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Abstract

In this paper, we solve a problem of J.H. Zheng (see Problem 5.12 of [J.H. Zheng, On value distribution of meromorphic functions
with respect to arguments, preprint]) by proving that for any ν-valued algebroid function satisfying lim supr→∞ T (r,w)

log2 r
= +∞,

there exists a T -direction dealing with multiple values of w(z).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and main results

The value distribution theory of meromorphic functions due to R. Nevanlinna (see [3] for standard references) was
extended to the corresponding theory of algebroid functions by H. Selberg [8], E. Ullrich [10] and G. Valiron [11]
around 1930. The singular direction for w(z) is one of the main objects studied in the theory of value distribution of
algebroid functions. Several types of singular directions have been introduced in the literature. Their existence and
some connections between them have also been established. G. Valiron [12] conjectured that there exists at least one
Borel direction for any ν-valued algebroid function of order ρ (0 < ρ < +∞). A. Rauch [7] proved that there exists a
direction such that the corresponding Borel exceptional values form a set of linear measure zeros. N. Toda [9] proved
that there exists a direction such that the set of corresponding Borel exceptional values is countable. Later Y.N. Lü
and Y.X. Gu [5] proved that there exists a direction such that the number of Borel exceptional values is equal to 2ν at
most.

For a meromorphic function f (z), J.H. Zheng [17] introduced a new singular direction, namely a T -direction, and
conjectured that a transcendental meromorphic function f (z) must have at least one T -direction, provided that

lim sup
r→∞

T (r, f )

log2 r
= +∞.
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This result was later proved by H. Guo, J.H. Zheng and T. Ng [2] by using Ahlfors–Shimizu character T (r,Ω) of a
meromorphic function in an angular domain Ω . A recent work of Q.D. Zhang [16] shows that the connection between
T -direction and Borel direction. Thus a natural question is: Are there similar results for algebroid functions (this
problem was raised by J.H. Zheng in [18])? In this paper we investigate this problem.

Let w = w(z) (z ∈ C) be the ν-valued algebroid function defined by the irreducible equation

Aν(z)w
ν + Aν−1(z)w

ν−1 + · · · + A0(z) = 0, (1.1)

where Aν(z), . . . ,A0(z) are analytic functions without any common zeros. The single-valued domain R̃z of definition
of w(z) is a ν-valued covering of the z-plane and it is a Riemann surface.

A point in R̃z is denoted by z̃ if its projection in the z-plane is z. The open set which lies over |z| < r is denoted by
|z̃| < r . Let n(r, a) be the number of zeros, counted according to their multiplicities, of w(z) − a in |z̃| � r, nl)(r, a)

be the number of distinct zeros with multiplicity � l of w(z) − a in |z̃| � r. Let

S(r,w) = 1

π

∫ ∫
|z̃|�r

[ |w′(z)|
1 + |w(z)|2

]2

dω = 1

π

2π∫
0

r∫
0

( |w′(reiθ )|
1 + |w(reiθ )|2

)2

r dr dθ,

T (r,w) = 1

ν

r∫
0

S(t,w)

t
dt,

N(r, a) = 1

ν

r∫
0

n(t, a) − n(0, a)

t
dt + n(0, a)

ν
log r,

Nl)(r, a) = 1

ν

r∫
0

nl)(t, a) − nl)(0, a)

t
dt + nl)(0, a)

ν
log r,

m(r,w) = 1

2πν

∫
|z̃|=r

log+∣∣w(
reiθ

)∣∣dθ, z = reiθ ,

where |z̃| = r is the boundary of |z̃| � r . Moreover, S(r,w) is a conformal invariant and is called the mean covering
number of |z̃| � r into w-sphere. We call T (r,w) the characteristic function of w(z). It is known from [4, 3o, p. 84]
that T (r,w) = m(r,w) + N(r,∞) + O(1).

