ By,
k(t,b) if b € Bo.

Then following two diagrams

X f1Kao Eq

l i¢

Ixx22.E



218 T. Hotta, T. Miwa / Topology and its Applications 122 (2002) 205-222

ké,
B H1koo Bl

%l I

I x B B,

are commutative. Sincép, ) is an M-fibrewise fibration, there exists av -fibrewise
homotopy(G, g): (I x X,id x p,I x B) — (E1, p1, B1) such thatpG = foD, Gog =
f1Koo, ng = nad, gdo= u1kdo. Thentaker: X — E1 and¢: B — By to be

h(x)=G(a(x),x), ¢b)=(B(b),b) (xeX, beB)
Then it is easy to see thék, ¢) is the required one. O
Theorem 4.2. Let (¢, n):(E, p1, B1) — (F, p2, B2) be an M-fibrewise fibration and

((F, p2, B2), (F', p2, By)) an M-fibrewise cofibred pair. Then ((E, p1, B1), (E’, p1, B})),
where E' = ¢~1F’, B} = n~1B)} isan M-fibrewise cofibred pair.

Proof. Let ((a, B), (H, h)) be anM-fibrewise Strgm structure of(F, p2, B2), (F’, p2,
B})). Then following two diagrams

E
aoi
I x g 109 L

i

idg

are commutative. Sincép, 1) is an M-fibrewise fibration, there exists av -fibrewise
homotopy (K, k): (I x E,id x p1,I x B1) — (E, p1, B1) such that¢K = H(id x
@), Kog=idg, puk=nh(id x u), kéo=idp,. Takey : E — I and&: By — I to be

y(x) =min(2a(¢(x)),1), &) =min(28(u(»)),1) (x€E, be By).
Thenforanye € E' = ¢ 1F’, ag(e) =0, soy(e) = 0. Similarly, for anyb € B, £(b) =
0. Nexttake(L,l):(I x E,id x p1,I x B1) — (E, p1, B1) to be

L(t,x) = K(min(t,a¢(x)),x),

I(t,b) = k(min(r, Buu(b)),b) (t€l, x€E, be B1).
Then it is easy to see thai(y, &), (L,l)) is an M-fibrewise Strgm structure on

((E, p1, B1), (E', p1, B})) sO ((E, p1, B1), (E’, p1, B})) is anM-fibrewise cofibred pair
by Theorem 3.7. O

Theorem4.3. Let (£, ) : (X1, p1, B1) — (E, p, B), (1, B): (X2, p2, B2) — (E, p, B) be
M -fibrewise mapsand (¢, ) : (X1, p1, B1) — (X2, p2, B2) an M-fibrewise map such that
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(np, By) =M (¢, a). If (5, B) isan M-fibrewise fibration, then there exists an M -fibrewise
map (¥, ¢): (X1, p1. B1) — (X2, p2, B2) such that (¢,y) M (¥, ¢) and (ny, Be) =
(&, ).

Proof. From (n¢, By) ~M (&, «), there exists arM-fibrewise homotopy(G, g): (I x
X1,id x p1,I x B1) — (E, p, B) such thatGog = n¢, géo = By, Go1 =&, gé1=«.
Since(n, B) is anM -fibrewise fibration, there exists &h-fibrewise homotopyH, h) : (I x
X1,id x p1, I x B1) = (X2, p2, B2) suchthatHog = ¢, hdo=y, nH =G, Bh=g. Put
Y = Hop ande = hdy. Then it is easy to see th&p, y) = (Hoo, hdo) =M (Ho1, hé1) =
(¥, &) and(nyr, Be) = (nHo1, Bhé1) = (Goy, g61) = (£, ). O

5. M-fibrewise pointed homotopy

In this section, we consider an extended version of fibrewise pointed homotopy, and
obtain some generalized results of fibrewise version [5, 819, 21]. The proofs of theorems
of this section are very similar to those of the theorems of the previous Sections 3 and 4,
so we omit the proofs.

When an M-fibrewise space(X, p, B) has a sections: B — X, we call it an
M -fibrewise pointed space and denot& X, p, B, s). For two M-fibrewise pointed spaces
(X1, p1, B1, 51), (X2, p2, B2, 52), if an M-fibrewise maq( f, &) : (X1, p1, B1) — (X2, p2,

Bo) satisfiesf s1 = spa, we call it anM -fibrewise pointed map and denoté f, «) : (X1, p1,
B1,51) — (X2, p2, B2, 52).

