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Ryanodine Receptor Adaptation and Ca2+-lnduced Ca2+ Release-
Dependent Ca2+ Oscillations
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ABSTRACT A simplified mechanism that mimics "adaptation" of the ryanodine receptor (RyR) has been developed and its
significance for Ca2+-induced Ca2+ release and Ca2+ oscillations investigated. For parameters that reproduce experimental
data for the RyR from cardiac cells, adaptation of the RyR in combination with sarco/endoplasmic reticulum Ca2+ ATPase
Ca2+ pumps in the internal stores can give rise to either low [Ca?+] steady states or Ca2+ oscillations coexisting with
unphysiologically high [Ca-j+] steady states. In this closed-cell-type model rapid, adaptation-dependent Ca2+ oscillations
occur only in limited ranges of parameters. In the presence of Ca2+ influx and efflux from outside the cell (open-cell model)
Ca2+ oscillations occur for a wide range of physiological parameter values and have a period that is determined by the rate
of Ca2+ refilling of the stores. Although the rate of adaptation of the RyR has a role in determining the shape and the period
of the Ca2+ spike, it is not essential for their existence. This is in marked contrast with what is observed for the inositol
1 ,4,5-trisphosphate receptor for which the biphasic activation and inhibition of its activity by Ca2+ are sufficient to produce
oscillations. Results for this model are compared with those based on Ca2+-induced Ca2+ release alone in the bullfrog
sympathetic neuron. This kinetic model should be suitable for analyzing phenomena associated with "Ca2+ sparks," including
their merger into Ca2+ waves in cardiac myocytes.

INTRODUCTION

In a recent series of papers Fill and co-workers (Gyorke and
Fill, 1993; Gyorke and Fill, 1994; Gyorke et al., 1994;
Louis, 1994) have shown that the ryanodine receptor (RyR)
from cardiac cells and skeletal muscle undergoes a Ca21_
dependent process called "adaptation." Adaptation occurs
during the slow, spontaneous decrease in the open proba-
bility of a channel after it has been activated rapidly by a
sustained pulse of Ca2+ at its cytosolic face ([Ca4+]). In
isolated bilayers, activation of the RyR occurs within mil-
liseconds, whereas inactivation occurs on a time scale of a
few seconds. The RyR is said to have "adapted" during
inactivation because a subsequent increase in [Ca4+] pro-
duces a nearly identical rise in the open probability. The
extent of opening just after Ca2+ stimulation (the peak open
probability) and that after inactivation (the plateau) both
increase with increasing Ca2+ concentration. In cardiac
cells the plateau open probability does not exhibit further
inactivation until millimolar Ca2+ concentrations are
reached (Chu et al., 1993; Laver et al., 1995). Although
RyRs from skeletal muscle (Laver et al., 1995) and brain
(Bezprozvanny et al., 1991) are more sensitive to inactiva-
tion by Ca2 , they do not exhibit significant inactivation
below -0.1 mM [Ca2+]. Thus Ca2+ release via the RyR
appears to be dominated by fast Ca2+ activation followed
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by slower inactivation to the plateau in the physiological
range of [Ca4+].

This process of adaptation is reminiscent of the Ca2+
release properties of the inositol 1,4,5-trisphosphate (IP3)
receptor Ca2+ channel (IP3R) (lino, 1990). The IP3R also
undergoes rapid Ca2+-dependent activation followed by a
slow inactivation. For the IP3R, however, inactivation is
known to be Ca2+ dependent, although it also occurs on a
time scale of seconds (Iino, 1990; Bezprozvanny et al.,
1991; Finch et al., 1991). This type of ligand-gated regula-
tion of ion channel is analogous to the rapid voltage-depen-
dent activation and inactivation of sodium channels, and
these properties of the IP3R give it a similar role in the Ca2+
excitability of the endoplasmic reticulum (ER) membrane
(Li et al., 1995).

Structural similarities between the RyR and the IP3R
(Berridge, 1993) might suggest that the mechanisms under-
lying Ca2+ release may be similar. This correspondence,
however, cannot be strictly true because in the physiological
range of [Ca2+] the equilibrium (plateau) open probability
of the IP3R is a bell-shaped, rather than an increasing,
function of [Ca4+]. Inactivation of the IP3R dominates
above -0.3 AM (Bezprozvanny et al., 1991; lino and
Tsukioka, 1994). This bell-shaped Ca2+ dependence of the
IP3R along with slow inactivation by Ca2+ has been pro-
posed to have an important role in 1P3-induced Ca2+ oscil-
lations (De Young and Keizer, 1992) and used to explain the
complex pattern of Ca2+ oscillations in pituitary gonado-
trophs (Keizer et al., 1995).

Here we develop a simplified model of the regulation of
the RyR by [Ca4+] that reproduces semiquantitatively the
gross observations of adaptation. The present model cor-
rectly predicts a nondiminishing equilibrium open probabil
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ity when [CaFi+] is in the range 0.1-100 ,uM. We term the
model "simplified" because not enough detail is yet known
about the kinetics of the RyR to permit us to establish a
definite molecular mechanism. Our mechanism for adapta-
tion differs from other proposed mechanisms (Tang and
Othmer, 1994; Cheng et al., 1995; Sachs et al., 1995) in that
Ca2+ is not directly involved in inactivation. We translate
our mechanism of adaptation into differential equations,
which we analyze by using the difference in the activation
and adaptation time scales.
Our motivation for developing the kinetic equations is

twofold. First, we were curious about how regulation of the
RyR at physiological concentrations of Ca2+ compared with
that of the IP3R. As we show in what follows, the minimal
mechanism developed here differs substantially from that
by which [Ca4+] activates and inactivates the IP3R (De
Young and Keizer, 1992). Second, we wanted to explore the
role of adaptation in Ca2+ oscillations (Friel and Tsien,
1992; Cheng et al., 1996). In the absence of external Ca2+
fluxes (closed-cell model) the mechanism leads to bistabil-
ity, i.e., more than one steady state or oscillation occurring
for a given set of parameters. Simulations show for a variety
of realistic parameters that at one of these steady states
[Ca2+] is well above the physiological range. Thus we also
investigate the influence of external Ca2+ fluxes (open-cell
model). Physiological values of Ca2+ influx and efflux give
rise to much slower Ca2+ oscillations, similar to the caf-
feine-sensitive oscillations found in the bullfrog sympa-
thetic neuron (Friel and Tsien, 1992). Adaptation of the
RyR helps to determine the shape and the period, but not the
existence, of Ca2+ spikes. These external flux-dependent
oscillations require only Ca2+-induced Ca2+ release (CICR)
and involve emptying and refilling of internal stores. Finally
we compare our results with those of other mechanisms,
including those involving CICR (Tang and Othmer, 1994;
Friel, 1995) and IP3-induced Ca2+ release (IICR) (De
Young and Keizer, 1992; Keizer et al., 1995; Li et al.,
1995).