Let nχ(r,w) be the number of the branch points of R̃z in |z̃| � r , counted with the order of branch. Write

Nχ(r,w) = 1

ν

r∫
0

nχ(t,w) − nχ(0,w)

t
dt + nχ(0,w)

ν
log r.

By [4, Lemma 2.4, p. 87] we have

Nχ(r,w) � 2(ν − 1)T (r,w) + O(1).

We denote {z: |z| < r, ϕ1 < arg z < ϕ2} by Ω(r,ϕ1, ϕ2) and write Ω̃ for the part of R̃z on Ω(r,ϕ1, ϕ2). Let

S(r,ϕ1, ϕ2;w) = 1

π

∫ ∫
Ω̃

[ |w′(z)|
1 + |w(z)|2

]2

dω,

T (r,ϕ1, ϕ2;w) = 1

ν

r∫
0

S(t, ϕ1, ϕ2;w)

t
dt.

nl)(r, ϕ1, ϕ2;w = a) denotes the numbers of w(z) − a in Ω̃ . nχ(r,ϕ1, ϕ2) denotes the number of the branch points
of R̃z in Ω̃ . Similarly, Nl)(r, ϕ1, ϕ2;w = a) denotes the counting function of zeros of w(z)−a. Nχ(r,ϕ1, ϕ2) denotes
the counting function of the branch points of R̃z in Ω̃ .
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We define an angular domain

Δ(θ0, ε) = {
z
∣∣ |arg z − θ0| < ε

}
, 0 < ε <

π

2
.

Nl)(r,Δ(θ0, ε), a) denotes the counting function of zeros of w(z) − a in Δ(θ0, ε).

Definition. Let w = w(z) (z ∈ C) be the ν-valued algebroid function defined by (1.1) and l (� 2ν + 1) be a positive
integer. For arbitrary ε > 0 (0 < ε < π

2 ), if

lim sup
r→∞

Nl)(r,Δ(θ0, ε), a)

T (r,w)
> 0

holds for any complex value a except at most 2ν possible exceptions, then the half line B: arg z = θ0 (0 � θ0 < 2π )
is called a T -direction dealing with multiple values of w(z).

In this paper, by using Ahlfors’ theory of covering surfaces, we give a positive answer by proving

Theorem 1. Let w = w(z) (z ∈ C) be the ν-valued algebroid function defined by (1.1), l (� 2ν + 1) be a positive
integer, satisfying that

lim sup
r→∞

T (r,w)

log2 r
= +∞,

then there exists a T -direction dealing with multiple values of w(z).

Remark. It is clear that a T -direction must be a Julia direction since

Nl)
(
r,Δ(θ0, ε), a

)
� nl)

(
r,Δ(θ0, ε), a

) · log r

and

lim sup
r→∞

log r

T (r,w)
= 0

by the fact that w(z) is transcendental. N. Toda [9] gave a transcendental algebroid function without Julia directions,
Lü [6] calculated the T (r,w) of N. Toda’s example and pointed that T (r,w) = O(log2 r). Therefore this example
shows that the growth condition is sharp.

The set E = {θ : θ is a T -direction of w(z)} is a non-empty closed subset of [0,2π).

Theorem 2. Let w = w(z) (z ∈ C) be the ν-valued algebroid function defined by (1.1), l (� 2ν + 1) be a positive
integer, satisfying that

lim sup
r→∞

T (2r,w)

T (r,w)
> 1,

then there exists a T -direction dealing with multiple values of w(z).

2. The proof of the theorems

In order to prove our theorems, we need three lemmas.

