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equation.
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1. Introduction

As a consequence of general relativity, “uncountable” lots of 
physics about the Universe have been uncovered. Now, we have 
to go beyond the theory and into the quantum realm, i.e. quantum
gravity. However, it has been known that there is a difficulty in the 
case that we extend general relativity to quantum gravity. Namely, 
general relativity is not renormalizable at least perturbatively.

As a candidate to overcome such a serious problem, a kind 
of non-perturbative method has been proposed, which is called 
Euclidean Dynamical Triangulation (EDT). In EDT, discretizing Eu-
clidean space–time by simplices having the lattice spacing a as 
each side length, we can carry out the Euclidean gravitational 
path-integral non-perturbatively. An important point here is that 
the lattice spacing a is about the inverse energy cut-off Λgrav. Un-
fortunately, in EDT, no reasonable classical space–time has been 
found in 4 dimensions, and what has been found are only the 
skinny polymer-like geometry or the dense crumpled geometry, 
which has been calculated with the help of Monte Carlo simula-
tions. This is because the geometries based on EDT is too “wild” to 
handle. Alternatively speaking, infinite numbers of baby universes 
are produced in this approach. However, EDT had a great deal of 
success in 2 dimensions. In the suitable continuum limit, physical 
quantities such as several critical exponents and correlation func-
tions in EDT realize those of the so-called quantum Liouville theory. 
Furthermore, a dual expression of EDT has been found, and it is 
called the matrix model. Utilizing the powerfulness of the matrix
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model, conformal matters realized in the so-called minimal model
have been successfully included in EDT approach.

In this line of thought, a kind of breakthrough has been casted 
out, which is known as Causal Dynamical Triangulation (CDT) [1]. 
In CDT approach, the path-integral of dynamically triangulated ge-
ometries can be done non-perturbatively under the two new ad-
ditional restrictions. First, one gives the Lorentzian signature to 
simplices. Second, the time-foliation structure is imposed. In this 
approach, our de Sitter universe can be “realized” in 3 + 1 dimen-
sions [2]. Furthermore, in 1 + 1 dimensions physical quantities, say
disk amplitude, can be solved analytically [1]. An outstanding fea-
ture of the pure CDT is that no baby universe is allowed according 
to the non-anomalous scaling dimension of time. Related to the 
fact above, for instance the Hausdorff dimension dH in the (1 + 1)-
dimensional setup is not anomalous, dH = 2, compared to that in
EDT, dH = 4. This is one of attractive traits of CDT.

The CDT approach really restricts the configurations of geome-
tries to the causal ones a priori, but in fact we do not under-
stand whether or not we should exclude the contributions from 
the baby universes and furthermore from the geometries with dif-
ferent space–time topologies. Focusing on the (1 + 1)-dimensional
case, CDT has been extended to the one including topology chang-
ing processes within the criterion that the scaling behavior does 
not change, i.e. the causal geometries are still dominant, via the 
non-critical String Field Theory (SFT) [3]. In addition, the matrix 
model expression for the non-critical SFT based on CDT has been 
found [4,5]. Such extended models including baby universes and 
topology changes are called Generalized CDT’s (GCDT). As for the 
matter-coupled CDT’s, there is not any analytical tool to calculate 
even in 1 + 1 dimensions. From the lessons based on the subse-
quent works in CDT, it can be said that the dominance of causal 
geometries, characterized by the fact that space and time have 
the same scaling dimension, prevents the stampede of geometries.
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Fig. 1. Terms in the Hamiltonian.
Alternatively speaking, the causality makes geometries obedient to
handle. If the CDT approach is on a correct direction as quantum
gravity, this may be a pretty nice property.

In this Letter, to read off some hidden traits of CDT, we quest
for possibilities to extend the GCDT approach without changing the
scaling dimensions of space and time in 1 + 1 dimensions. We ac-
tually extend GCDT applying the method in the non-critical SFT
techniques in [6] and [7]. We solve the Schwinger–Dyson’s Equa-
tion (SDE) for disk amplitude in our model by the perturbation
w.r.t. the string coupling constant. Moreover, we define the corre-
sponding matrix model in the continuum limit. In Section 2, we
review known facts for GCDT. In Section 3, our extended model is
explained in detail. Both sections are almost separated by the two
different subsections, Non-critical SFT approach and Matrix model
approach. At the end of Section 3, as a consistency check, we also
consider the inclusive process, which turns out to reproduce our
differential equation for disk amplitude. In Section 4, we discuss
our model from the two different field theories, the non-critical
SFT and the matrix model.