ADAPTATION OF THE RyR

The mechanism used to mimic adaptation of the RyR is
shown schematically in Fig. 1. States Cl and C2 are closed
states, with state Cl dominating at low [Ca4+]. States 01
and 02 are open states. For simplicity we have taken these
states to be states of the entire RyR rather than states of the
four (possibly interacting) subunits, because little is known
about how the subunits function (Ogawa, 1994). Transitions
from Cl to 01 and from 01 to 02 are assumed to be Ca2+
dependent and have been written as depending on the bind-
ing of n and m Ca2+ ions, respectively. These steps corre-
spond to the phenomenon of CICR and in the absence of the
transition from 01 to C2 the mechanism would not give rise
to adaptation. When the transitions between 01 and C2 are
sufficiently slow, the mechanism exhibits slow inactivation
and, as we show in what follows, adaptation. We note that

n Ca+2
Cl g

a 01
02

mCa+2

C2
FIGURE 1 Schematic diagram of transitions among the four states of the
RyR used to describe adaptation. States C, and C2 are closed states, and 01
and 02 are open states, assumed to have the same single-channel conduc-
tance. The k are rate constants; only steps a and b are Ca2+ dependent.

the second open state, 02, is an important part of the model
that is required to keep the plateau open probability (see
below) increasing as [Ca; ] is increased.
To analyze the mechanism in Fig. 1 we translate the

schematic diagram into kinetic equations, using the mass
action law. Although multiple Ca2+ ions certainly do not
bind simultaneously to the RyR, for n and m greater than 1
we have in mind the Hill-type approximation often used for
multimeric proteins. Adopting the notation that Pc. gives
the fraction of RyR that is in the state Cl, etc. gives the
following set of differential equations:

(1)

(2)

dPci/dt =-ka+[Ca2+]P I+ ka§P01

dPolldt = ka+[Ca2+]nPc -kP - kb+[Cad ]jmPo,
+ kP02 - kc+Pol + kc PC29

dPO2/dt = kb[Ca2+]nPo -

dPc2/dt = kc+Pol -PC2,

(3)

(4)

where the subscripts a, b, and c label the three kinetic steps
in Fig. 1. The ki+ are rate constants, which along with the
integers n and m are to be determined by data fitting.
Qualitatively steps a and b should be fast (millisecond time
scale), whereas step c should be slow (second time scale).
Using the condition Pc. + Pc2 + Po, + Po2 = 1, we can
eliminate one of these equations, yielding three independent
equations. When [Ca4+] is held fixed, these three equations
are linear and straightforward to analyze.
To fix the kinetic parameters of the model we have relied

on the data of Gyorke and Fill (1993) on the time course of
the open probability following step increases in [Ca42+] from
0.1 ,uM for the cardiac RyR. Key features of these data
include rapid activation to the peak, the dependence of the
peak open probability on [Ca4+], the slow decline to the
plateau, and the [Ca4+] dependence of the plateau open
probability. Values of the kinetic parameter that produce a
semiquantitative fit with experiment are given in Table 1.
Figure 2 A shows a simulation of the open probability,
PO = PO + P02, for an instantaneous increase of [Ca4- ]
from 0.1 to 0.9 ,uM. The initial rise to the peak occurs on the
millisecond time scale (cf. Appendix A), whereas the de
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RyR Adaptation and Ca2+ Oscillations

TABLE 1 RyR kinetic constants (n = 4, m = 3)

Rate constant Value

k+ 1500 ,uM-4 s-
ka 28.8 s-'
kb+ l,150 M-3 s-
kj 385.9 s-'
k.+ 1.75 s-
kc- 0.1 s-1

cline to the plateau (Fig. 2 B) occurs within a few seconds.
With these parameters the model also mimics "adaptation,"
as is shown in Fig. 2 C, where a further increase of [Ca4+]
to 0.50 AM at the arrow gives rise to a comparable peak in
PO.

It is easy to see how the features of the kinetic model give
rise to rapid activation, slow inactivation, and "adaptation."
Referring to Fig. 1, we see that at low [Ca2+] the RyR will
occupy predominantly the closed state, Cl. In fact, at a basal
concentration of 0.1 ,uM the open probability is -0.01 in
our model. A rapid jump in [Ca21] from 0.1 to 0.9 ,uM (as
in Fig. 2 A) increases the occupancy of the two open states
within milliseconds because of the rapid Ca2+ dependence
of the transitions in steps a and b. This leads to the peak
open probability, which is followed by a decline as the