Lemma 1. Let F(r) be a positive nondecreasing function defined for 1 < r < +∞ and satisfies

lim sup
r→∞

F(r)

log2 r
= +∞. (2.1)

Then, for any subset E ⊂ (1,+∞) satisfying
∫
E

dr
r log r

< 1
2 ,

lim sup
r→∞, r∈(1,+∞)\E

F(r)

log2 r
= +∞.
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Proof. Otherwise, there exists some set E ⊂ (1,+∞) with
∫
E

dr
r log r

:= A < 1
2 , such that

lim sup
r→∞, r∈(1,+∞)\E

F(r)

log2 r
< +∞. (2.2)

For any {r ′
n} ⊂ (1,+∞), {r ′

n} → ∞, we have

∫
[r ′

n,2(r ′
n)2]\E

dr

r log r
�

∫
[r ′

n,2(r ′
n)2]

dr

r log r
−

∫
E

dr

r log r

=
log 2+2 log r ′

n∫
log r ′

n

dr

r
− A

� log 2 + log r ′
n

log 2 + 2 log r ′
n

− A

� 1

2
− A > 0.

Then there exists r
′′
n ∈ [r ′

n,2(r ′
n)

2]\E. By the nondecreasing property of F(r) we have

F(r
′′
n)

log2 r
′′
n

� F(r ′
n)

log2(2r ′
n)

2
= F(r ′

n)

log2 r ′
n

· 1

(2 + log 2
log r ′

n
)2

.

Combing this with (2.2) we have

lim sup
r ′
n→∞

F(r ′
n)

log2 r ′
n

= 4 lim sup
r ′
n→∞

F(r ′
n)

log2 r ′
n

· 1

(2 + log 2
log r ′

n
)2

� 4 lim sup
r
′′
n →∞

F(r
′′
n)

log2 r
′′
n

� 4 lim sup
r→∞, r∈(1,+∞)\E

F(r)

log2 r
< +∞.

Since {r ′
n} is arbitrary, the above inequality contradicts (2.1). Lemma 1 follows. �

Lemma 2. (See [14, Lemma 2].) Let w(z) be the ν-valued algebroid function defined by (1.1) in |z| < +∞. If a1, a2,

. . . , aq (q � 3) are q distinct complex numbers in Ĉ = C ∪ {∞}, then for any ϕ, 0 < ϕ < δ, we have

(
q − 2 − 2

l

)
S(r,ϕ0 − ϕ,ϕ0 + ϕ;w) �

q∑
j=1

nl)(r, ϕ0 − δ,ϕ0 + δ;w = aj )

+ l + 1

l
nχ (r, ϕ0 − δ,ϕ0 + δ) + 2h2νπ

(q − 2 − 2
l
)(δ − ϕ)

log r

+
(

q − 2 − 2

l

)
S(1, ϕ0 − ϕ,ϕ0 + ϕ;w)

+ hL(1, ϕ0 − δ,ϕ0 + δ) + hL(r,ϕ0 − δ,ϕ0 + δ)

and
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(
q − 2 − 2

l

)
T (r,ϕ0 − ϕ,ϕ0 + ϕ;w) �

q∑
j=1

Nl)(r, ϕ0 − δ,ϕ0 + δ;w = aj )

+ l + 1

l
Nχ(r,ϕ0 − δ,ϕ0 + δ) + 2h2π

(q − 2 − 2
l
)(δ − ϕ)

log2 r

+ (q − 2 − 2
l
)

ν
T (1, ϕ0 − ϕ,ϕ0 + ϕ;w)

+ (q − 2 − 2
l
)

ν
S(1, ϕ0 − δ,ϕ0 + δ;w) log r

+ h

ν
L(1, ϕ0 − δ,ϕ0 + δ) log r

+ X(r,ϕ0 − δ,ϕ0 + δ;w),

where h is a constant depending only on {a1, a2, . . . , aq}, X(r,ϕ0 −δ,ϕ0 +δ;w) = h
ν

∫ r

1
L(t,ϕ0−δ,ϕ0+δ)

t
dt , and satisfies

that

X(r,ϕ0 − δ,ϕ0 + δ;w) � h
√

2δπT (r,ϕ0 − δ,ϕ0 + δ;w) logT (r,ϕ0 − δ,ϕ0 + δ;w)

at most outside a set Eδ of r , where Eδ consists of a series of intervals and satisfies
∫
Eδ

1
r log r

dr < +∞.