2. Generalized CDT

2.1. Non-critical SFT approach

We shall review the non-critical SFT of the original GCDT for-
mulated in [3]. This model really reproduces the disk amplitude
derived in the continuum limit of the strictly causal CDT in the
case that the string coupling constant is zero. In this model, closed
strings with length L are created and annihilated from the vacuum,
|0〉 (〈0|) by the operators, ψ†(L) and ψ(L), respectively:

〈0|ψ†(L) = ψ(L)|0〉 = 0. (2.1)

These creation and annihilation operators obey the following com-
mutation relations:[
ψ(L),ψ†(L′)] = δ

(
L − L′), (2.2)

and the others are zero. The world-sheet which closed strings
sweep out can be seen as the whole space–time itself. The cor-
responding Hamiltonian (see Fig. 1) can be written as:

H0 =
∞∫

0

dL ψ†(L)H0(L,Λ)ψ(L)

+ Gs

∞∫
0

dL1

∞∫
0

dL2 ψ†(L1)ψ
†(L2)ψ(L1 + L2)(L1 + L2)

+ αGs

∞∫
0

dL1

∞∫
0

dL2 ψ†(L1 + L2)ψ(L2)ψ(L1)L2L1

−
∞∫

0

dL δ(L)ψ(L), (2.3)

where
H0(L,Λ) = −L∂2
L + ΛL. (2.4)

Gs and Λ are the string coupling constant and the cosmological
constant, respectively. The parameter α in (2.3) was introduced to
count the numbers of genus in amplitudes. In the following discus-
sion we shall take α = 0, which suppresses the creation of handles.
The Hamiltonian above has been determined under the following
scaling dimensions:

[S] = a,
[
ψ†(L)

] = a0,
[
ψ(L)

] = a−1,

[Gs] = a−3, (2.5)

where a is the scaling dimension of space, or alternatively speak-
ing the lattice spacing, and [S] is the scaling dimension of time.
A crucial difference between the Hamiltonian of the non-critical
SFT constructed by Ishibashi and Kawai [6] and that of GCDT is
the existence of the propagator term,

∫
dL ψ†(L)H0ψ(L). In GCDT

the propagator term actually exists but IK’s theory does not. This
difference comes from the fact that both theories have quite dif-
ferent definitions of “time”.

The authors in [3] derived Schwinger–Dyson’s Equation (SDE)
for the Laplace-transformed disk amplitude, W̃Λ(Z) = ∫ ∞

0 dL ×
e−L Z 〈0|e−S H0ψ†(L)|0〉|S→∞ , in GCDT as1:

∂Z
[(

Λ − Z 2)W̃Λ(Z) + Gs W̃ 2
Λ(Z)

] + 1 = 0. (2.6)

The solution of the above SDE was also derived by a perturbative
expansion w.r.t. the string coupling constant in [3]:

W̃Λ(Z) = 1

Z + √
Λ

− Gs
Z + 3

√
Λ

4Λ(Z + √
Λ)3

+ O
(
G2

s

)
. (2.7)

The first term in the solution above is equivalent to the strictly
causal solution [1]. In this formalism, the contributions from baby
universes are weighted by the string coupling constant Gs .

2.2. Matrix model approach

The hermitian N × N matrix model reproducing the SDE of
GCDT was introduced. We start with the following matrix inte-
gral [4]:∫

dφ e− N
gs

V (φ)
, (2.8)

where

V (φ) = −gφ + 1

2
φ2 − 1

3
gφ3, (2.9)

and φ, g and gs are an N × N hermitian matrix, the ’t Hooft cou-
pling constant and the string coupling constant, respectively. Then,
by introducing the infinitesimal lattice spacing a, we can expand
the coupling constants and the matrix w.r.t. a:

1 The authors derived a more general result with arbitrary α, but here we re-
stricted our situation to that with α = 0.
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gs = 1

2
a3Gs, φ = Î − aΦ + O

(
a2),

g = 1

2

(
1 − 1

2
a2Λ + O

(
a4)), (2.10)

where Î is the unit N × N matrix, and Gs , Φ and Λ are the cor-
responding renormalized values. Substituting the fine-tuned values
above into the potential N

gs
V (φ), we find

N

gs
tr V (φ) = N

Gs
tr

(
1

3
Φ3 − ΛΦ

)
+ (terms independent of Φ) + O(a). (2.11)

Here we define the partition function in the continuum limit as:

Z ≡
∫

dΦ exp

[
− N

Gs
tr

(
1

3
Φ3 − ΛΦ

)]
. (2.12)

In the large-N limit, the saddle-point equation becomes2

∂Z
[(

Λ − Z 2)W̃Λ(Z) + Gs W̃Λ(Z)2] + 1 = 0, (2.13)

where W̃Λ(Z) is the resolvent for the matrix Φ . We notice that
the saddle-point equation coincides with the SDE of GCDT.

3. Generalized CDT with extended interactions

3.1. Non-critical SFT approach

Applying the method in [7], we shall construct the non-critical
SFT Hamiltonian of GCDT with extended interactions.

The propagator term in (2.3),
∫

dL ψ†(L)H0(L,Λ)ψ(L), induces
the strictly causal geometry. To make this propagator survive, we
should impose the scaling dimension of space and time as:

[L] = a, [S] = a, (3.1)

where a is the lattice spacing for space. From now, we shall extend
the non-critical SFT based on GCDT without changing the scalings
above. Since we think that the causality is the identity of CDT, this
sort of extension is meaningful to get some deep understanding of
what CDT is.