0.0- I a
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rapidly equilibrating transitions in steps a and b slowly lose
occupancy owing to the slow transition c to state C2. Ad-
aptation, as illustrated in Fig. 2 C, occurs before complete
equilibration of step c and is due to the residual occupancy
of the closed state, Cl of the RyR, which can be recruited
into the open states by a second pulse of Ca2+.
The dependence of the peak and plateau responses for

increases in [Ca42+] from 0.1 ,M to higher values is shown
in Fig. 2 D. The filled circles represent the peak values
taken from simulations like that in Fig. 2 A, whereas the
curves are theoretical values based on the separation of the
"fast" time scale for the rise to the peak (milliseconds) from
the "slow" time scale for the decline to the plateau (sec-
onds). The derivation of these theoretical expressions is
given in Appendix A. The calculated values for POA are in
good agreement with the experimental results of Gyorke
and Fill (1993) (shown as the open triangles). This includes
the facts that PO saturates slightly below P0 = 1 (0.963 in
Fig. 2 A) and that PO is negligible for [Ca4+] ' 0.1 ,uM
(Fig. 2 D). At values of [Cai2] higher than 5 ,uM the
plateau, on the other hand, rises somewhat higher (1.0 rather
than 0.75) than is reported experimentally. This problem
can be remedied in the model by addition of another closed
state, C3, that is connected to C2 by a [Ca2+]-dependent
transition. For the sake of simplicity, however, and because
the difference is significant only when [Ca2+] is at the high
end of the physiological range (Alberts et al., 1989), we
have not included that additional kinetic step in the version
of the model presented here.
On a time scale longer than 10-20 ms it is possible to

approximate the values of Pc., PO,, and Po2 by taking
advantage of the fact that the kinetic steps a and b in Fig. 1
rapidly reach equilibrium before PC2 changes appreciably.
On the "slow" time scale of changes in PC2 it is shown in
Appendix B that the open probability can be approximated
by

Z,
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FIGURE 2 (A) Simulation of the rapid rise to the peak open probability
of a single RyR following an increase of [Ca4+] from 0.1 to 0.9 ,uM,
calculated with Eqs. 1-4 and the rate constants in Table 1. (B) Same as (A)
but on a longer time scale to show the decline to the plateau open

probability. (C) Same as (B) but with two increases in [Ca4+]: from 0.1 to

0.35 ,tM at t = 0 followed by an increase to 0.50 ,mM at the arrow. Note
the adapted response. (D) The peak and the plateau open probabilities as

functions of [Ca.+]. (Solid curves) Theoretical values from Eqs. 15 and 16;
(0) simulations like that in (A); (IA) Experimental data (Fig. 2 B of Gyorke
and Fill, 1993) (upward facing triangles are the peak; and downward, the
plateau).

pslow _ w(1 + ([Ca. ]/Kb)3)
= 1 + (Kl[Ca4+])4 + ([Ca4+]/Kb)3' (5)

where w = 1-PC2, the fraction of channels not in state C2.
Furthermore, on this time scale w solves the differential
equation

dw/dt = - (w -w([Ca2+]))Ir([C4-'D, (6)

where wr is the equilibrium value of w and T is its relaxation
time. Explicit expressions for w'([Ca2+]) and r([Ca4+]) are

given in Eqs. 20 and 21 in Appendix B.
For fixed values of [Ca42+], Eqs. 5 and 6 show that the

rate of relaxation of w determines the rate of relaxation of
PO to its plateau value in Fig. 2 D. In the model the
relaxation time depends on [Ca4. ] and has a value of 1.0 s

for [Ca4+] = 0.5 ,tM. For the parameter values in Table 1
the relaxation time increases to -2.0 s at [Ca4+] = 0.2 ,uM
and to -1.9 s at [Ca4+] = 1.0 ,uM. This is compatible with
the experimental relaxation time of 1.3 ± 0.3 s reported for
the cardiac RyR (Gyorke and Fill, 1993).
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Although this minimal model does a good job of repro-

ducing experiments on adaptation of the RyR, we would not

expect stochastic simulations with the model to reproduce
all the detailed transitions observed in single-channel cur-

rents. We have verified, however, that the gross features of
the single-channels currents observed by Gyorke and Fill
(1993) are reproduced. These include periods of sustained
opening with brief interruptions to state Cl followed by
periods of sustained closings in which the channel is in state
C2. What is missing are the rapid "flickerings" of the
channel in the open state. Reproducing that and other fea-
tures seen in the single-channel records would require a

more detailed model. Nonetheless, an ensemble average of
simulations with the present model is guaranteed to dupli-
cate the results in Fig. 2.

ADAPTATION IMPLIES BISTABLE [Ca?+] IN A
CLOSED CELL

Fast activation of the IP3R [Ca2+]
inactivation by [Ca4+] is sufficient to explain 1P3-induced
[Ca4+1 oscillations in a number of cells types (De Young
and Keizer, 1992; Atri et al., 1993; Keizer et al., 1995).
Those oscillations can occur in the absence of Ca2+ influx
and efflux. To test whether adaptation of the RyR, which
also involves coordinated fast [Ca42+] activation and slow
inactivation, might also cause oscillations in Ca2 , we have
explored a closed-cell kinetic model. Here we use our

kinetic model of the RyR to describe CICR from an internal
store (ER or sarcoplasmic reticulum). This is combined with
a passive leak and a sarco/endoplasmic reticulum Ca2+
ATPase- (SERCA-) type pump (Lytton et al., 1992) that
returns Ca2+ to the store. With the separation between fast
and slow time scales described in the previous section, the
differential equations for the closed-cell model are the bal-
ance equation for [Ca4+] and the relaxation equation for w,

i.e.,

d[Ca2+]/dt (7)

-,I;((Vpslow + V2([CaS2+]-Cai2+])-V[ci[Ca,+]2
sJ(vPow + V2)([Ca!+] [Ca;~

dw/dt = -(w-wwooaCa+]))/([Cai+]) (8)

wherefi is the fraction of Ca21 that is unbound (free) in the
cytoplasm and [Ca2+] is the Ca2+ concentration in the store.

Because the cell is assumed to be closed to Ca2+ influx and
efflux,

[Ca2+] = (CO - [Cai+])(VifVf) = (C [C +])C,
(9)

where Vi and Vs are the volumes of the cytoplasm and the

internal store, respectively, fs is the buffering factor for the

store, and C0V1 is the total amount of free Ca2+ in the cell.

