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Consider the space of configurations from a finitely generated group to a finite alphabet.

We look at the translation-invariant closed subsets of this space, and at their continuous

transformations that commute with translations. It is well-known that such objects can

be described “locally” via finite patterns and finitary functions; we are interested in re-

using these descriptions with larger groups, a process that usually does not lead to objects

isomorphic to the original ones. We first characterize, in terms of group actions, those

dynamics that can be presented via structures like those above. We then prove that some

properties of the “induced” entities can be deduced from those of the original ones, and vice

versa. We finally show how to simulate the smaller structure into the larger one. Special

attention is given to the class of sofic shifts.

© 2009 Elsevier Inc. All right reserved.

1. Introduction

Cellular automata (briefly, CA) are presentations of global dynamics in local terms: the phase space is made of configura-

tions on an underlying lattice structure, and the transition function is induced by a point-wise evolution rule, which changes

the state at a node of the grid by only considering finitelymany neighboring nodes. Originally, the only grids allowedwere the

hypercubic ones, identifiedwith the groupZd for some dimension d > 0, and all the alphabetswere finite, though containing

at least two elements; this shall be referred to as the classical case in the rest of the present paper.

With time, CA theoryhas borrowed concepts and tools fromgroup theory, symbolic dynamics, and topology (cf. [4,5,8,14]).

The lattice structure is provided by a Cayley graph of a finitely generated group: the “frames” of this class generalize those

of the classical case, allowing more complicated grid geometries. Such broadening, however, preserves the requirement for

finite neighborhoods, so that defining global evolution laws in local terms is still allowed. Moreover, the phase space can be

a subshift, i.e., it may leave out some configurations, but contains all of the translates of each of its elements, as well as the

limits of sequences it contains. This choice of framework sets us farther from the use of CA as “parallel analogous to Turing

machines”—the space of all configurations is uncountable, the subshift can be non-recursive, etc.—but simplifies reasoning

about simulations between CA.

In this paper, which is an extended version of a work submitted to the LATA 2008 conference [2], we deal with two

problems. The former, is to understand when a dynamical system can be described by a cellular automaton; the latter, is to

study the phenomena which happen when a description for a subshift or a CA on a given group, is employed in the context

provided by a larger group, in the sense that the old one is a subgroup of the new one. At the time of the conference, we were

not aware of the paper by Ceccherini-Silberstein and Coornaert [3], which also deals with induction of CA on larger groups,
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and also considers a class of configuration spaces which is broader than the classical one. However, their work is focused on

a broader class of alphabetswithout considering anything more general than the full shift; on the other hand, our own work

is aimed towards the study of the most general subshifts, provided the alphabet remains finite.

For the first problem, a solution is found employing group theory: a dynamical system admits a CA presentation if and

only if there exists a group action on it with special properties. It is also observed, on one hand how the new class of CA is

strictly broader than the classical one; and on the other hand, how some key properties of classical CA are shared by the

newer objects.

About the other one, we provide a lemma about mutual inclusion between images of shift subspaces via global CA

functions, showing that it is preserved either way when switching between the smaller group and the larger one. This shall

ensure that the operation of induction, performed by “recycling” the description of the old object (be it subshift or CA) in the

new context given by the larger group, is not only well defined, but also independent on the specific description: in other

words, the induced object only depends on the inducing object. We then show how several properties are transferred from

the old objects to the new ones, some even either way as well; this is of interest, because the new spaces and dynamics are

usually richer than the old one.

A simulation of the original automaton into the induced one is then explicitly constructed; this extends to the case of

arbitrary, finitely generated groups the usual embedding of d-dimensional cellular automata into (d + k)-dimensional ones.

This result, which goes in the same direction as Róka [14, Proposition 6], adds further details to the picture of CA presentation

ofdynamical systems: theclass isnot shrunkwhen thealphabetor thegroupareenlarged, evenup tobijections (for alphabets)

and isomorphisms (for groups). As a consequence of this fact, the free group on two generators contains enough “structure”

to present any CA dynamics on any free group. Some remarks about sofic shifts are also made throughout the discussion.

The rest of the paper is organized as follows. Section 2 provides a background. Section 3 is about characterization for

CA dynamics on subshifts. Section 4 contains the lemma of mutual inclusion which ensures that the induction operation is

well defined. Section 5 deals with induced CA and how to embed the original CA into the induced one, together with several

considerations for some special classes of subshifts. Conclusions and acknowledgements follow.

2. Background

A dynamical system (briefly, d.s.) is a pair (X , F)where the phase space X is a compact and metrizable topological space

and the evolution function F : X → X is continuous. If Y ⊆ X is closed and F(Y) ⊆ Y , then (Y , F) is a subsystem of (X , F).
A morphism from a d.s. (X , F) to a d.s. (X′, F ′) is a continuous ϑ : X → X′ such that ϑ ◦ F = F ′ ◦ ϑ ; an embedding is an

injective morphism, a conjugacy a bijective morphism.

Let G be a group. We write H � G if H is a subgroup of G. If H � G and xρy iff x−1y ∈ H, then ρ is an equivalence relation

over G, whose classes are called the left cosets of H, one of them being H itself. If J is a set of representatives of the left

cosets of H (one representative per coset) then (j, h) �→ jh is a bijection between J × H and G.

A (right) action of G over a set X is a collection φ = {φg}g∈G of transformations of X (i.e., φg : X → X for every g ∈ G)

such that φgh = φh ◦ φg for all g, h ∈ G, and φ1G = idX , the identity function of X . Observe that the φg ’s are invertible, with

(φg)
−1 = φ(g−1). When φ is clear from the context, φg(x) can be written xg . Properties of functions (e.g., continuity) are

extended to actions by saying that φ has property P iff each φg has property P.

If G is a group and S ⊆ G, the subgroup generated by S is the set 〈S〉 of all g ∈ G such that

g = s1s2 · · · sn (1)

for some n� 0, with si ∈ S or s
−1
i ∈ S for all i. S is a set of generators for G if 〈S〉 = G; a group is finitely generated (briefly,

f.g.) if it has a finite set of generators (briefly, f.s.o.g.). The length of g ∈ G with respect to S is the least n� 0 such that (1)

holds, and is indicated by ‖g‖S . The distance of g and hw.r.t. S is the length dGS (g, h) of g
−1h; the disk of center g and radius

R w.r.t. S is DG
R,S(g) = {h ∈ G |dGS (g, h)� R}. In all such writings, G and/or S will be omitted if irrelevant or clear from the

context; g, if equal to 1G .