First, we consider the strings with different charges, (+)-type
and (−)-type. The creation and annihilation operators for (+)-
type string, Ψ

†
+(L) and Ψ+(L), and for (−)-type string, Ψ

†
−(L) and

Ψ−(L), are defined as the following vacuum conditions, respec-
tively:

〈0|ψ†
+(L) = ψ+(L)|0〉 = 〈0|ψ†

−(L) = ψ−(L)|0〉 = 0. (3.2)

We assume these operators obey the following commutation rela-
tions:[
ψ+(L),ψ

†
+
(
L′)] = [

ψ−(L),ψ
†
−
(
L′)] = δ

(
L − L′), (3.3)

and the others are zero. Additionally, we assume the same scaling
dimensions with those of GCDT:[
ψ

†
±(L)

] = a0,
[
ψ±(L)

] = a−1, [Gs] = a−3, (3.4)

where Gs is the string coupling constant as before. Under the
conditions above, we can extend the Hamiltonian for GCDT ap-
plying the interaction for spin clusters introduced by Ishibashi and

2 In [4], the authors derived a general saddle-point equation beyond the large-N
limit. The general saddle-point equation really coincides with the SDE with arbitrary
α by the treatment, α = 1/N2.
Kawai [7]. Here we call such an interaction the IK-type interaction.
It is based on the so-called peeling procedure in a discrete random
surface. For example, considering a randomly triangulated surface
coupled with Ising spins with one boundary and furthermore as-
suming that the boundary triangles have homogeneous spins (all
spins are up-type or down-type), one peels triangles along with
the boundary as if one peels an apple. If one continues to peel
off triangles over the boundary triangles and one encounters the
triangle having a different spin, then one surrounds the triangles
having different spins by the triangles having same spins with the
boundary triangles. In short, the randomly triangulated surface is
separated by domain walls. In this case, the SDE for their approach
coincides with the loop equation for the chain-type two-matrix
model describing the random geometry coupled with Ising spins.
We emphasize here that the above closed strings are not seen as
the spin boundary as in the case of IK but the equal-time hypersur-
faces with different charges. If we apply the IK-type interaction, we
can write down the extended Hamiltonian (see Fig. 2) for GCDT:

Hm =
∞∫

0

dL ψ
†
+(L)H0(L,Λ)ψ+(L)

+ Gs

∞∫
0

dL1

∞∫
0

dL2 ψ
†
+(L1)ψ

†
+(L2)ψ+(L1 + L2)(L1 + L2)

+ bGs

∞∫
0

dL1

∞∫
0

dL2 ψ
†
+(L1 + L2)ψ

†
−(L2)ψ+(L1)L1

+ αGs

∞∫
0

dL1

∞∫
0

dL2 ψ
†
+(L1 + L2)ψ+(L2)ψ+(L1)L2L1

−
∞∫

0

dLδ(L)ψ+(L) + [
ψ+

(
ψ

†
+
) ↔ ψ−

(
ψ

†
−
)]

, (3.5)

where α and b are dimensionless constants.3 In the Hamiltonian
above, for simplicity, we will restrict the topology of geometries to
that of a disk, which can be realized by the following Hamiltonian:

H D
m ≡ lim

α→0
Hm. (3.6)

Next we will derive the SDE in our extended model. The SDE
corresponds to Wheeler–DeWitt’s equation for the wave function
of the universe. To begin, we define a partition function and disk
amplitudes:

Z ≡ lim
S→∞〈0|e−S H D

m |0〉 ≡ 1, (3.7)

and

W±(L) ≡ lim
S→∞〈0|e−S H D

m ψ
†
±(L)|0〉. (3.8)

The SDE for W±(L) is

lim
S→∞

∂

∂ S
〈0|e−S H D

mψ
†
±(L)|0〉 = 0. (3.9)

Using the equation, H D
m|0〉 = 0, and the commutation relations

(3.3), we can rewrite the SDE as:

3 In fact, it is possible to include the interactions,
∫

dL ψ
†
−(L)H0(L,Λ)ψ+(L) and

its spin-flipped term. However, because of the Z2-symmetry as to the spin reflec-
tion, such terms merely cause a constant shift of the string coupling constant, so
that we have not included these terms in the Hamiltonian.
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Fig. 2. Terms in the extended Hamiltonian: The red string stands for the one having the (+)-type charge, and the blue for the (−)-type charge. Of course, terms whose
charges are flipped exist in the Hamiltonian, but here we do not include the graphical expressions of those terms. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this Letter.)
0 = −L∂2
L W±(L) + ΛLW±(L) − δ(L)

+ Gs L

∞∫
0

dL1 lim
S→∞〈0|e−S H D

m ψ
†
±(L1)ψ

†
±(L − L1)|0〉

+ bGs L

∞∫
0

dL1 lim
S→∞〈0|e−S H D

m ψ
†
±(L + L1)ψ

†
∓(L + L1)|0〉.