The factor cl is sometimes referred to as the ratio of the

effective volume of the store to that of the cytoplasm (Friel,

1995). The three terms on the right-hand side of Eq. 7 are

contributions to the Ca2+ balance in the cytoplasm that
come from the RyR, the leak, and the SERCA pump,

respectively.
Equation 7 introduces seven new parameters, three of

which can be given approximate values based on experi-
ment:Jf = 0.01 (Tse et al., 1994a), cl = 0.15 (Alberts et al.,
1989), and K3 = 0.3 ,uM (Lytton et al., 1992). The steady
states of these equations depend, however, only on the two
ratios v2/vI and v3/vI and CO. These parameters can be
partially fixed by the requirement that steady-state values of
[Ca4+] and [Ca2+] fall in the physiological range (orders) of
0.05-0.10IOM (Alberts et al., 1989) and 50-150 ,iM (Hofer
and Machen, 1994; Tse et al., 1994b), respectively). A
further restriction comes from the fact that Ca21 oscillations
generally occur with periods in the range 2-200 s (Berridge
and Galione, 1988). Thus a rather restricted range of these
four parameters determines whether Ca2+ oscillations can

occur. For simplicity and to restrict the parameters further,
we take v, = 40 s- , which is a compromise between those
estimated in Friel's analysis of the bullfrog sympathetic
neuron (Friel, 1995).

For reference a standard set of values for the parameters
is given in Table 2. These parameters correspond to steady-
state values of [Ca4+] and [Ca2+] of 0.056 and 66.3 ,uM,
respectively, both in the physiological range. Table 2 also
provides an alternative set of rate parameters, indicated in
parentheses. Those rate parameters are smaller and corre-

spond to an internal store with a small effective volume
(cl = 0.02). The steady-state values of [Ca4+] and [Ca2+]
for the alternative rates are 0.095 and 55 ,uM. For simplic-
ity, we refer to the standard set of parameters as represent-
ing a large internal store and the alternative set as repre-

senting a small internal store. Although in many cells either
the ER or the sarcoplasmic reticulum occupies 10-20% of
the cytosolic volume (Alberts et al., 1989), this is not the
case in all cells. For example, resting T-lymphocytes have
an extremely small ER. To account for this diversity, we

simulate whole cells with both small and large internal
stores.

TABLE 2 Parameters for the closed-cell model

Parameter Value Meaning/Equation

Buffer factor in

fi 0.01 cytoplasm/Eq. 7
Rate constant for RyR/

vI 40 s-' (5 s-') Eq. 7
Rate constant for store

v2 0.5 s-' (0.15 s-') leak/Eq. 7
Maximal rate of SERCA

v3 1000 tM s-' (100 txM s-1) pump/Eq. 7
Dissociation constant for

k3 0.30 ,uM SERCA/Eq. 7
Weighted volume

c= VsfI/V1fs 0.15 (0.02) fraction/Eq. 9
Total [Ca21] in cell/Eq.

CO 10 ,uM (1.2 ,uM) 9

Small-store parameters are given in parentheses.
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Both the large-store and the small-store closed cells ex-
hibit bistability, i.e., the coexistence of several steady or
oscillatory states. Figure 3 illustrates this situation for a
large store by plotting the steady values of [Ca4+] that are
possible as a function of the total free-calcium concentra-
tion, C.. At low values of Co, only a single, stable value of
[Ca4+] is possible. This is shown by the solid curve. How-
ever, for values of CO between -7.5 and 27 ,uM, three or
more steady states are possible. The high steady-state
branch (solid curve) is stable, whereas the branch or
branches at intermediate values of [Ca4+] are unstable
(dashed curve). This model even exhibits oscillatory states
near C. = 27 ,uM (open diamond). However, those oscil-
lations are unstable and are not relevant physiologically.
The bistability illustrated in Fig. 3 is typical of what we find
for other variations of the large-store parameter set, al-
though for some parameter changes, viz., v2 = 0.05 s- ,
V3 = 1200 ,uM s- , and CO = 13 ,uM, stable oscillations of
small amplitude occur. Nonetheless, in every case in which
a stable oscillation is observed, both the range of parameters
that support oscillations is small and the oscillations coexist
with an unphysiologically high steady state of [Ca4+] (2
,uM and above) that is stable. Those oscillations are cru-
cially dependent on slow adaptation of the RyR and have
periods in the range of 2-6 s.

Figure 4 shows that the small-store model of a closed cell
also exhibits bistability but with a more complex stucture.
Again the steady states at low values of C. are stable (solid
curve, left), but for CO in two separate ranges of values
stable steady oscillations exist. This figure is called a bifur-
cation diagram and provides a compact summary of the
dynamic behavior of [Ca4+] as the total free-Ca2+ concen-
tration, Co, is varied. Rather than showing the time depen-
dence of oscillations for a particular value of Co, Fig. 4
shows the maximum and minimum values of [Ca42+] in
these oscillations as a function of C.. The stable oscillations
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FIGURE 3 Bifurcation diagram of the steady and the oscillatory states of
cytosolic free Ca2+ as a function of total free-calcium concentration, CO.
Calculated with the large-store, closed-cell model parameters in Table 2.
(Solid curves) Stable steady states, (dashed curve) unstable states. (O)
Location of a small-amplitude, unstable oscillation. This figure and Figs.
4-9 were calculated using Xppaut (Ermentrout, 1995).
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FIGURE 4 Same as Fig. 2, except for the small-store parameters in
Table 2: ( - -) Unstable states; ( max), (- min)
maximum and minimum values, respectively, of stable oscillations. HB,
and HB2 are Hopf bifurcation points, and HC, and HC2 are homoclinic
points. For certain values of the total free-calcium concentration several
stable steady or oscillatory states are possible.

are indicated by the solid curves labeled max and min, and
unstable states are indicated with dashed curves. For values
of CO between the points labeled HB, = 1.97 and HC1 =
2.17 ,M the oscillations are stable, with periods of the order
of 20 s. Near the point labeled HB2 = 2.42 ,uM, smaller
amplitude oscillations coexist with a branch of high [Cai2]
steady states. These oscillatory regimes terminate at points
HC1 and HC2, where the oscillations intersect the central
branch of unstable steady states (dashed curves).
From these and other simulations we conclude that stable

oscillations based on the inactivation kinetics of the RyR
can occur under special circumstances in a closed cell.
These oscillations, however, invariably coexist or are
closely associated with stable steady states that have un-
physiologically high values of [Ca,2+]. Indeed, we have
explored a large variation for all the parameters in Table 2
and find that in the physiological range our simulations give
rise to results similar to those in Figs. 3 and 4. Thus, unlike the
comparable situation for the IP3R (Keizer et al., 1995), these
oscillations are unlikely to be relevant physiologically.