An alphabet is a finite set with two or more elements; all alphabets are given the discrete topology. A configuration is

a map c ∈ AG where A is an alphabet and G is a f.g. group. Observe that the product topology on AG is induced by any of the

distances dS defined by putting dS(c1, c2) = 2−r , r being theminimum lengthw.r.t. S of a g ∈ G s.t. c1(g) /= c2(g). Moreover,

limn→∞ cn = c in the product topology if and only if, for every g ∈ G, cn(g) = c(g) except for at most finitely many values

of n.

The natural action σ G of G over AG is defined as

(σ G
g (c))(h) = c(gh) ∀c ∈ AG ∀g, h ∈ G. (2)

The superscript G may be omitted if irrelevant or clear from the context. Observe that σ G is continuous. A closed subset

X of AG that is invariant by σ G is called a shift subspace, or briefly subshift; AG itself is called the full shift. We use the

notation X � AG meaning that X is a subshift of AG . The restriction of σ G to X is again called the natural action of G over X

and indicated by σ G . From now on, unless differently stated, we will write cg for σ G
g (c).

Let E ⊆ G, |E| < ∞. A pattern on A with support E is a map p : E → A; we write E = supp p. A pattern p occurs in a

configuration c if there exists g ∈ G such that cg |supp p = p; p is forbidden otherwise. Given a set F of patterns, the set of
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all the configurations c ∈ AG for which all the patterns in F are forbidden is indicated as XA,G
F ; A and/or G will be omitted if

irrelevant or clear from the context. It is well-known [5,8] that X is a subshift iff X = XA,G
F for some F . X is a shift of finite

type if F can be chosen finite; the full shift AG = XA,G
∅ is a shift of finite type. A pattern p is forbidden for X ⊆ AG if it is

forbidden for all c ∈ X , i.e., cg |supp p /= p for all c ∈ X , g ∈ G; if X is a subshift, this is the same as c|supp p /= p for all c ∈ X .

A map F : AG → AG is uniformly locally definable (UL-definable) if there exist N ⊆ G, |N | < ∞, and f : AN → A such

that

(F(c))(g) = f
(
cg

∣∣
N

)
(3)

for all c ∈ AG , g ∈ G; in this case, we write F = F
A,G
f . Observe that any UL-definable function F is continuous and commutes

with the natural action of G on AG;Hedlund’s theorem [5,6] states that, if X ⊆ AG is a subshift and F : X → AG is continuous

and commutes with the natural action of G over X , then F is the restriction to X of a UL-definable function. Moreover, remark

that, if X is a subshift and F is UL-definable, then F(X) is a subshift too: if X is of finite type, we say that F(X) is a sofic shift.

A cellular automaton (CA) with alphabet A and tessellation group G is a triple A = 〈X ,N , f 〉where the support X ⊆ AG

is a subshift, the neighborhood index N ⊆ G is finite, and the local evolution function f : AN → A satisfies F
A,G
f (X) ⊆ X .

Wemaywrite XA to specify the support X ofA. The restriction FA of F
A,G
f to XA is the global evolution function, and (XA, FA)

is the associated dynamical system. Observe that (XA, FA) is a subsystem of (AG , F
A,G
f ); when XA = AG is the full shift we

say the CA is full. Also observe that, because of Hedlund’s theorem, the class of CA with support X can be seen as a monoid

w.r.t. function composition. When speaking of bijectivity, finiteness of type, etc. of A, we simply “confuse” it with either

FA or XA. We say that A is reversible if there exists a CA A′, with same alphabet, tessellation group, and support as A, such

that FA′ ◦ FA and FA ◦ FA′ both coincide with the identity function of X . Observe that every reversible CA is bijective on its

support.

A pattern p is a Garden of Eden (briefly, GoE) for a CA A = 〈X ,N , f 〉 if it is allowed for X and forbidden for FA(X). Any CA

having a GoE pattern is non-surjective; compactness of X and continuity of FA ensure that the vice versa holds aswell [5,9].A
is pre-injective if FA(c1) /= FA(c2) for any two c1, c2 ∈ X such that {g ∈ G | c1(g) /= c2(g)} is finite and non-empty.Moore–

Myhill’s theorem [11,12] states that every full CAwith tessellation group Zd is surjective iff it is pre-injective. This result has

been extended to larger classes of full CA [4,9], but fails if the tessellation group has a free subgroup on two generators [4]

or the support is not the full shift [5].

3. Characterization of CA dynamics via group actions

Wehave said in the introduction that cellular automata are presentations of dynamical systems. This nice concept remains

vacuousuntilwe specifywhat itmeans, for aCA, tobe apresentation: intuitively, themeaning shouldbe that theCA “describes

well” the dynamics of the system. How well, is stated in

Definition 3.1. Let (X , F) be a d.s., A a CA. We say that A is a presentation of (X , F) if the latter and (XA, FA) are conjugate.

We call CA(A, G) the class of d.s. having a presentation as CA with alphabet A and tessellation group G. We call FCA(A, G) the
subclass of CA(A, G)made of d.s. having a presentation as CA on the full shift AG.

Example 3.2. The HPP lattice gas automaton [7,15] is not, strictly speaking, a CA because it has a many-to many (instead of

many-to-one) local function. However, it is straightforward to construct a CA which is a presentation of the HPP dynamics,

and whose alphabet is made of quadruples of boolean values. As such, HPP on the infinite grid belongs to CA({0, 1}4,Z2).

One can wonder whether the introduction of CA on “partial” subshifts is a factual extension of the concept. Why should it

not be possible to rewrite a system using every possible configuration, instead of only a selected package? Why should we

lose the feature of computability and step into a realm where even recursive enumerability is not ensured anymore? Once we

sell our soul to the devil of uncomputability, we cannot get it back.

There may be several reasons to accept this kind of Faustian pact. The first one, is that the new model looks promising

with respect to embeddings: it seems convenient to keep calling “cellular automaton” a local model of a subsystem of the

associated dynamics. Indeed, as we will see in the next sections, the larger model actually behaves very well in this respect.

Another possible—and perhaps more compelling—reason, however, is that the cardinality of the phase space could be

“wrong”, in the sense that it may hamper a presentation as a full CA. However, if the system still displays the “correct”

features, we may still want to get a presentation in local terms, and keep on calling it “cellular automaton”.

And this is the content of

Proposition 3.3. Let G be a f.g. group with |G| � 3.

1. If G is finite, then there exists X � AG such that |X| is not a perfect power.
2. If G is infinite, then AG has a countable subshift.
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Proof. Fix a, b ∈ Awith a /= b.

If G is finite, the subset X of configurations such that

• c(g) ∈ {a, b} for every g ∈ G, and

• there exist ga, gb ∈ G s.t. c(ga) = a and c(gb) = b

is closed and translation invariant, and has 2|G| − 2 = 2 · (2|G|−1 − 1) elements, which is not a perfect power since |G| � 3.