Lemma 3. Let w = w(z) (z ∈ C) be the ν-valued algebroid function defined by (1.1), l (� 2ν +1) be a positive integer
and m (m > 1) be a positive integer. Put ϕ0 = 0, ϕ1 = 2π

m
, . . . , ϕm−1 = (m − 1) 2π

m
. Let

Δ(ϕi) =
{
z

∣∣∣ |arg z − ϕi | < 3π

m

}
(0 � i � m − 1).

Then there exists a Δ(ϕi) among Δ(ϕi) (i = 0,1, . . . ,m − 1) such that

lim sup
r→∞

Nl)(r,Δ(ϕi), a)

T (r,w)
> 0

for any value of a with 2ν possible exceptions.

Proof. Suppose that the conclusion is false. Then for every Δ(ϕi) (i = 0,1, . . . ,m − 1), there exists q = 2ν + 1
exceptional values {aj

i }qj=1 such that

lim sup
r→∞

Nl)(r,Δ(ϕi), a
j
i )

T (r,w)
= 0. (2.3)

Let β be any positive integer. Put ϕi,k = 2π
m

i + 2kπ
βm

, 0 � i � m − 1, 0 � k � β − 1. For any given numbers r > 1,
writing

Δi,k = {
z
∣∣ |z| < r, ϕi,k � arg z < ϕi,k+1

}
.

Then

{|z| < r
} =

β−1∑
k=0

m−1∑
i=0

Δi,k.

There exists a k0, without loss of generality, we may assume that k0 = 0, such that
m−1∑
i=0

n(Δi,0, R̃z) � 1

β
nχ(r,w).

Put

Δi =
{
z

∣∣∣ ϕi,0 + ϕi,1

2
� arg z � ϕi+1,0 + ϕi+1,1

2

}
,

Δ0
i = {z | ϕi,0 < arg z < ϕi+1,1}, 0 � i � m − 1.
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Since Δ0
i overlap Δi,0 twice at most, then

m−1∑
i=0

n
(
r,Δ0

i , R̃z

)
�

(
1 + 1

β

)
nχ(r,w).

By Lemma 2 we have{
(2ν + 1) − 2 − 2

l

}
S(r,Δi,w) �

2ν+1∑
j=1

nl)
(
r,Δ0

i , a
j
i

) + l + 1

l
nχ

(
r,Δ0

i

)
+ O(log r) + hiL(r,ϕi,0, ϕi+1,1).

Adding from i = 0 to m − 1, dividing both sides of this inequality by r and then integrating both sides from 1 to r ,
we obtain the following inequality{

(2ν + 1) − 2 − 2

l

}
T (r,w) �

2ν+1∑
j=1

m−1∑
i=0

Nl)
(
r,Δ0

i , a
j
i

) + l + 1

l

(
1 + 1

β

)
Nχ(r,w)

+ O
(
log2 r

) +
m−1∑
i=0

X(r,ϕi,0, ϕi+1,1;w), (2.4)

where X(r,ϕi,0, ϕi+1,1;w) � hi

√
2π
m

(1 + 1
β
)πT (r,ϕi,0, ϕi+1,1;w) logT (r,ϕi,0, ϕi+1,1;w) at most outside a set Ei

of r , where Ei satisfies
∫
Ei

1
r log r

dr < +∞ (i = 0,1, . . . ,m − 1).

For any i ∈ {0,1, . . . ,m − 1}, we can choose ri > 0 such that T (ri, ϕi,0, ϕi+1,1;w) > e2m. Then from the proof of
Lemma 2 (see [14]) we have∫

Ei

1

r log r
dr � 1

logT (ri, ϕi,0, ϕi+1,1;w)
<

1

2m
<

1

2
.