CICR, NOT ADAPTATION, PRODUCES
OSCILLATIONS IN OPEN CELLS

All cells have mechanisms for controlling influx and efflux
of Ca2+ from the external medium (Scharff and Foder,
1993) and are, therefore, "open." The simplest type of open
cell contains voltage-activated Ca2+ channels for which one
can fix the rate of influx by clamping the plasma membrane
potential (Hille, 1992). To mimic this situation we consider
an open-cell model with a constant influx of external Ca2 ,
jin, that can be controlled parametrically. Although both

..- we i
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Ca2+ pumps and exchange mechanisms are prevalent in the
plasma membrane of cells, we treat efflux as occurring via
a plasma membrane Ca2+-ATPase (PMCA pump) only
(Carafoli, 1994). Adding these terms to the closed-cell
model described in the previous section gives the open-cell
[Ca42+] balance equation:

d[Cai+]/dt =f((viP ow + v2)([Cas2]-[Cai2])

[Cai ]2 [Ca2+]2
V3[C 2+]2 + K2 Vout[C2+]2 +K2+ojinu (10)

where the final two terms represent the PMCA pump (Ca-
rafoli, 1994) and the Ca2+ influx. Because the cell is open
to the external medium, the total free-Ca2+ concentration,
Co, is no longer fixed but varies according to the equation

dC0/dt =J(jin - Vt[Ca4+]2 +K(11)

These two equations, along with Eq. 8 and the definitions of
psoW and [Ca2+] in Eqs. 5 and 9, describe how [Ca2+]
responds to alterations in the rate of influx, jin.
The open-cell model involves three new parameters: jin'

Kout, and vout Inasmuch as Jin represents influx from a

clamped membrane potential in an electrically excitable
cell, it can be estimated from whole-cell Ca2+ currents. A
current of 0.1 pA in a cell with a volume of 1000 um3 gives
a value Of jin ==1 ,uM s- I, and we use values of iin of this
magnitude (see Table 3), which are similar to those mea-
sured in the bullfrog sympathetic neuron (Friel, 1995). The
value of the dissociation contant, Kout, is known to be larger
than that of the SERCA pump, and, based on measurements
in Jurkat (R. Dolmesch and R. Lewis, personal communi-
cation) and red-blood cells (Carafoli, 1994), we take Kout =
0.6 ,uM. The value of vout also has been estimated in Jurkat
cells (R. Dolmesch and R. Lewis, personal communication)
and in pancreatic acinar cells (Tepikin et al., 1992) to be
10 ,utM s'-. In combination with the maximal leak (v2)

and pump rates (V3) for the internal stores, vout determines
the steady-state values of [Ca42+] and [Ca2+]. We have
required these to be of the order of 0.05-0.10 and 50-150
,uM, respectively. In the open-cell model the maximal leak
rate can be quite small, and it is set close to zero. Reference
values for the additional parameters in the open-cell model
are given in Table 3.

TABLE 3 Additional parameters for the open-cell model

Parameter Value Meaning/Equation

v2 0.5 s-1 (0.1 s-') Maximal rate of store leak/Eq. 10
V3 120 ,uM s-' Maximal rate of SERCA pump/Eq. 10
Vout 9.0 JiM s- Maximal rate of PMCA pump/Eq. 10
K.Ut 0.60 ,uM Dissociation constant for PMCA/Eq. 10
jii 1.0 ,uM s-' Constant influx rate/Eq. 10

Small-store parameters are given in parentheses.

Figure 5 illustrates the sorts of oscillation in [Ca4+] and
[CaI2+] that occur with the open-cell model for the large-
store and small-store parameters listed in Table 3. Despite
the fact that the cell with a large store contains more total
free Ca2+, the actual free-Ca2+ concentration in the store,
[Ca2+], is less than half of that of the cell with a small store.
The larger total free-Ca2+ concentration for a large store is
reflected in the larger amplitude of the oscillations in [Ca 2]
and in a smaller-amplitude oscillation in [Ca 2+]. These
oscillations are typical of what is observed with parameter
values in the range of those in Table 3, with substantially
larger amplitude oscillations observed when jin and vout are
increased. Comparing the two parts of Fig. 5 shows that
spikes in [Ca4+] are preceded by store refilling and occur
simultaneously with rapid, partial depletion of the stores.
This type of oscillation is completely dependent on the
refilling of the stores through the influx term, Jin. Indeed,
setting iin to zero has the effect of eliminating all further
spikes and, if it is done during the spiking phase, terminates
the spike prematurely.
We have explored the influence of adaptation of the RyR

on this type of fill-and-release Ca2+ oscillation by altering
the rate at which adaptation occurs. The effect of making
adaptation fast (decreasing T in Eq. 21 by increasing kc to
10 s-1) is shown in Fig. 6. For both the large- and the
small-store cases the amplitude, the shape, and the period-
but not the existence-of the oscillations are modified. If
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FIGURE 5 Oscillations in (top) [Ca2+] and (bottom) [Ca!'] for the
open-cell model; ( ) Small internal store, (-- - -) large
internal store; other parameters are given in Table 3.
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FIGURE 6 Oscillations in [Ca4+] for the open-cell model; same param-
eters as in Fig. 5, except that kc, is increased from 0.175 to 10.0 s-',
speeding adaptation.

adaptation is made slower (kc = 0.01 s 1), oscillations also
occur, but with an increased amplitude.