If G is infinite, then it is countable. Let X be the set of configurations such that

• c(g) ∈ {a, b} for every g ∈ G, and

• c(g) = b for at most one g ∈ G.

Then X is countable and translation invariant. It is closed as well, because if limn→∞ cn = c �∈ X , then all of the cn’s, except

finitely many, either take value b in two points or take a value q �∈ {a, b}. �

Corollary 3.4. If |G| � 3 then CA(A, G) /= FCA(B,H) for any alphabet B and f.g. group H.

Proof. By Proposition 3.3, there exists X � AG which is not in bijection with a full shift. Then no CA with support X can be

conjugate to an element of FCA(B,H).
An immediate example of such CA is the identical transformation of X . �

Example 3.5. With the notations and conventions of Corollary 3.4, a less trivial example of a CAwhose associated d.s. admits

no presentation as a full CA, can be constructed by fixing ν ∈ G\{1G}, putting fν(ν �→ x) = x, and putting Aν = 〈X , {ν}, fν〉,
where X is as in the proof of Corollary 3.4.

Regarding Example 3.5, it must be noted (cf. [5]), that FAν is not, in general, the translation σν . Actually, if c ∈ AG , then

(FAν (c))(g) = fν( c
g
∣∣{ν}) = c(gν);

to have this coincidewith c(νg) = (σν(c))(g) for every g and c, wemust have gν = νg for every g ∈ G, that is, νmust belong

to the center of G. This is a phenomenon already observed by Fiorenzi [5]; since it is useful to keep it in mind, we state it as

Proposition 3.6. Let g ∈ G. Then σ G
g , as a homeomorphism of AG , is UL-definable iff g is central in G.

Proof. If σ G
g : AG → AG is UL-definable, then it commutes with σ G

h for every h ∈ G because of Hedlund’s theorem. This

implies, by evaluating the translates σgh(c) and σhg(c) in 1G , that c(gh) = c(hg) for all c ∈ AG , h ∈ G: which is only possible

if gh = hg for all h ∈ G. �

We have thus given some reasons why to deal with the more general concept of cellular automaton over a subshift, instead

of sticking to the classical one on the full shift. Now that we knowwhat a CA presentation is, we must understand what a CA

presentation requires.

It turns out that the key feature of the dynamical systems that admit some presentation as CA, is that they allow the

tessellation group chosen for the CA to act on their phase space as if it was acting on a subshift. Here, “as if” means that some

key properties of σ G are shared by the action φ of the group G over the space X .

We therefore state

Definition 3.7. Let X be a set, A an alphabet, G a group, φ an action of G over X . X is discernible on A by φ if there exists

a continuous function π : X → A such that, for any two distinct x1, x2 ∈ X , there exists g ∈ G such that π(φg(x1)) /=
π(φg(x2)).

Continuity of π requires π(x) = π(y) for x and y “near enough” in X . Therefore, discernibility means that distinct points

may always be “displaced far enough”.

Example 3.8. Let A = 〈X ,N , f 〉 be a CA, and let (X , FA) be its associated d.s. Then σG commutes with FA. Let π(c) = c(1G):
then, for any two c1, c2 ∈ X , c1(g) /= c2(g) is the same as π(σ G

g (c1)) /= π(σ G
g (c2)).

From Example 3.8 we know that any CA dynamics admits a “discerning action”—the natural action itself. Hence, the trail we

are following seems to lead us to the properties that characterize CA dynamics.

And this is confirmed by (cf. [1])
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Theorem 3.9. Let A be an alphabet, G a f.g. group, (X , F) a d.s. The following are equivalent:
1. (X , F) ∈ CA(A, G).
2. There exists a continuous action φ of G over X such that F commutes with φ and X is discernible on A by φ.

Proof. We start with supposing that A = 〈XA,N , f 〉 is a presentation of (X , F). Let θ : X → XA be a conjugacy from (X , F)
to (XA, FA); put

φg = θ−1 ◦ σ G
g ◦ θ

for all g ∈ G, and

π(x) = (θ(x))(1G).

Remark that φ = {φg}g∈G is an action of G over X and that (θ(x))(g) = (θ(x))g(1G) for all x and g. Continuity of φ and

commutation with F are straightforward to verify. If x1 /= x2, then (θ(x1))(g) /= (θ(x2))(g) for some g ∈ G, thus

π(φg(x1)) = (σ G
g (θ(x1)))(1G) /= (σ G

g (θ(x2)))(1G) = π(φg(x2)).

For the converse implication, let π as in Definition 3.7: then τ : X → AG defined by

(τ (x))(g) = π(φg(x))

is injective. Moreover, (τ (φg(x))(h) = π(φh(φg(x))) = π(φgh(x)) = (τ (x))(gh) for every x ∈ X , g, h ∈ G: thus, τ ◦ φg

= σ G
g ◦ τ for all g ∈ G, and X′ = τ(X) is invariant under σ G .

We now prove that τ is continuous. Let limn∈N xn = x in X: by continuity of π and φ, limn∈N(τ (xn))(g) = (τ (x))(g) in
A for all G. Since A is discrete, this implies π(φg(xn)) = π(φg(x)) for all n except finitely many: which is the definition of

convergence of τ(xn) to τ(x) in the product topology of AG .

Since X and AG are compact and Hausdorff, X′ is closed in AG and a subshift, while τ is a homeomorphism between X and

X′. Define F ′ : X′ → X′ by F ′ = τ ◦ F ◦ τ−1: then (X′, F ′) is a d.s. and τ is a conjugacy between (X , F) and (X′, F ′). But for
every g ∈ G

φg ◦ τ−1 = (τ ◦ φg−1)−1 = (σ G
g−1 ◦ τ)−1 = τ−1 ◦ σ G

g ,

thus

σ G
g ◦ F ′ = τ ◦ φg ◦ F ◦ τ−1 = τ ◦ F ◦ φg ◦ τ−1 = F ′ ◦ σ G

g ;
hence, F ′ commutes with σ G . By Hedlund’s theorem, there exist a finite N ′ ⊆ G and a map f ′ : AN ′ → A such that (F ′(c))g
= f ′ (cg |N ′) for all c ∈ X′, g ∈ G: then

〈
X′,N ′, f ′

〉
is a presentation of (X , F) as a cellular automaton. �

The meaning of Theorem 3.9 is that (X , F) has a CA presentation with alphabet A and tessellation group G, if and only if G

can act on X as it would naturally do on AG , and without interfering with F . This explains why the characterization works

for CA(A, G), and not for FCA(A, G): the natural action, by itself, is incapable of telling the full shift from any other shift.

Consequently, any action on X that “emulates” the natural action shall not be able to tell whether (X , F) has a presentation

as a full CA or not.