Put E = ⋃m−1
i=0 Ei, then∫

E

1

r log r
dr �

m−1∑
i=0

∫
Ei

1

r log r
dr

� m max
0�i�m−1

∫
Ei

1

r log r
dr

< m · 1

2m
<

1

2
.

Applying Lemma 1 to this set E and T (r,w), we obtain that

lim sup
r→∞, r∈(1,+∞)\E

T (r,w)

log2 r
= +∞.

There exists {rn} ∈ (1,+∞)\E,

lim
n→∞

T (rn,w)

log2 rn
= +∞.

For this sequence {rn}, by (2.4) we have{
(2ν + 1) − 2 − 2

l

}
T (rn,w) �

2ν+1∑
j=1

m−1∑
i=0

Nl)
(
rn,Δ

0
i , a

j
i

) + l + 1

l

(
1 + 1

β

)
Nχ(rn,w)

+ O
(
log2 rn

) +
m−1∑

X(rn,ϕi,0, ϕi+1,1;w). (2.5)

i=0
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Note that Nχ(rn,w) � 2(ν − 1)T (rn,w) + O(1) and from (2.3), dividing both sides of (2.5) by T (rn,w) and
letting n → ∞, we obtain

(2ν + 1) − 2 − 2

l
� 2

l + 1

l
(ν − 1)

(
1 + 1

β

)
.

Letting β → ∞ we get l � 2ν. This contradicts l � 2ν + 1 and Lemma 3 follows. �
Now we are in the position to prove our theorems.

Proof of Theorem 1. By Lemma 3, for any given positive integer m, there exists

Δm =
{
z

∣∣∣ |arg z − θm| < 3π

m

}
such that

lim sup
r→∞

Nl)(r,Δ(ϕm), a)

T (r,w)
> 0,

for any value of a with 2ν possible exceptions at most. By choosing a subsequence, we can assume that θm → θ0,
when m → ∞. Then B: arg z = θ0 has the properties of Theorem 1. �
Remark. S.M. Wang and Z.S. Gao [13] proved the existence of T -direction under the condition

lim sup
r→∞

T (r,w)

log2 r
= +∞, lim inf

r→∞
logT (r,w)

log r
= μ < ∞.

In their paper, they mainly depend on their Lemma 1 (see also [15]) which needs the condition lim infr→∞ logT (r,w)
log r

=
μ < ∞. Our method here is essentially different from theirs.

Proof of Theorem 2. Since

T (r,w) = O
(
log2 r

)
means

T (2r,w) ∼ T (r,w),

so by hypothesis of Theorem 2, we have

lim sup
r→∞

T (r,w)

log2 r
= +∞.

Thus we deduce Theorem 2 from Theorem 1 directly. �
Remark. It is not difficult to understand that w(z) is a meromorphic function and nχ(r,w) = 0 if ν = 1, thus
Nχ(r,w) = 0. We can get the T -direction of meromorphic functions dealing with multiple values. Using Lemma 2,
we can find that we need not treat two cases like in [2, pp. 284–285]. This simplifies the proof of [2].

Next we give two meromorphic functions which have T -direction of meromorphic functions dealing with multiple
values.

Example 1. Let �(z) be the gamma function. From Proposition 7.3.6 of [1] we have

T (r,1/�) = (
1 + o(1)

) 1

π
r log r,

so that

T (2r,1/�) > dT (r,1/�), d > 1.

By Theorem 2, we know that 1/� has at least one T -direction of meromorphic functions dealing with multiple values.
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Example 2. From the proof of Corollary 6 of [19], we know that every transcendental meromorphic function f (z)

satisfying linear differential equation with rational coefficients must have at least one T -direction of meromorphic
functions dealing with multiple values because of T (2r, f ) > dT (r, f ), d > 1.

Open problem. In [14], the present author proved that for any ν-valued algebroid function satisfying
lim supr→∞

T (r,w)

log2 r
= +∞, there exists a Nevanlinna direction dealing with multiple values of w(z). Here we raise an

interesting problem: What is the relationship of these two singular directions?
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