Adaptation involves a transition between the peak and
plateau open responses of the RyR to increases in [Cai ]
(cf. Fig. 2 D), and Fig. 7 shows the open probability, P'SOW
as a function of [Ca2+] for the small-store oscillations in
Figs. 5 and 6. The arrows in Fig. 7 show the directions of
time. For the experimental value kc = 0.175 s-1 (slow
adaptation) the open probability follows the peak curve on
the upstroke of the spike and then declines toward the
plateau curve on the slower downstroke. Increasing kc- to 10
s-1 (fast adaptation) has the effect of keeping the open
probability close to the lower plateau curve on both the
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upstroke and the downstroke of the spike. Decreasing kc by
a similar factor restricts the spike to the peak open proba-
bility curve. Thus although adaptation plays a role in these
oscillations, it is obviously not an essential feature in de-
termining their existence. Thus it appears that CICR is a
sufficient basis for RyR-based oscillations in the open cell,
a conclusion that is reinforced by the simplified model in
the next section.

SIMPLIFIED OPEN-CELL MODEL

The fact that adaptation is not essential for oscillations in
the open-cell model suggests that one can simplify the
model either by fixing the value of w near its initial value on
the peak curve (0.963) or by requiring that

w = wO([Cai ]). (12)

The former simplification corresponds to adaptation that is
considerably slower, and Eq. 12 to adaptation that is con-
siderably faster, than in the experiments of Gyorke and Fill
(1993). As there is evidence (Valdivia, et al., 1995) that
adaptation occurs more rapidly in vivo than in vitro, we
simplified the open-cell model, using Eq. 12. In this case the
open probability always follows the adapted plateau curve.

In this simplified model, only [Ca2] and C. are vari-
ables, and the equations are analogous to those used by Friel
to describe the bullfrog sympathetic neuron (Friel, 1995).
As expected from the results in Fig. 6, the simplified model
supports Ca2+ oscillations, although with a somewhat re-
duced amplitude. This is shown in Fig. 8, where the stable
(solid curves) and the unstable (short-dashed line) steady
states and the maximum (max) and the minimum (min)
values of [Ca2+] during oscillations are shown as functions
of the influx rate, jin. Three features of these curves are
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FIGURE 7 Open probability as a function of [Ca21] during an oscilla-
tion for the open-cell model: (slow adaptation) the large store in Fig. 5
(0.175 s-1), (fast adaptation) the large store in Fig. 6 (10.0 s-'). (Arrow)
Direction of change in time. With adaptation slow, the upstroke follows the
peak open probability and the downstroke the plateau probability. With
adaptation fast, both upstroke and downstroke follow the plateau.

FIGURE 8 Bifurcation diagram for the simplified open-cell model. The
stable steady states (-), the unstable steady states (---- ), the unstable
oscillations (-- - -), and the stable oscillation maximum (max) and
minimum (min) for [Ca2+] are plotted as functions of the Ca2 influx rate,
jin. Parameters are for the large internal store given in Table 3. The
amplitude of the oscillations is nearly independent ofjin.
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notable. First, there are both upper and lower threshold
values of ji. above and below which oscillations do not
occur. Second, in the range of values Of jin that corresponds
to oscillations, the amplitude is almost constant. Third, the
frequency of the oscillations increases as jin increases (from
0.18 min-' at jin = 0.5 ,uM s-I to 0.50 min- 1 atjin = 1.3
,uM s- 1). These results are in general agreement with those
reported by Friel and Tsien (1992). In their experiments
initiation of oscillations in the bullfrog sympathetic neuron
requires depolarization of sufficient magnitude. Nonethe-
less they found little change in amplitude but a decrease in
frequency when external Ca2+ was lowered from 1.0 to 0.5
mM. CICR is the only destabilizing part of the simplified
model. As in the model of Friel (1995), it is CICR that is
responsible for the oscillations.
The simplified model is easy to analyze and provides an

explanation for the occurrence of the high-amplitude oscil-
lations when the internal stores are large. Figure 9 gives a
geometric or phase-plane representation (Edelstein-Keshet,
1988) of the simplified equations by plotting the curves on
which the time derivatives of [Ca4+] and C. vanish. We
obtain these so-called nullclines by setting the right-hand
sides of Eqs. 10 and 11 equal to zero. Analytical expressions
are easily obtained for the [Ca2+] nullcline:

Co= (1 + c1)([Ca2+])
(13)

+ jin + iout([Ca]) + iPumP([Cai ]))+1 (v1Ps'°w([Cai2+]) + V2

and for the C. nullcline:

Co = Kout-( jin/vout) (14)

where jpump([Ca2+]) and Iout([Ca4+]) represent the expres-
sions for the SERCA and the PMCA pumps in Eq. 10.

3.5

3.0 large store

E 2.5510 .

cytosolic free calcium (micromolar)

FIGURE 9 Nullclines of the simplified open-cell model for the large and
the small stores. The vertical nullcline is for the CO equation (cf. Eq. 14);
the remaining curves are nullclines for the [Ca2+] equation (cf. Eq. 13). For
these parameters (the same as for Fig. 8, with iin~= 1.0 pZM s-'), the
intersection of the nullclines is an unstable steady state. (-- -) The
oscillatory trajectory surrounding the unstable state, with arrows showing

These are graphed in Fig. 9. Notice that the vertical line is
the C. nullcline and that the Ca2' nullcline for large stores
has two maxima and for small stores has only one maxi-
mum. The intersection of the [Ca4+] and C. nullclines
determines the steady states (where both d[Ca2+]/dt and
dCo/dt vanish).