Theorem 3.9 has two immediate consequences. The first one is a generalization, to our class of general CA, of a principle

first discovered by Hedlund [6] in dimension 1, then extended by Richardson [13] to classical CA of arbitrary dimension.

Corollary 3.10. Let (X , F) ∈ CA(A, G). If F is bijective then (X , F−1) ∈ CA(A, G).

Proof. Let φ be as in Theorem 3.9. Then X is discernible on A by φ, and

F−1 ◦ φg = (φg−1 ◦ F)−1 = (F ◦ φg−1)−1 = φg ◦ F−1

for all g ∈ G. Apply Theorem 3.9. �

Corollary 3.10 can—and, in fact, has been (cf. [5])—proved by purely topological means. Yet our proof emphasizes the role of

the tessellation group.

Corollary 3.11 (Hedlund–Richardson’s principle). Every bijective CA is reversible.

The second consequence of Theorem 3.9 is that existence of a presentation as CA actually depends on theminimum number

of elements of the alphabet and the isomorphism class of the tessellation group. This is intuitively true, because on one hand,

isomorphic groups have “isomorphic” actions on equal spaces; and on the other hand, if one has enough “letters” to be able

to tell elements from each other via the action, then having even more letters cannot be a hindrance.
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Proposition 3.12. Let A and B be alphabets, and let G and Γ be f.g. groups.

1. If |A| � |B| then CA(A, G) ⊆ CA(B, G).
2. If G is isomorphic to Γ then CA(A, G) = CA(A,Γ ).

Proof. To prove point 1, let ι : A → B be injective. Let (X , F) ∈ CA(A, G), and let φ satisfy point 2 of Theorem 3.9, π being

the discerning map. Then X is discernible over B by φ, ι ◦ π being the discerning map.

To prove point 2, letψ : G → Γ be a group isomorphism. Let (X , F) ∈ CA(A, G) and let φ satisfy point 2 of Theorem 3.9,

π being the discerning map. Define φ′ = {φ′
γ }γ∈Γ as

φ′
γ = φψ−1(γ ).

It is straightforward to check that φ′ is an action which commutes with F . Let x1 /= x2: if g ∈ G is such that π(φg(x1)) /=
π(φg(x2)), then π(φ

′
ψ(g)(x1)) /= π(φ′

ψ(g)(x2)) as well. Thus φ′ satisfies condition 2 of Theorem 3.9, and (X , F) ∈ CA(A,Γ ).

From the arbitrariness of (X , F) follows CA(A, G) ⊆ CA(A,Γ ): by swapping the roles of G and Γ and repeating the argument

withψ−1 in place ofψ we obtain the reverse inclusion. �

4. Induced subshifts

Let X � AG be a shift subspace. We know that X = XA,G
F for some set F of patterns, that is, X is completely described by F

in the context provided by A and G.

Let now Γ be a group having G as a subgroup. We want to define a new subshift X′ of AΓ , which is “induced” by X , in

the sense that X′ can be completely described by X . But we had observed that X , in turn, can be completely described by F ,

provided we know to be dealing with a subshift of AG; the first idea that comes to ourmind is that X′ should then be completely

described by F as well, provided we know to be dealing with a subshift of AΓ .

This is precisely the content of

Definition 4.1. Let X = XA,G
F be a subshift, and let G �Γ . The subshift induced by X on AΓ is X′ = XA,Γ

F .

Example 4.2. Consider A = {0, 1}, G = Z, Γ = Z2, F = {11}, where 11 is the pattern p : {0, 1} ⊆ Z → A such that p(0)

= p(1) = 1. Then X = XA,G
F is the golden mean shift (cf. [8]); a configuration c : Z → {0, 1} belongs to X if and only if it does

not contain two adjacent 1’s. On the other hand, a configurationχ : Z2 → {0, 1} belongs to X′ = XA,Γ
F if and only if no point

on the square grid containing a 1 has his immediate right neighbor containing a 1 as well.

According to Definition 4.1, X′ is whatwe obtain instead of X , whenwe interpretF as a description of a subshift of AΓ instead

of AG , that is, in the context provided by Γ instead of G.

At first glance, Definition 4.1 seems to be a good solution to our “subshift induction problem”. However, we know from

basic theory (cf. [8]) that different sets of patterns can define identical subshifts; and we want induction to depend on the

object and not the description. Wemust then ensure that Definition 4.1 is well posed and X ′ only depends on X rather than F ,

i.e., XA,G
F1

= XA,G
F2

must imply XA,Γ
F1

= XA,Γ
F2

.

In fact, we are going to discover much more. We had noticed in Section 2 that the image of a subshift via a UL-definable

function is a subshift; thus, we neither add nor lose anything by considering as subshifts objects of the form

X = F
A,G
f

(
XA,G

F
)
, (4)

with f : AN → A, N finite subset of G, and F set of patterns with supports contained in G. However, as we can choose to

considerF as a description of a subshift of either AG or AΓ , sowe can choose to to consider f as a description of a UL-definable

function on either AG or AΓ . Thus, a more general fact we can check is the preservation of mutual inclusion—instead of just

equality—between objects of the form (4).

And this is precisely the content of

Lemma 4.3. Let A be an alphabet, and let G and Γ be f.g. groups with G �Γ . For i = 1, 2, let Fi be a set of patterns on A with

supports contained in G, let Ni be a finite non-empty subset of G, and let fi : ANi → A. Then

F
A,G
f1

(
XA,G

F1

)
⊆ F

A,G
f2

(
XA,G

F2

)
iff F

A,Γ
f1

(
XA,Γ

F1

)
⊆ F

A,Γ
f2

(
XA,Γ

F2

)
.

Proof. Let J be a set of representatives of the left cosets of G in Γ such that 1G = 1Γ ∈ J. To simplify notation, we will write

Xi = XA,G
Fi

, �i = XA,Γ
Fi

, Fi = F
A,G
fi

, Φi = F
A,Γ
fi

,
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so that the thesis becomes

F1(X1) ⊆ F2(X2) iff Φ1(�1) ⊆ Φ2(�2).

For the “if” part, let c ∈ F1(X1), and let x1 ∈ X1 satisfy F1(x1) = c. Define ξ1 ∈ AΓ by ξ1(jg) = x1(g) for all j ∈ J, g ∈ G:

then for all j ∈ J, g ∈ G, p ∈ F1

ξ
jg
1

∣∣∣
supp p

= x
g
1

∣∣∣
supp p

/= p,

hence ξ1 ∈ �1. Put χ = Φ1(ξ1): by hypothesis, there exists ξ2 ∈ �2 such thatΦ2(ξ2) = χ , and by construction,

χ(g) = f1

(
ξ
g
1

∣∣∣
N1

)
= f1

(
x
g
1

∣∣∣
N1

)
= c(g) ∀g ∈ G.