Definition 5.1. Let (¢, ), (0, B): (X1, p1, B1,s1) — (X2, p2, B2,s2) be M-fibrewise
pointed maps. If there exists avl-fibrewise pointed magH, h): (I x Xi,id x p1,
I x B1,id x s1) — (X2, p2, B2, s2) suchthat{ H, h) is anM -fibrewise homotopy of¢, «)
into (0, B), we call it anM -fibrewise pointed homotopy of (¢, ) into (6, B).

If there exists aM -fibrewise pointed homotopy af, «) into (9, B), we say(¢, «) is
M -fibrewise pointed homotopic to (9, 8) and write(¢, «) :'(V'P) ©, B).

Lemmab5.1. Therelation :'(V'p) is an equivalence relation.
Definition 5.2. An M-fibrewise pointed mag@, «) : (X1, p1, B1,s1) — (X2, p2, B2, 52) is
called anM -fibrewi se pointed homotopy equivalenceif there exists amM -fibrewise pointed

map (¢, B): (X2, p2, B2, s2) — (X1, p1, B1,s1) such that(¢6, fa) 2?’.':) (idx,,idg,),
(0, ) ~ip (idx,, idp,). Then we denotéX1, p1, Bi, s1) =\, (X2, p2, B2, 52).

Lemmab.2. Therelation z'(‘{'g) isan equivalencerelation.

Definition 5.3. Let (0, @), (¢, B): (X1, p1, B1,51) — (X2, p2, B2,s2) be M-fibrewise
pointed maps. Further leA be a subspace of; and Bp a subspace oB; such that
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p1(A) = Bp andf(x) = ¢(x) for any x € A, a(b) = B(b) for any b € Bg. By an M-

fibrewise pointed homotopy of (6, «) into (¢, 8) under (A, p1|A, Bo, s1|Bp) we mean an
M -fibrewise pointed homotop§H, k) of (0, «) into (¢, B) such that for fixedc € A and

b € By, Ho,(x) andhé,(b) are constant for anye 1. Moreover(A, p1|A, Bo, s1|Bo) is

called anM -fibrewise pointed subspace of (X1, p1, B1, 51).

Definition 5.4. Let (X1, p1, B1, s1) be anM-fibrewise pointed space, atid, po, Bo, so)
asubspace afX1, p1, B1, s1) such thaip1(A) = Bg, wherepg = p1|A andsg = s1|Bg. An
M -fibrewise pointed retraction we mean aM -fibrewise pointed mapr, r) : (X1, p1, B1,
s1) — (A, po, Bo, so) such that R, r) is anM -fibrewise retraction.

Definition 5.5. Let (X1, p1, B1, s1) be anM-fibrewise pointed space. AN -fibrewise
pointed subspac€A, p1|A, Bo, s11Bo) of (X1, p1, B1,s1) is an M-fibrewise pointed
deformation retract of (X1, p1, B1,s1) if there exists anM-fibrewise pointed homo-
topy (H,h): (I x X1,id x p1,I x By,id x s1) — (X1, p1, B1,s1) of (idx,,idp,) into
(R, r) which is anM-fibrewise deformation retraction, whe¢®, r) : (X1, p1, B1, s1) —
(A, po, Bo, so) is anM-fibrewise pointed retraction.

Theorem 5.3. Let (X1, p1, B1,s1) be an M-fibrewise pointed space and (A, p1|A, Bo,
s1|Bg) an M -fibrewise pointed subspace of (X1, p1, B1,s1). If ({0} x X1 U I x A,id x
p1, {0} x B1U I x Bp,id x s1) isan M-fibrewise pointed retract of (I x X1,id x p1, I x
B1,id x s1), then ({0} x X1UI x A, id x p1, {0} x B1UI x By, id x s1) isan M -fibrewise
pointed deformation retract of (I x X1,id x p1, I x B1,id x s1).

Definition 5.6. An M-fibrewise pointed magu, v): (A, po, Bo, so) — (X1, p1, B1,s1) IS
anM -fibrewi se pointed cofibrationif («, y) has the following property: L&®, «) : (X1, p1,
B1,s1) — (X2, p2, B2, s2) be anM-fibrewise pointed map an@H, k): (I x A,id x y,

I x Bo,id x sg) = (X2, p2, X2, s2) an M-fibrewise pointed homotopy such that the fol-
lowing two diagrams

A—2 T xA

i |

X14¢>X2

B()LI X Bg

/| b

B1—*—=B>

are commutative. Then there exists lnfibrewise pointed homotopyK, k) : (I x X1,
id x p1, I x B1,id x s1) — (X2, p2, B2, s2) such thatk ko = ¢, K(id x u) = H, kpo = «,
k(idx y)=h, wherexg: X1 — I x X1 andpg: B1 — I x B are defined byg(x) = (0, x)
andpo(b) = (0, b) for x € X1, b € B1.
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For an M-fibrewise pointed magu, y): (A, po, Bo, s0) — (X1, p1, X1, 1), we can
construct theM -fibrewise push outM, p, B, s) of the cotraids

IxAZ A5 X,
Y
I x Bo <2 By-2s By

by the same methods in Section 3. In this case, itis enough to add tBat- M is defined
by
[so(®)]  if b=[y ("], b’ € Bo,
s(b) =1 [t,s0(b)] if b=[t,b'], t #0, b' € B,
[s1(b)] if b€ B1— y(Bo).