For the parameter values in Table 3 the steady state
occurs in the region of negative slope of the Ca2+ nullcline
(see Fig. 9), the steady state is unstable, and oscillations
occur. Superimposed upon the large-store nullcline is the
closed trajectory (dashed curve with arrows), corresponding
to the oscillation in Fig. 8 at jin = 1.0 I'M s'-. Notice that
the minimum of the [Ca4+] oscillation occurs on the slow,
left-hand branch of the [Ca2+] nullcline, whereas the peak
of the spike occurs on the fast, right-hand branch. These two
branches represent states dominated by the closed (left) and
open (right) states of the RyR. The oscillations, which
closely follow the two nullclines, are typical of relaxation
oscillations for N-shaped nullclines (Edelstein-Keshet,
1988).
Although all the rates in the simplified model have an

influence on the shape of the [Ca4+] nullcline, the rates of
the SERCA pump and RyR (V3 and vl, respectively) have a
more significant effect than jin, vout, and v2 (leak) because of
their relative sizes. Moreover, the only rates that the C.
nullcline depends on are jin and vout (cf. Eq. 14). Increasing
jin (or decreasing vout) moves the vertical CO nullcline to the
right. Because doing this has little effect on the [Ca2]
nullcline, there is little change in the amplitude of the
oscillation as long as the two nullclines intersect as shown
in Fig. 9. This explains the lack of influence of jin on the
amplitude of the oscillation in Fig. 8. Similarly, the increase
in frequency as jin increases in Fig. 8 is explained by the
steady states' moving away from the slow, baseline branch
of the [Ca2+] nullcline. Thus both effects are a consequence
of the large relative sizes of the rates of influx and efflux
from the internal stores.
The appearance of large-amplitude oscillations in [Ca .]

for large internal stores, but not for small stores, can also be
understood from Fig. 9. The double maxima in the nullcline
for large stores provide two mechanisms for large-ampli-
tude oscillations. First, for certain parameters the maximum
on the left can exceed that on the right (e.g., v2 = 0.4 s-').
In that case the trajectory is no longer "trapped" in the
leftmost well, as it is in Fig. 9, and the maximum is
determined by the far-right branch of the [Ca4. ] nullcline.
This results in a sudden transition in amplitude by a factor
of -5 when v2 falls just below 0.462 s-. Second, param-
eters exist (i.e., jin = 6.0 ,uM s'- ) for which the C. nullcline
intersects the negative slope of the [Ca4+] nullcline to the
right of the second maximum. This also produces a large
amplitude oscillation. Small stores tend to reduce the right-
most maximum or to eliminate it entirely, as is the case in
Fig. 9, so abrupt changes in amplitude are not observed.
According to Eq. 13 the [Ca2+] nullcline for small stores
(cl ' 0.05) is dominated by the first, linear term, which
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suppresses the nonlinear contribution to the nullcline from
the SERCA pump and the RyR.

It is not accidental that the [Ca4+] nullclines in Fig. 9
resemble the shapes of the steady-state curves in Figs. 3 and
4. In fact, if the parameters used in Table 3 are used to
calculate the steady-state Ca2+ curve in Fig. 3, then the only
difference from Fig. 9 is due to the external influx and
efflux terms in Eq. 10, which we have noted are minor. The
most significant difference between the open- and closed-
cell models is that the total free-calcium concentration var-
ies in the open cell. For values of in in an appropriate range
this allows the cell to oscillate between the states of low and
high [Ca4+] that coexist in the closed cell (cf. Fig. 3). In
other words, it is the phenomenon of bistability found in the
closed model, not adaptation, that is the cause of the oscil-
lations in the open cell. In an open cell the possibility of
refilling the internal stores by means of influx causes a
transition between states of high and low [Ca4+] that would
coexist stably in a closed cell.

DISCUSSION

It has been suggested that adaptation might be an essential
feature of Ca2+ oscillations and waves in cells that express
the RyR (Tang and Othmer, 1994; Sachs et al., 1995). This
idea is based partly on the analogy of adaptation to slow
Ca2+-dependent inactivation of the IP3R, which is believed
to be a key element of IICR-based Ca2+ oscillations and
waves (Atri et al., 1993; Jafri and Keizer, 1994, 1995).
Moreover, several groups of researchers (Cheng et al., 1995;
Sachs et al., 1995) have suggested mechanisms of adapta-
tion in which binding of [Ca4+] to the RyR is necessary for
adaptation to occur, as it seems to be for the IP3R, whereas
Tang and Othmer (1994) have translated an early model of
Fabiato for Ca2+ release in cardiac muscle, using Ca2+-
dependent inactivation of the RyR. In contrast to experi-
ment (Chu et al., 1993; Gyorke and Fill, 1993), that model
gives rise to a bell-shaped plateau curve for the open prob-
ability with a maximum below 1.0 ,LM, similar to that used
in explanations of oscillations that are due to the IP3R (De
Young and Keizer, 1992). Indeed, that model predicts large
amplitude oscillations with a period of several seconds
determined by the rate of adaptation, again in analogy to
what is found for the IP3R (Keizer et al., 1995).
Our calculations, which are based on the model of RyR

adaptation described above, lead to different conclusions
about the role of adaptation in Ca2+ oscillations. In our
closed-cell model we have found parameter ranges that
support fast adaptation-dependent oscillations. However,
they are generally associated with stable steady states at
unphysiologically high values of [Ca4+]. Furthermore,
when realistic values of Ca2+ influx and efflux from the
external medium are added to the calculations, high-fre-
quency oscillations associated with the rate of adaptation
are not observed. Instead, in the open-cell model we find

tying and refilling of the internal stores. This is identical to
what is found in a model of IICR (see Fig. 10 of Li et al.,
1995) at saturating concentrations of 1P3 (where IICR and
CICR become equivalent). Indeed, in both that model and
the open-cell RyR model presented here the rate of refilling
of the stores determines the oscillation period.

Analysis of the open probability for the open-cell model
reveals that adaptation plays a role in the decline of the
spike. In particular, the upstroke is dominated by the peak
open probability, whereas the downstroke occurs primarily
on the plateau (cf. Fig. 7). The fact that adaptation is not a
determining feature of the oscillations is supported by the
fact that increasing or decreasing the rate of adaptation does
not halt the oscillations. Removing the external flux, how-
ever, does. Thus we conclude that the role of adaptation is
to help to attenuate CICR by means of the transition from
the peak to the plateau but otherwise is not essential for the
oscillations.