Let x2 = ξ2|G: then x2 ∈ X2 by construction. But

f2

(
x
g
2

∣∣∣
N2

)
= f2

(
ξ
g
2

∣∣∣
N2

)
= χ(g) = c(g) ∀g ∈ G,

thus c ∈ F2(X2).
For the “only if” part, let χ ∈ Φ1(�1), and let ξ1 ∈ �1 satisfy Φ1(ξ1) = χ . For each j ∈ J, define x1,j ∈ AG as x1,j(g) =

ξ1(jg) for all g ∈ G. It is straightforward to check that x1,j ∈ X1 for all j ∈ J: let cj = F1(x1,j). By hypothesis, for all j ∈ J there

exists x2,j ∈ X2 such that F2(x2,j) = cj: define ξ2 ∈ AΓ by ξ2(jg) = x2,j(g) for all j ∈ J, g ∈ G. It is straightforward to check

that ξ2 ∈ �2; but for all j ∈ J, g ∈ G

f2

(
ξ
jg
2

∣∣∣
N2

)
= f2

(
x
g
2,j

∣∣∣
N2

)
= cj(g) = f1

(
x
g
1,j

∣∣∣
N1

)
= f1

(
ξ
jg
1

∣∣∣
N1

)
= χ(jg),

thus χ ∈ Φ2(�2). �

The reason why Lemma 4.3 is true, is the following. Each left coset of G can be thought of as a “slice” of Γ “shaped” as G. If

each pattern’s support is contained in G, then the constraint of not having a pattern in Fi can be applied either slice by slice

or on the whole Γ at once, with the same results. Similarly, the neighbors of γ w.r.t. Ni will all belong to the same slice as

γ , so the Φi’s can be made to operate either slice by slice or on the whole Γ at once, with the same results. This means,

however, that the yes/no information about the mutual inclusion of theΦi(�i)’s is deducible from the Fi’s and the fi’s alone,

and cannot be different from that on the Fi(Xi)’s.
Observe that the proof of Lemma 4.3 does not depend on the choice of the set J of representatives of the left cosets of G

in Γ .

Corollary 4.4. In the hypotheses of Lemma 4.3,

1. XA,G
F1

⊆ F
A,G
f2
(XA,G

F2
) iff XA,Γ

F1
⊆ F

A,Γ
f2
(XA,Γ

F2
),

2. F
A,G
f1
(XA,G

F1
) ⊆ XA,G

F2
iff F

A,Γ
f1
(XA,Γ

F1
) ⊆ XA,Γ

F2
, and

3. XA,G
F1

⊆ XA,G
F2

iff XA,Γ
F1

⊆ XA,Γ
F2
.

Proof. Consider the neighborhood index {1G} and the local evolution function f (1G �→ a) = a. Apply Lemma 4.3. �

Corollary 4.5. Let A be an alphabet, let G and Γ be f.g. groups with G �Γ , and let F be a set of patterns on A with supports

contained in G. If XA,G
F is sofic then XA,Γ

F is sofic.

Proof. By hypothesis, XA,G
F = F(XA,G

F ′ ) for some UL-definable function F and finite set of patterns F ′. Apply points 1 and 2 of

Corollary 4.4. �

Now, under the same hypotheses on G, Γ , A, and F , suppose X′ = XA,Γ
F is sofic. This means that there exist a finite set F ′

of patterns over Γ and a function f ′ : AN ′ → A with N ′ finite subset of Γ , such that X′ = F
A,Γ
f ′

(
XA,Γ

F ′
)
. Is it then possible

for X = XA,G
F not to be sofic? In fact, the finitary description for X′ provided by F ′ and f ′ takes advantage of the (at least, a

priori) greater complexity of the group Γ w.r.t. the group G; however, it is also true that F alone yields enough information

to describe X′ in the context provided by Γ . It would not be surprising, then, if the information provided by F in the context

provided by G yielded enough information to describe X; we state this as a conjecture.
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Conjecture 4.6. With the notation of Corollary 4.5, suppose XA,Γ
F is sofic. Then XA,G

F is sofic.

5. Induced cellular automata

In the previous section, we have learned to construct a subshift on a group from a subshift on a subgroup; while doing

this, we have received some insight on how the underlying mechanism can also work for UL-definable functions. It then

comes to our mind that similar mechanics could be applied to another field where locality is the key factor, that is, the field

of cellular automata. This time, we can give our definition after having already done the bulk of the work.

Definition 5.1. Let A = 〈X ,N , f 〉 be a CAwith alphabet A and tessellation group G, and let Γ be a f.g. group such that G �Γ .

The CA induced by A on Γ is the cellular automaton

A′ =
〈
X′,N , f

〉
, (5)

where X′ is the subshift induced by X on AΓ .

Observe how Lemma 4.3 ensures that A′ is well defined.

Example 5.2. Let A = {0, 1}, G = Z, Γ = Z2, N = {−1, 1}, f (−1 �→ x, 1 �→ y) = x + y − 2xy: then A =
〈
AZ,N , f

〉
is

Wolfram’s rule 90, such that the next value of each point is the exclusive OR of the current values of its leftmost and rightmost

neighbors. The same rule applies to A′ =
〈
AZ2

,N , f
〉
, which can be seen as the joining of infinitely many copies of A along a

vertical line.

Definition 5.1 is similar to the one given in [4] for CA over the full shift; ours, however, works for the broader class of CA

over subshifts. (We still have, however, the constraint on finite alphabets, which [3] tries to overcome at least for the full

shift.) As in the case of the induced subshift—which, by the way, is the support of the induced CA—A′ is what we obtain by

interpreting the local descriptions given by F , N , and f , in the context provided by Γ instead of G.

It must be remarked that, in general, A′ is not conjugate to A. For instance, if G is a proper non-trivial subgroup of a finite

group Γ , then there can be no bijection between AG and AΓ , let alone conjugacies of cellular automata.

On the other hand, it had already been shown in [4] that, in the case of CA over full shifts, some important properties—

notably, surjectivity—are preserved in the passage from the original CA to the induced one; which is not surprising, because

intuitively F
A,Γ
f is going to operate “slice by slice” on AΓ , each “slice” being “shaped” as AG . The next statement extends the

aforementioned result from the case of CA on the full shift to the general case when X is an arbitrary subshift.

Theorem 5.3. Let A = 〈X ,N , f 〉 be a CA with alphabet A and tessellation group G, let G �Γ , and let A′ be the CA induced by A
on Γ .