(3.10)

Here we introduce the factorization theorem:

lim
S→∞〈0|e−S H D

m ψ
†
±(L1)ψ

†
±(L2)|0〉

= lim
S→∞〈0|e−S H D

m ψ
†
±(L1)|0〉 lim

S→∞〈0|e−S H D
m ψ

†
±(L2)|0〉. (3.11)

Applying the above factorization theorem, the SDE (3.10) becomes

0 = −L∂2
L W±(L) + ΛLW±(L) − δ(L)

+ Gs L

∞∫
0

dL1 W±(L1)W±(L − L1)

+ bGs L

∞∫
0

dL1 W±(L + L1)W∓(L1). (3.12)

In fact, our system has Z2-symmetry w.r.t. a spin-reflection, so that
we will focus on a Z2-symmetric solution of the SDE:

W+(L) = W−(L) ≡ WΛ(L). (3.13)

Next, we implement the Laplace transformation, L[WΛ(L)] ≡∫ ∞
0 dL e−L Z WΛ(L) ≡ W̃Λ(Z). Applying the expression, WΛ(L), and

Laplace transforming (3.12) yields

0 = ∂Z
[(

Z 2 − Λ
)
W̃Λ(Z) − Gs W̃Λ(Z)2] − 1

+ bGs L
[

L

∫
dL1 WΛ(L + L1)WΛ(L1)

]
. (3.14)

We notice that the last term includes a divergent part as Z → ∞.
To regularize this divergence, it is good to symmetrize it w.r.t. the
reflection, Z ↔ −Z [7,8]:

∞∫
0

dL

∞∫
0

dL1 e−Z(L+L1)WΛ(L + L1)e+Z L1 WΛ(L1)

+ (Z ↔ −Z) = W̃Λ(Z)W̃Λ(−Z). (3.15)

Subtracting the SDE with the reflection (Z → −Z ) from the origi-
nal SDE (3.12), we get the finite SDE:

0 = ∂Z
[(

Z 2 − Λ
)(

W̃Λ(Z) + W̃Λ(−Z)
)

− Gs
(
W̃Λ(Z)2 + W̃Λ(−Z)2 + bW̃Λ(Z)W̃Λ(−Z)

)]
. (3.16)
Integration of the SDE above over Z yields

c = (
Z 2 − Λ

)(
W̃Λ(Z) + W̃Λ(−Z)

)
− Gs

(
W̃Λ(Z)2 + W̃Λ(−Z)2 + bW̃Λ(Z)W̃Λ(−Z)

)
, (3.17)

where c is a constant.
We will derive a perturbative solution for the SDE above around

the weak coupling region, Gs < 1, by expanding the loop amplitude
W̃Λ(Z) and c like:

W̃Λ(Z) =
∞∑

n=0

Gn
s Wn(Z), c =

∞∑
n=0

Gn
s cn. (3.18)

As for W0(Z), we find

W0(Z) = 1

Z + √
Λ

, (3.19)

where we have chosen an overall constant for W0(Z) to coincide
with that of pure CDT [1]. As for W1(Z) and W1(−Z), we find

W1(Z) + W1(−Z)

= 1

(Z + √
Λ)3(Z − √

Λ)3

× [
c1 Z 4 + (2 − b − 2Λc1)Z 2 + c1Λ

2 + 2Λ + bΛ
]
. (3.20)

Assuming that the disk amplitude behaves as 1/Z in the large Z -
region, we can determine that c1 = −(b + 1)/2Λ. Furthermore, we
can extract W1(Z) by considering that W1(Z) is analytic in the
region, Re[Z ] > 0. Thus, the perturbative solution is

W̃Λ(Z) = 1

Z + √
Λ

− Gs
1

4Λ

[
Z + 3

√
Λ

(Z + √
Λ)3

+ b

(Z + √
Λ)2

]
+ O

(
G2

s

)
. (3.21)

The solution with b = 0 is equivalent to that of the pure GCDT
(2.7).

3.2. Matrix model approach

We start with the following matrix integral:∫
dφ+ dφ− e− N

gs
V (φ+,φ−)

, (3.22)

where

V (φ+, φ−) = −g(φ+ + φ−) + 1

2

(
φ2+ + φ2−

)
− g

3

(
φ3+ + φ3−

) + xφ+φ−. (3.23)

In the integral above, φ± , g , gs and x are N ×N hermitian matrices,
the ’t Hooft coupling constant, the string coupling constant and
the coupling constant characterizing the interaction, respectively.
Then, we expand the fields and coupling constants w.r.t. the lattice
spacing a as follows:
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φ+ = Î − a(A + B) + O
(
a2),

φ− = Î − a(A − B) + O
(
a2), (3.24)

and

gs = a3Gs, g = 1

2

(
1 − 1

2
a2(Λ − 2X) + O

(
a4)),

x = Xa2, (3.25)

where A and B are N × N hermitian matrices, and Î is the unit
matrix, and Gs , Φ , Λ and X are the corresponding renormalized
values. Thus, our model can be seen as the one that the cut-length
shrinks to zero (gs → 0), and the strength of the interaction falls
off (x → 0). The causality induces the scaling, gs → 0, and in ad-
dition, by taking the limit, x → 0, we can get our model as the
weakly interacting model. Substituting the fine-tuned values, we
can write down the partition function of the matrix model in the
continuum limit:

Z =
∫

dA dB exp

[
− N

Gs
tr

(
1

3
A3 + AB2 − ΛA

)]
. (3.26)

An interesting thing is that in the matrix model having this type
of potential, the Gaussian integral over B can be performed by in-
troducing the eigenvalues λi ’s for the matrix A [9,10]:

Z ∝
∫ ∏

i

dλi �
2(λ)

∏
i, j

(λi + λ j)
−1/2e− N

Gs
V
, (3.27)

where

V =
N∑

i=1

V (λi) =
N∑

i=1

(
1

3
λ3

i − Λλi

)
, (3.28)

and �(λ) denotes the Vandermonde determinant, �(λ) =∏
i< j(λ j − λi). In the large-N limit, the saddle point equation be-

comes

2

N

∑
j 
=i

1

λi − λ j
= 1

N

∑
j

1

λi + λ j
+ 1

Gs
V ′(λi), (3.29)

where V ′(λi) = λ2
i − Λ. Here we define the resolvent for A as

W̃Λ(Z) ≡ 1
N tr(Z − A)−1, and the distribution of eigenvalues as

ρ(λ) ≡ 1
N

∑
i δ(λ − λi). Multiplying (3.29) by 1/(Z − λi) and sum-

ming over i, we obtain the loop equation in the large-N limit:

V ′(Z)W̃Λ(Z) + V ′(−Z)W̃Λ(−Z) − Gs
(
W̃Λ(Z)2

+ W̃Λ(Z)W̃Λ(−Z) + W̃Λ(−Z)2) + Gsr1(Z) = 0, (3.30)

where

Gsr1(Z) =
∫

dλρ(λ)

[
V ′(λ) − V ′(Z)

Z − λ
− V ′(λ) − V ′(−Z)

Z + λ

]

= −2
∫

dλρ(λ)λ. (3.31)

In the calculation above, we used the two identities:

2

N2

∑
i 
= j

1

Z − λi

1

λi − λ j
= W̃Λ(Z)2 + 1

N
W̃ ′

Λ(Z), (3.32)

and

1

N2

∑
i, j

1

λi + λ j

(
1

Z − λi
− 1

Z + λi

)
= −W̃Λ(Z)W̃Λ(−Z). (3.33)

Putting explicit form of the potential into the loop equation (3.30),
we find
(
Z 2 − Λ

)(
W̃Λ(Z) + W̃Λ(−Z)

)
− Gs

(
W̃Λ(Z)2 + W̃Λ(Z)W̃Λ(−Z) + W̃Λ(−Z)2)

= 2
∫

dλρ(λ)λ. (3.34)

Remembering the SDE derived in the non-critical SFT approach
(3.17), we can find a great similarity between the two. Namely, if
we set b = 1 in the SDE, then the two equations are exactly same.
Thus, this matrix model in the continuum limit can reproduce our
GCDT with extended interactions in b = 1.

We can extend the matrix model in the continuum limit above
to the general O (n) vector model [9,10] such that:

Z =
∫

dA dB1 · · ·dBn e− N
Gs

tr U (A,B1,...,Bn)
, (3.35)

where

U (A, B1, . . . , Bn) = A
(

B2
1 + · · · + B2

n

) + 1

3
A3 − ΛA, (3.36)

and A, B1, . . . , Bn are N × N hermitian matrices. One can find that
the previous matrix model in the continuum limit is O (1) vector
model. Again, we can integrate out all Bi ’s, and a consequence is

Z ∝
∫ N∏

i=1

dλi e− N
Gs

V
∏
i, j

(λi + λ j)
−n/2�2(λ), (3.37)

where λis are eigenvalues of A, and V = ∑
i V (λi) = ∑

i(
1
3 λ3

i −
Λλi). The saddle-point equation becomes

2

N

∑
j 
=i

1

λi − λ j
= n

N

∑
j

1

λi + λ j
+ 1

Gs
V ′(λi). (3.38)

In the similar manner as O (1) vector model, we get the loop equa-
tion for the resolvent W̃Λ(Z):(

Z 2 − Λ
)(

W̃Λ(Z) + W̃Λ(−Z)
)

− Gs
(
W̃Λ(Z)2 + nW̃Λ(Z)W̃Λ(−Z) + W̃Λ(−Z)2)

= 2
∫

dλρ(λ)λ. (3.39)

Thus, the loop equation of this O (n) vector model coincides with
the SDE labeled by a free parameter b (3.17) only if we identify n
with b.