Valdivia et al. (1995) have reported that raising the con-
centration of Mg2+ to physiological values increases the
rate of adaptation by more than an order of magnitude. This
suggests a simplification of the open-cell model in which
adaptation is relatively fast, with the open probability of the
RyR following the plateau curve as [Ca 2+] changes. Anal-
ysis of the simplified model shows that the rates of influx
and efflux do not significantly alter the balance equation for
[Ca4+]. On the contrary, it is CICR, not adaptation, that
provides the dynamical instability for the open-cell oscilla-
tions that periodically empty and refill the internal stores.
These oscillations have their origin in coexisting states of
high and low [Ca4+] found in closed cells.
The simplified model is similar to that used by Friel

(1995) to analyze caffeine-sensitive oscillations in the bull-
frog sympathetic neuron. The chief differences are that Friel
uses linear, phenomenological expressions to describe in-
flux into the store as well as influx and efflux via the plasma
membrane. Otherwise both predict oscillations that involve
rapid depletion by means of CICR followed by slower
refilling of the internal store. Analysis of our simplified
model shows that the physical size of the store is important,
with larger stores being capable of large amplitude oscilla-
tions because of the increased influence of CICR and the
SERCA pumps. Our calculations explain the lack of change
of amplitude of the oscillations when the influx rate is
altered experimentally (Friel and Tsien, 1992) by the weak
role of the plasma membrane in the overall Ca2+ balance for
these cells. Similarly, the increase in frequency of the os-
cillations when the influx rate is increased is explained by
the increase in rate at which the stores refill.

So is adaptation essential for Ca2+ oscillations when
store release is controlled by the RyR? In our view, prob-
ably not. Adaptation is probably too fast in vivo to provide
the necessary slow negative feedback to produce oscilla-
tions. Instead, our simulations suggest that it is the bistable
behavior of [Ca,-+] in closed cells coupled to the slow influx
of Ca2+ from the external medium that is responsible. In

low-frequency oscillations in Ca2+ that involve partial emp-
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stores, which is partially pumped out of the cell and partially
pumped back into the stores. This is followed by a slow
refilling of the stores until the driving force for the RyR
increases to the point where CICR again develops into a
regenerative mechanism for release.

Recent observations of so-called "calcium sparks" in
cardiac myocytes (Cheng et al., 1993) suggests that the
stochastic properties of the RyR underlie Ca21 waves in
these cells (Cheng et al., 1996). We are currently using an
extension of our kinetic model of the cardiac RyR to de-
scribe the dynamics of calcium sparks in vivo. We believe
that this type of modeling will help to provide insight into
oscillatory wave propagation through CICR in myocytes
and other cells that depend on RyR-mediated Ca2+ release.

This study was supported in part by funds from National Science Foun-
dation grants BIR 9214381 and BIR 9300799, National Institutes of Health
grant ROl RR10081-O1A1, and the Agricultural Experiment Station of the
University of California, Davis. A summary of this study appears in the
undergraduate honors thesis of L. Levine.

APPENDIX A: PEAK AND PLATEAU
DEPENDENCE ON [Ca2+]
Analytical expressions for the peak and plateau values of PO are easily
derived for the kinetic equations (1-4). Inasmuch as kinetic steps a and b
in Fig. 1 are several orders of magnitude faster than step c, we can
approximate the peak value of PO by the quasi-equilibrium value of PO
obtained by ignoring the slow rate of step c. Taking n = 4 and m = 3 (see
Table 1) gives

ppeak([Ca2+]) we(O.1 gLM)(I + ([Ca3]/Kb) ) (15)
0 i I= + (Ka/[Ca4~+])4 + ([Ca~+]/Kb)' 15

where we (0.1 ,uM) is the equilibrium value of 1 -PC2 evaluated at the
initial value of [Ca2+] = 0.1 ,uM. For the parameters in Table 1 we (0.1
,uM) = 0.963, which determines the maximum value of PO in Fig. 2 C. The
three dissociation constants, Kj, in Eq. 15 are K: = kaI/k+, K3 = k/kkb, and
K. = kc /kc.-

The rate of rise to the peak value of PO in Eq. 15 can be obtained from
Eqs. 1 and 3 supplemented with the condition that PO, = 1 - PC. + PC2 +

P02' with PC2 held constant at its initial value 0.037. For the parameter
values given in the legend of Fig. 2 and a final value of [Caj2+] = 0.9 ,uM
we obtain a single relaxation time of 1.1 ms, which compares with the
experimental value of 1.1 ± 0.3 ms. This relaxation time increases by a
factor of -4 when [Ca2+] = 0.5 ,uM.

The plateau value of PO in the model is the equilibrium value of PO, +

P02 determined by solution of Eqs. 1-4 when the left-hand sides vanish.
This value of PO is

Pplateau([c 2+]) - 1 + ([Ca? ]/Kb)3
a )

21 + (Kaf[Ca+])4 + ([Ca+]/Kb)3 + 1/Kr
(16)

APPENDIX B: RELAXATION TO THE PLATEAU

One can derive the approximate differential equation (6) for the relaxation
of w = 1 -P2 by taking advantage of the rapid equilibration of kinetic
steps a and b compared with c. For any instantaneous value PC2 this gives

w
Po 1 + (Ka/[Ca2+])4 + ([Ca:+]/Kb)3' (17)

where the facts that w = 1 -PC2 = PcI + PO. + P02 were also used. The
comparable expression for P02 combined with Eq. 17 gives rise to the
expression for PO on the slower time scale (cf. Eq. 15):

=low + w(l + ([Ca2+]/Kb)3)
1 + (Ka[Cai+])4 + ([Cai+]/Kb)3 (18)

Substituting Eq. 17 and the definition of w into Eq. 4 gives

w
+ (Ka[Ca+])4 + ([Cai+]/Kb)3W-k( -1).

(19)
With a little algebra Eq. 19 is easily rearranged into Eq. 6 with the
definitions

1 + (KACaq+])4 + ([Ca2+]Kb)3
1+(IIKu) + (KACa~+])4 + ([Ca~~]/Kb)3'

T[Ca+]) = w'([Ca2+])/kc-. (21)
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