1. A is surjective iff A′ is surjective.
2. A is pre-injective iff A′ is pre-injective.
3. A is injective iff A′ is injective.

Proof. Let F satisfy X = XA,G
F (and X′ = XA,Γ

F ). Take J as in proof of Lemma 4.3.

To prove the “if” part of point 1, suppose A has a GoE pattern p. By contradiction, assume that there exists χ ∈ X′ such
that FA′(χ)|supp p = p. Let c be the restriction of χ to G. Then, since both N and supp p are subsets of G by hypothesis,

(FA(c))(x) = f
(
cx

∣∣
N

) = f
(
χ x

∣∣
N

) = (FA′(χ))(x) = p(x)

for every x ∈ supp p: this is a contradiction.

To prove the “only if” part of point 1, suppose A′ has a GoE pattern π . By hypothesis, there exists χ ∈ X′ such that

χ |suppπ = π . For all j ∈ J define cj ∈ AG as

cj(g) = χ(jg) ∀g ∈ G,

and for all j ∈ J such that jG ∩ suppπ /= ∅ define the pattern pj over G as

pj(x) = π(jx) ∀x s.t. jx ∈ suppπ.

Observe that cj ∈ X for all j, and that pj = cj
∣∣
jG∩suppπ when defined. But at least one of the patterns pj must be a GoE

for A: otherwise, for all j ∈ J, either jG ∩ suppπ = ∅, or there would exist kj ∈ X′ such that FA(kj)
∣∣
supp pj

= pj . In this case,

however, κ ∈ AΓ defined by κ(jg) = kj(g) for all j ∈ J, g ∈ G would satisfy κ ∈ X′ and FA′(κ)|suppπ = π , against π being

a GoE for A′.
For the “if” part of point 2, suppose c1, c2 ∈ X differ on all and only the points of a finite non-empty U ⊆ G, but FA(c1) =

FA(c2). For all j ∈ J, g ∈ G, put χ1(jg) = c1(g), and set χ2(jg) as c2(g) if j = 1Γ , c1(g) otherwise. Then χ1 and χ2 belong to
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X′ and differ precisely onU. Moreover, for every γ ∈ Γ , either γ ∈ G or γN ∩ G = ∅, so either (FA′(χi))(γ ) = (FA(ci))(γ )
or (FA′(χ1))(γ ) = (FA′(χ2))(γ ).

For the “only if” part of point 2, suppose A is pre-injective. Let χ1,χ2 ∈ X′ differ on all and only the points of a finite

non-empty U′ ⊆ Γ . For i ∈ {1, 2}, γ ∈ Γ , let ci,γ be the restriction of χ
γ
i to G: these are all in X , because a pattern occurring

in ci,γ also occurs in χi, and cannot belong to F . Let Uγ = {g ∈ G | c1,γ (g) /= c2,γ (g)} : then |Uγ | � |U′| for all γ ∈ Γ , plus

Uγ /= ∅ for at least one γ . For such γ , there exists g ∈ G such that (FA(c1,γ ))(g) /= (FA(c2,γ ))(g) : then by construction

(FA′(χ1))(γ g) /= (FA′(χ2))(γ g) as well.

The proof of point 3 is straightforward to see. For the “if” part, let c1 /= c2, FA(c1) = FA(c2), and consider χi(γ ) = ci(g)
iff γ = jg. For the “only if” part, given χ1 /= χ2, consider ci,j(g) = χi(jg), and observe that FA(c1,j) /= FA(c2,j) for at least
one j ∈ J. �

The reason why Theorem 5.3 is true, is similar to the one given for Lemma 4.3: the global evolution function of the induced

CA operates “slice by slice” on the support of the induced CA; this, however, is the induced subshift, and is already “sliced”

suitably for FA′ . Moreover, each of the listed global properties can be expressed in local terms: for instance, surjectivity is

equivalent to absence of GoE patterns, even in our broader context (cf. [5]). Pay attention, however, that these properties are

usually r.e. or co-r.e., but not computable.

Observe that, as in the proof of Lemma 4.3, the choice of J is arbitrary.

Example 5.4. Let A be as in Example 5.2. It is a good exercise in cellular automata theory to check that each configuration

has exactly four predecessors according to A, that is, for every c : Z → A there exist four distinct ci : Z → A such that

FA(ci) = c. (Hint: fix four patterns 00, 01, 10, 11.) Thus A is surjective, but not injective; Theorem 5.3 then says that A′ is
also surjective and non-injective.

Surjectivity and pre-injectivity are always shared by A and A′, even when these two properties are not equivalent. This fact

was used in [4] to prove that none of the implications in Moore–Myhill’s theorem holds for full CA with tessellation group

containing a free subgroup on two generators, starting from suitable counterexamples on the free group F2.

Having observed that A and A′ may well be non-conjugate, we are left with a different question: is it possible to embed

the original CA into the induced one? After all, we have kept the same local descriptions, and enlarged the group, sowe should

expect the induced dynamics to be richer than the original. Moreover, since the global evolution function of A′ operates slice
by slice, we should expect that, after having fixed a point on each slice, we should be able to reproduce A into A′.

And this is precisely the content of

Lemma 5.5. Let A be an alphabet, and let G and Γ be f.g. groups with G �Γ ; let A = 〈X ,N , f 〉 be a CA with alphabet A and

tessellation group G, and let A′ = 〈
X′,N , f

〉
be the CA induced by A over Γ . Let J be a set of representatives of the left cosets of G

in Γ , and let ιJ : AG → AΓ be defined by

(ιJ(c))(γ ) = c(g) iff ∃j ∈ J : γ = jg. (6)

Then ιJ is an embedding of A into A′, so that

ιJ(A) = 〈
ιJ(X),N , f

〉
(7)

is a CA conjugate to A. In particular, CA(A, G) ⊆ CA(A,Γ ).

Proof. First, we observe that ιJ is injective and ιJ(X) ⊆ X′. In fact, if c1(g) /= c2(g), then (ιJ(c1))(jg) /= (ιJ(c2))(jg) for all
j ∈ J. Moreover, should a pattern p exist such that (ιJ(c))(γ x) = p(x) for all x ∈ supp p ⊆ G, by writing γ = jg and applying

(6) we would find c(gx) = p(x) for all x ∈ supp p.

Next, we show that ιJ is continuous. Let S be a f.s.o.g. for G,� a f.s.o.g. for Γ . Let R� 0, and let

ER =
{
g ∈ G | ∃j ∈ J | jg ∈ DΓR,�

}
.

Since thewritings γ = jg are unique andDΓR,� is finite, ER is finite too. Let ER ⊆ DG
r,S: if c1|DG

r,S
= c2|DG

r,S
, then ιJ(c1)

∣∣
DΓR,�

=
ιJ(c2)

∣∣
DΓR,�

.