3.3. Inclusive process

In the above, we derived the differential equation for disk am-
plitude in our extended model, and solved it by perturbative ex-
pansions. As a confirmation, we shall reproduce the same differen-
tial equation for disk amplitude using the so-called inclusive process
[6,7,11]. In the inclusive process, putting caps (disk amplitudes)
on one of two loops (universes) at branch points we can focus
on the amplitude with one loop, which has its origin in the so-
called transfer matrix formalism [12]. If we focus on the case that
initial and final strings have the same charges, then the inclusive
SFT Hamiltonian can be written as follows:

HIN =
∞∫

0

dL ψ
†
+(L)H0(L,Λ)ψ+(L)

+ 2Gs

∞∫
dL1

∞∫
dL2 W+(L1)ψ

†
+(L2)ψ+(L1 + L2)(L1 + L2)
0 0
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Fig. 3. Four types of triangles weighted by gx± and gy±: gx± and gy± are the weights for the triangles which are the elements of an initial loop with (±)-charge and of a
final loop with (±)-charge in the generating function, respectively.
+ bGs

∞∫
0

dL1

∞∫
0

dL2 ψ
†
+(L1 + L2)W−(L2)ψ+(L1)L1

+ [
ψ+

(
ψ

†
+
) ↔ ψ−

(
ψ

†
−
)]

. (3.40)

Cylinder amplitudes are defined as:

G++(L1, L2) ≡
∞∫

0

dS G++(L1, L2; S)

≡
∞∫

0

〈0|ψ+(L2)e−S HIN ψ
†
+(L1)|0〉, (3.41)

G−−(L1, L2) ≡
∞∫

0

dS G−−(L1, L2; S)

≡
∞∫

0

〈0|ψ−(L2)e−S HIN ψ
†
−(L1)|0〉. (3.42)

By a differentiation of G++(L1, L2) w.r.t. time S , we find

∂S G++(L1, L2; S) = −〈0|ψ+(L2)e−S HIN
[

HIN,ψ
†
+(L1)

]|0〉, (3.43)

where we have used HIN|0〉 = 0. With the calculation similar to
(3.10), the equation above can be rewritten as:

∂S G++(L1, L2; S) = L1
(
∂2

L1
− Λ

)
G++(L1, L2; S)

− 2Gs L1

∫
dL W+(L1 − L)G++(L, L2; S)

− bGs L1

∫
dL W−(L)G++(L1 + L, L2; S).

(3.44)

Limiting the length L2 to 0 and integrating over S in (3.44), we
have

0 = L1
(
∂2

L1
− Λ

)
W+(L1)

− 2Gs L1

∫
dL W+(L1 − L)W+(L)

− bGs L1

∫
dL W−(L)W+(L1 + L), (3.45)

where W+(L) ≡ ∫ ∞
0 dS G++(L,0; S), and we have used the fact

that G++(L1,0;∞) = G++(L1,0;0) = 0. Our system has the Z2-
symmetry as to the spin reflection, so that we focus on a Z2-
invariant solution, WΛ(L) ≡ W±(L), as in (3.13). Then, implement-
ing the Laplace transformation of (3.45) yields

0 = ∂X

[(−(
X2 − Λ

) + 2Gs W̃Λ(X)
)
W̃Λ(X)

+ bGs

∫
dL1 e−X L1

∫
dL WΛ(L)WΛ(L1 + L)

]
, (3.46)

where W̃Λ(X) ≡ ∫ ∞
0 dL e−L X WΛ(L). Again, the last term includes

divergent part as X → ∞. Thus, we need to remove the divergence
by the symmetrization as in (3.15):
0 = ∂X

[(
X2 − Λ

)(
W̃Λ(X) + W̃Λ(−X)

)
− 2Gs

(
W̃Λ(X)2 + b

2
W̃Λ(X)W̃Λ(−X) + W̃Λ(−X)2

)]
.

(3.47)

After the proper shifts of the string coupling constant Gs and the
free parameter b, Eq. (3.47) coincides with the SDE for the disk
amplitude (3.17) as expected.

Next, we start with a discrete model, and then reconstruct
our model as its continuum limit. To carry it out, based on the
transfer matrix formalism [12] we derive the differential equa-
tion for disk amplitude, which turns out to be equivalent to
(3.17) in the continuum limit. Here the transfer matrix is the
one-time-step propagator having the length-l1 initial loop with
(±)-charge and the length-l2 final loop with (±)-charge denoted
by G±±(l1, l2;1). First, we derive the non-interacting propagator
which is one of parts in the transfer matrix, G I±(l1, l2;1). This
can be easily calculated introducing the generating function of
it, i.e. G̃ I±±(x±, y±;1) ≡ ∑

l1,l2
xl1± yl2±G I±±(l1, l2;1). Namely, we pre-

pare four types of triangles weighted by gx± and gy± (Fig. 3), and
only from the combinatorics we can find the generating function
of the one-time-step propagator [1]:

G̃ I±±(x±, y±;1) = g2x± y±
(1 − gx±)(1 − gx± − gy±)

. (3.48)

In the calculation above, we marked a point on one of initial links
following [1]. For the later discussion, we give the specific form of
weights:

g = 1

2
e− 1

2 a2Λ, x± = e−aX± , y = e−aY± , (3.49)

where a is the lattice spacing, and Λ, X± and Y± are the renor-
malized coupling constants. Then, we introduce the transfer matrix
combing the disk amplitude with the length-l initial loop with (±)-
charge w±(l) and the non-interacting propagator G I±±(l1, l2;1) as
follows:

G±±(l1, l2;1) = G I±(l1, l2;1) + 2gs

l1−1∑
l=1

l1 w±(l1 − l)G I±±(l, l2;1)

+ b̂gs

∞∑
l=1

l1 w∓(l)G I±±(l + l1, l2;1), (3.50)

where gs is the bare string coupling constant and b̂ is a free
parameter (Fig. 4). A natural property of the propagator is the de-
composition law:

G±±(l1, l2; s) =
∞∑

l=1

G±±(l1, l;1)G±±(l, l2; s − 1). (3.51)

After the Laplace transformation, Eq. (3.51) becomes

G̃±±(x±, y±; s)

=
∮

dz±
2π iz±

G̃±±
(
x±, z−1± ;1

)
G̃±±(z±, y±; s − 1). (3.52)

Substituting (3.48) into Eq. (3.52), one finds
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Fig. 4. Terms in the transfer matrix, G++(l1, l2;1): dots in the arguments are replaced by some suitable variables on a case-by-case basis, and dots on loops in pictures are
marked points on links.
G̃±±(x±, y±; s)

=
∮

dz±
2π iz±

∞∑
l1,l2,l=1

xl1± yl2±z−l+l± G±±(l1, l;1)G±±(l, l2; s − 1)

=
∮

dz±
2π iz±

[
G̃ I±±

(
x±, z−1± ;1

)
+ 2gsx±∂x±

(
w̃±(x±)G̃ I±±

(
x±, z−1± ;1

))
+

∞∑
l1=1

∞∑
l′=1

b̂gsx±∂x±
(
xl1±w∓

(
l′
)
G̃ I±±

(
l′ + l1, z−1± ;1

))]

× G̃±±(z±, y±; s − 1), (3.53)

where w̃±(x±) ≡ ∑
l xl±w±(l), and G̃ I±±(l′ + l1, z−1± ;1) ≡∑

l z−l± G I±±(l′ + l1, l;1). Here we introduce lcut to regularize the
divergent summation over l′ in (3.53):

G̃±±(x±, y±; s) → [
1 + 2gsx±

(
∂x± w̃±(x±) + w̃±(x±)∂±

)]
× gx±

1 − gx±
G̃±±

(
g

1 − gx±
, y±; s − 1

)

+
∞∑

l1=1

lcut∑
l′=1

b̂gsx±∂x±

[
xl1±w∓

(
l′
)

×
∮

du±
2π iu±

u−(l′+l1)
±

gu±
1 − gu±

G̃±±

×
(

g

1 − gu±
, y±; s − 1

)]
, (3.54)

where u± ≡ e−aU± .
In the following, we focus on Z2-symmetric solutions, i.e.

Gλ(x, y; s) ≡ G±±(x±, y±; s) and wλ(x) ≡ w±(x±). Under the scal-
ings, i.e., S ≡ as, L1 ≡ al1 and L2 ≡ al2, one finds the following
renormalized functions:

G̃Λ(X, Y ; S) = lim
a→0

aG̃λ(x, y; s), W̃Λ(X) = lim
a→0

aw̃λ(x),

WΛ(L) = lim
a→∞ wλ(l). (3.55)

From (3.49), (3.53), (3.54) and (3.55), one finds

∂S G̃Λ(X, Y ; S)

= −∂X

[(
X2 − Λ

)
G̃Λ(X, Y ; S) + 2Gs W̃Λ(X)G̃Λ(X, Y ; S)

+ lim
Lcut→∞

b̂Gs

∞∫
0

dL1

Lcut∫
0

dL′ eL′ X WΛ

(
L′)e−(L′+L1)X

× G̃Λ

(
L′ + L1, Y ; S

)]
, (3.56)
where Lcut ≡ alcut, and we have used G̃Λ(L′ + L1, Y ; S) ≡∫ i∞
−i∞ dU e(L′+L1)U G̃Λ(U , Y ; S). Implementing the inverse Laplace

transformation w.r.t. Y and integrating over S in (3.56), one finds

0 = −∂X

[(
X2 − Λ

)
G̃Λ(X, L) + 2Gs W̃Λ(X)G̃Λ(X, L)

+ b̂Gs

∞∫
0

dL1

∞∫
0

dL′ eL′ X WΛ

(
L′)e−(L′+L1)X GΛ

(
L′ + L1, L

)]
,

(3.57)

where G̃Λ(X, L) ≡ ∫ ∞
0 dS G̃Λ(X, L; S), and GΛ(L′ + L1, L) ≡∫ i∞

−i∞ dY eLY G̃Λ(L′ + L1, Y ). Limiting the length L to 0 in (3.57),
one finds

0 = ∂X

[(
X2 − Λ

)
W̃Λ(X) + 2Gs W̃Λ(X)2

+ b̂Gs

∞∫
0

dL1

∞∫
0

dL′ eL′ X WΛ

(
L′)e−(L′+L1)X WΛ

(
L′ + L1

)]
,

(3.58)

where W̃Λ(X) ≡ G̃Λ(X,0) and WΛ(L′ + L1) ≡ GΛ(L′ + L1,0). As
for the last term in (3.58), we use the same procedure as in (3.15)
and (3.47):