Lemmab5.4. Themap s isa section. So (M, p, B, s) isan M-fibrewise pointed space.

In the case in whichA, po, Bo, so) is an M-fibrewise pointed subspace X1, p1,
B1, s1) such thatp1(A) C Bp and(u, y) is inclusion, by the same methods as Section 3,
we can define aM -fibrewise pointed mage, ¢) : (M, p, B,s) - ({0} x X1 UI x A, id x
p1, {0} x BLU I x By, id x s1). Further it is obvious that ande are homeomorphisms.
We use the same notation as Section 3.

Theorem 5.5. An M -fibrewise pointed map (u, y) : (A, po, Bo, so) — (X1, p1, B1, s1) iS
an M -fibrewise pointed cofibration if and only if there exists an M -fibrewise pointed map
(L,1):(I x X1,id x p1,I x By,id x s1) > (M, p, B,s) suchthat Lk =idy,, &£ =idp.

Corollary 5.6. Let ((X1, p1, B1,s1), (A, po, Bo, s0)) be a closed M-fibrewise pointed
cofibred pair. Thensois

((T x X1,id x p1, T x By,id x s1), (T x A,id x po, T x By, id x s0))

for any topological space T'.

Theorem 5.7. Let (uo, yo): (A, po, Bo,so) — (X1, p1, B1,s1), (u1,y1):(A, po, Bo,
s0) — (X2, p2, B2,s2) be M-fibrewise pointed maps and (¢, @) : (X1, p1, B1, 1) —
(X2, p2, B2, s2) an M-fibrewise pointed map such that (¢u1, ay1) ::‘lﬂ) (u2, y2). If (uz, y1)
is an M-fibrewise pointed cofibration, then there exists an M-fibrewise pointed map

(¥, B) 1 (X1, p1, B1,51) = (X2, p2, B2, s2) suchthat yu1 =uz, By1=y».

Theorem 5.8. Let (u,y): (A, po, Bo, so) — (X1, p1, B1, s1) be an M-fibrewise pointed
cofibration. Let (0, «) : (X1, p1, B1, s1) = (X1, p1, B1, s1) bean M -fibrewise pointed map
under (A, po, Bo, so) such that (6, ) ::\"'3) (idx,, idp,). Then there exists an M-fibrewise
pointed map (8’, o’): (X1, p1, B1, s1) — (X1, p1, B1, s1) under (A, po, Bo, so) such that
(00, a’'a) =} (idx,,idp,) under (A, po, Bo, 50)-

Theorem 5.9. Let (41, 1) : (A, po, Bo, s0) = (X1, p1, B1,s1) and (u2, y2) : (A, po, Bo,
s0) = (X2, p2, B2, s2) be M -fibrewise pointed cofibrations. Let (¢, «) : (X1, p1, B1, s1) =
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(X2, p2, B2, s2) be an M -fibrewise pointed map such that (¢u1, ay1) = (u2, y2). SUppose
that (¢, o) isan M -fibrewi se pointed homotopy equivalence. Then (¢, ) isan M -fibrewise
pointed homotopy equivalence under (A, po, Bo, $0).

References

[1] D. Buhagiar, A category of continuous maps, RIMS Kokyuroku 1107 (1999) 70-83.

[2] D. Buhagiar, The categoryt. AP, Mem. Fac. Sci. & Eng., Shimane Univ. 34 (2001) 1-19.

[3] M. Crabb, I.M. James, Fibrewise Homotopy Theory, Springer Monographs in Mathematics,
Springer, Berlin, 1998.

[4] R. Engelking, General Topology, rev. edn., Heldermann, Berlin, 1989.

[5] I.M. James, Fibrewise Topology, Cambridge Univ. Press, Cambridge, 1989.

[6] B.A. Pasynkov, Elements of the general topology of continuous maps, in: On Compactness and
Completeness Properties of Topological Spaces, “FAN” Acad. Sci. of Uzbek Republic, Tashkent,
1994, pp. 50-120 (in Russian).

[7] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.