Next, we show that ιJ is a morphism of d.s. For every c ∈ AG , γ = jg ∈ Γ , x ∈ N we have γ x ∈ jG and (ιJ(c))(γ x) =
(ιJ(c))(jgx) = c(gx). Thus,

((FA′ ◦ ιJ)(c))(γ ) = f
(
ιJ(c)

γ |N ) = f
(
cg |N ) = (FA(c))(g) = ((ιJ ◦ FA)(c))(γ ),

so that FA′ ◦ ιJ = ιJ ◦ FA. Moreover, FA′(ιJ(X)) = ιJ(FA(X)) ⊆ ιJ(X) because FA(X) ⊆ X .

Finally, we observe that ιJ(X) is a subshift. In fact, if X = XA,G
F , then ιJ(X) = XA,Γ

F∪F ′ , where

F ′ =
{
p ∈ A{j1g,j2g} | j1, j2 ∈ J, g ∈ G, j1 /= j2, p(j1g) /= p(j2g)

}
. (8)

It is straightforward that ιJ(X) ⊆ XA,Γ
F∪F ′ . Letχ ∈ XA,Γ

F∪F ′ : then c(g) = χ(jg) iswelldefined, andχ = ιJ(c)byconstruction.

Moreover, for every g ∈ G, p ∈ F , and any j ∈ G (cg)supp p = (χ jg)supp p /= p, so c ∈ X and χ ∈ ιJ(X). �



1178 S. Capobianco / Information and Computation 207 (2009) 1169–1180

Observe that, in the hypotheses of Lemma 5.5, ιJ depends explicitly on J. Thus ιJ might, in general, show “better” or “worse”

properties according to the choice of J; these, however, have no effect on the abstract dynamics of ιJ(A), which is always the

same as A’s. Moreover, we are not assuming 1Γ ∈ J; hence, in general, ER �⊆ DG
R,S , even if S ⊆ �.

Example 5.6. Let Γ = Z2, G = {(x, 0) | x ∈ Z}, S = {(1, 0)},� = {(1, 0), (0, 1)}, and
J = {(1, 0)} ∪ {(0, y) | y ∈ Z, y /= 0}.

Then E1 = {(0, 0), (−1, 0), (−2, 0)} �⊆ DG
1,S .

Lemma 5.5 says that growing the tessellation group does not shrink the class of presentable dynamics. This fact and

Proposition 3.12 together yield

Theorem 5.7. Let A, B be alphabets and G, Γ be f.g. groups. If |A| � |B| and G is isomorphic to a subgroup of Γ , then CA(A, G) ⊆
CA(B,Γ ).

Proof. Let G∼=H �Γ . Then CA(A, G) = CA(A,H) ⊆ CA(A,Γ ) ⊆ CA(B,Γ ). �

Corollary 5.8. Let Fn be the free group on n < ∞ generators. For every alphabet A and every n > 1, CA(A, Fn) = CA(A, F2).

Proof. Clearly, every Fn with n > 1 has a free subgroup on two generators: because of Theorem 5.7, CA(A, F2) ⊆ CA(A, Fn).
However, it is a well-known fact in group theory (cf. [10, Section 2.4, Problem 2]) that F2 has a free subgroup on infinitely

many generators, thus also a free subgroup on n generators for every n > 0: because of Theorem 5.7, CA(A, Fn) ⊆ CA(A, F2).
�

Corollary 5.8 extends Róka [14, Proposition 6],which can be re-stated as follows: FCA(A, Fn1) ⊆ CA(A, Fn2) for any n1, n2 > 1.

Observe that the inclusion in one direction also works for n = 1, with F1 = Z. Since Moore–Myhill’s theorem does not hold

for the latter class (cf. [4]) we know that FCA({0, 1},Z) /= FCA({0, 1}, F2); however, we do not know of a similar statement

for the corresponding CA-classes. In fact, the structure of F2 is intrinsically much more complex than that of Z, where the

same cannot be said of the other Fn’s, which somehow “contain each other”.

Conjecture 5.9. CA(A,Z) /= CA(A, F2).

Now, if we look at (8), the set of “additional constraints” F ′ seems a bit cumbersome. Why is it necessary to take note of all

the pairs (j1g, j2g)? Should we only make the checks on the pairs (j1, j2), and use the smaller set

F ′′ =
{
p ∈ A{j1,j2} | j1, j2 ∈ J, p(j1) /= p(j2)

}
,

why should not we retrieve the same subshift?

The problem with the idea of replacing F ′ with F ′′ is that we are forgetting that Γ can be non-commutative. Thus, jγ is

not forced to equal γ j, which is what we get when we try to check whether the configuration χ has a pattern with support

{j1, j2}. On the other hand, if F ′′ were always a good choice, then, for ιJ(X) to be of finite type, it would suffice to have X of

finite type and G of finite index inΓ , independently on the choice of J. This seems just too good to be true; and is actually false.

Theorem 5.10. Let Γ be the group of ordered pairs (i, k), i ∈ {0, 1}, k ∈ Z with the product

(i1, k1)(i2, k2) = (i1 + i2 − 2i1i2, (−1)i2k1 + k2).

Let A = {a, b}, G = {(0, k), k ∈ Z} �Γ , and J = {(0, 0), (1, 0)}. Then ιJ(AG) is not a shift of finite type.

Proof. Let S = {(1, 0), (0, 1)}: it is straightforward to check that 〈S〉 = Γ .

By contradiction, assume that ιJ(A
G) = XA,Γ

F with |F| < ∞; it is not restrictive to choose F so that supp p = DΓM,S for all

p ∈ F . Let δ ∈ AΓ satisfy δ(x) = b iff x = (0, 0): then δ �∈ ιJ(AG), so there must exist p ∈ F , η ∈ Γ such that δη|supp p = p.

It is straightforward to check that there exists exactly one y ∈ DΓM such that p(y) = b, and that y = η−1 = (i, (−1)1−ix) if
η = (i, x).

Now, for all k ∈ Z we have dΓS ((0, k), (1, k)) = ‖(1, 2k)‖ΓS = 1 + 2|k|. This can be checked by observing the following

two facts. Firstly, (1, 2k) = (1, 0)(0, t) . . . (0, t), with 2|k| factors (0, t), and t = 1 or t = −1 according to k > 0 or k < 0.