∞∫
0

dL1

∞∫
0

dL′ eL′ X WΛ

(
L′)e−(L′+L1)X WΛ

(
L′ + L1

)
+ (X ↔ −X) = W̃Λ(−X)W̃Λ(X). (3.59)

Therefore, we obtain the finite differential equation for disk ampli-
tude:

0 = ∂X

[(
X2 − Λ

)(
W̃Λ(X) + W̃Λ(−X)

)
+ 2Gs

(
W̃Λ(X)2 + b̂

2
W̃Λ(X)W̃Λ(−X) + W̃Λ(−X)2

)]
.

(3.60)

Finally, after the proper shifts of the string coupling constant Gs

and the free parameter b̂, one finds that (3.60) is equivalent to
(3.17) as expected.

4. Discussions

We have shown the equivalence between the two different
field theories at the level of differential equations, the Schwinger–
Dyson’s equation in the non-critical SFT and the loop equation of
the matrix model in the continuum limit. We hope that our model
is a first step toward matter-coupled systems based on CDT. In the
following, we will examine the model constructed in this Letter
from different point of view.
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To begin with, we will discuss our model in terms of the SFT
approach. Although we have used the IK-type interaction to con-
struct the extended SFT based on GCDT, we do not understand
whether or not our model is on the critical point of the Ising
model characterized by the Curie temperature. In the following, we
will explain two complications around this problem. First, at the
critical point of Ising spins the spin configuration must be random.
In other words, the spins are supposed to fluctuate all length scales
between the lattice spacing and the correlation length. Contrary to
that, in our model the homogeneous spin (charge) configurations
survive as the propagators. Second, the definition of time induced
by our Hamiltonian (3.5) is different from the would-be GCDT cou-
pled with Ising spins. Namely, we consider the closed strings in
our model as not spin-cluster boundaries but spacial boundaries,
so that we pursue the time flow of spatial boundaries. Thus, our
time is nothing but the proper time. This proper time is crucially
different from the time defined via the spin-cluster boundary [13,
14]. If we consider our time as the one defined via the spin-cluster
boundary, which is equivalent to treating our model as the GCDT
coupled with Ising spins, then the scaling dimension of time may
be different from the lattice spacing a according to [13]. This con-
tradicts our first setup (2.5). Anyhow, the free parameter b might
be the key to know what our model is.

In addition, it is possible to extend our non-critical SFT to the
multi-“colored” system:

H (n)
m =

n∑
i=1

∞∫
0

dL ψ
†
i (L)H0(L,Λ)ψi(L)

+ Gs

n∑
i=1

∞∫
0

dL1

∞∫
0

dL2 ψ
†
i (L1)ψ

†
i (L2)ψi(L1 + L2)(L1 + L2)

+ Gs

n∑
i=1

n∑
j 
=i

bi j

∞∫
0

dL1

∞∫
0

dL2 ψ
†
i (L1 + L2)ψ

†
j (L2)ψi(L1)L1

+ αGs

n∑
i=1

∞∫
0

dL1

∞∫
0

dL2 ψ
†
i (L1 + L2)ψi(L2)ψi(L1)L2L1

−
n∑

i=1

∞∫
0

dL δ(L)ψi(L). (4.1)

We can derive the free parameter b in our model from the
multi-“colored” system above under the treatment, W1(L) = · · · =
Wn(L) ≡ WΛ(L), bij = 0 for j = i and bij = 1 for j 
= i.

Next, we will closely look at our matrix model. Considering the
direct product of the two copies of the potential, each of which
yields the pure GCDT, and introducing the linear combinations of
the matrices as Φ+ = A + B and Φ− = A − B , we find

1

G̃s

(
1

3
Φ3+ − ΛΦ+ + 1

3
Φ3− − ΛΦ−

)

= 1

Gs

(
1

3
A3 + AB2 − ΛA

)
, (4.2)
where G̃s = 2Gs . This is the potential of our O (1) vector model
in the continuum limit. Then, diagonalizing the matrix A as A =
diag(λ1, . . . , λN ) and integrating out the matrix B , we get the ef-
fective theory for the eigenvalues of A with the potential,[

1

Gs

∑
i

(
1

3
λ3

i − Λλi

)
− 1

N
log�2(λ)

]
︸ ︷︷ ︸

terms appeared in the pure GCDT

+ 1

N
(terms induced by the integration over B). (4.3)

The important point here is that our model is slightly different
from the pure GCDT matrix model because integrating out the ma-
trix B an extra correction is added to terms appeared in the pure
GCDT. From the matrix A’s point of view, the matrix B can be seen
like some external field. The strength of such an external field can
be bigger by inserting the integrated-out matrices, which leads to
the O (n) vector model in the continuum limit.
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