Secondly, multiplying (i, x) on the right by (0, 1) or (0,−1) does not change the value of i, while multiplying (i, x) on the

right by (1, 0) does not change |x|: hence, at least one multiplication by (1, 0) and 2|k| multiplications by either (0, 1) or
(0,−1) are necessary to reach (1, 2k) from (0, 0).
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For i ∈ {0, 1} let γi = (i, 2M + 1). Let χ ∈ AΓ be such that χ(γ ) = b iff γ = γ0 or γ = γ1: then χ ∈ ιJ(AG). However,

since η−1 ∈ DΓM,S , for all x ∈ DΓM(η
−1) we have γ0ηx ∈ DΓ2M(γ0). Hence, either x = η−1, γ0ηx = γ0, and χ

γ0η(x) = b; or

x /= η−1, 0 < dS(γ0, γ0ηx)� 2M < 4M + 3 = dS(γ0, γ1), and χ
γ0η(x) = a. Thus, χγ0η|supp p = p: this is a contradiction.

�

The reason why Theorem 5.10 is true is that, in general, one cannot get an upper bound on dS(j1g, j2g) only by looking at

dS(j1, j2), because the product is made on the wrong side. Consequently, one should not expect to determine finitely many

constraints on the jg’s only from finitely many constraints on the j’s.

Corollary 5.11. For cellular automata on arbitrary f.g. groups, finiteness of type is not invariant by conjugacy. In particular, for

subshifts on arbitrary f.g. groups, finiteness of type is not a topological property.

The first statement in Corollary 5.11 seems to collide with [8, Theorem 2.1.10], stating that any two conjugate subshifts of AZ

are either both of finite type or both not of finite type. Actually, in the cited result, conjugacies are always intended as being

between shift dynamical systems, which is a much more specialized situation than ours. Moreover, the tessellation group

is always Z, so that the action is also the same, while we have different groups and different actions. Last but not least, by

Proposition 3.6, the only groups where all the translations are UL-definable are the abelian groups. On the other hand, the

second statement remarks the well-known phenomenon that homeomorphisms do not preserve finiteness of type, even in

symbolic dynamics over Z.

Example 5.12. Let F = {102n+11 | n ∈ N}: the subshift X = X
{0,1},Z
F is called the even shift. It can be proved (cf. [8, Section

3.1]) that X is not a shift of finite type. However, X is

1. non-empty—it contains the configuration with all 0’s,

2. compact—as a subshift,

3. metrizable—with the distance inherited from the full shift,

4. totally disconnected—because the full shift is, and

5. perfect—every point of X can be seen as the limit point of some sequence of elements of X taking the value 1 only finitely

many times.

By a theorem of Brouwer, the even shift is homeomorphic to the Cantor set, thus also to the full shift—which is of finite type.

In our attempt at finding a general criterion for finiteness of type, we have crashed against an apparently unsurmountable

obstacle. We thus choose to switch our aim towards amoremodest target. What if we add conditions on theway G is related

to Γ , and are more careful in the choice of J?

A possible answer is given by

Theorem 5.13. LetH andK be f.g. groups; let S be afinite set of generators forH such that1H �∈ S; letΓ = H × K ,G = {1H} × K ,

J = H × {1K}. Let A be an alphabet and let

FS =
{
p ∈ A{(1H ,1K ),(s,1K )} | s ∈ S ∪ S−1\{1H}, p((1H , 1K)) /= p((s, 1K))

}
.

For every set F of patterns on A with supports contained in G, ιJ(X
A,G
F ) = XA,Γ

F∪FS
. In particular, if X ⊆ AG is a shift of finite

type, then ιJ(X) is also a shift of finite type.

Proof. First, observe that FS ⊆ F ′, where F ′ is given by (8), so that ιJ(X
A,G
F ) = XA,Γ

F∪F ′ ⊆ XA,Γ
F∪FS

. (Less restrictions means

more objects.)

Let now χ ∈ AΓ \ιJ(X); suppose that no p ∈ F occurs in χ . Let h1, h2 ∈ H, k ∈ K satisfy χ((h1, k)) /= χ((h2, k)), and

let h
−1
1 h2 = s1s2 · · · sN be a writing of minimal length of the form (1). For i ∈ {0, . . . ,N} let ai = χ(h1s1 . . . si, k); for i ∈

{1, . . . ,N} define pi : {(1H , 1K), (si, 1K)} → A by pi(1H , 1K) = ai−1 and pi(si, 1K) = ai. Since a0 /= aN , ai−1 /= ai for some i:

then pi ∈ FS and χ
(h1s1···si−1,k)

∣∣∣
supp pi

= pi. Since χ is arbitrary, XA,Γ
F∪FS

⊆ ιJ(X
A,G
F ). �

The reason why Theorem 5.13 holds is that, though FS sets less restraints than F ′, the components J and G of the direct

product also set less restraints on the products by not “interfering” with each other. Thus, any j1g1 · · · jngn can be rewritten

as j1 · · · jng1 · · · gn, and the result is still of the form jg, j ∈ J, g ∈ G.

Observe that, for Theorem 5.13 to hold, G needs not to be of finite index in Γ . However, the other hypotheses are quite

strong, especially the ones on the structure of Γ as a direct product with G as a factor. Because of Theorem 5.10, where Γ is

a semi-direct product, this result is unlikely to be improved easily.



1180 S. Capobianco / Information and Computation 207 (2009) 1169–1180

Example 5.14. LetA = {0, 1}; letH andK be twodistinct copies ofZwith S = {1}. IdentifyΓ = H × K withZ2, J = H × {0}
and G = {0} × K with Z. Let p : {(0, 0), (0, 1)} → {0, 1} satisfy p(0, 0) = p(0, 1) = 1: then X = XA,G

{p} can be identified with

the golden mean shift. Let p01, p10 : {(1, 0), (1, 1)} → {0, 1} be defined by

p01(1, 0) = 0, p01(1, 1) = 1, p10(1, 0) = 1, p10(1, 1) = 0.

Then ιJ(X) = XA,Γ
{p,p01,p10}.

We conclude with a statement about sofic shifts.

Theorem 5.15. Let A, G, Γ , and J be as in Lemma 5.5. Suppose ιJ(X) is a shift of finite type for every shift of finite type X ⊆ AG.

Then ιJ(X) is a sofic shift for every sofic shift X ⊆ AG.

Proof. Let X = F(Y) for some shift of finite type Y ⊆ AG and UL-definable function F : AG → AG . Let N ⊆ G, |N | < ∞,

and f : AN → A be such that (F(c))g = f (cg |N ) for all c ∈ AG , g ∈ G; let A =
〈
AG ,N , f

〉
and let F ′ be the global evolution

function of ιJ(A). By Lemma 5.5, F ′ ◦ ιJ = ιJ ◦ F , so that ιJ(X) = ιJ(F(Y)) = F ′(ιJ(Y)) is the image of a shift of finite type via

a UL-definable function. �

We suspect that the hypotheses in Theorem 5.15 are, in fact, redundant. Again, we state this as a conjecture.

Conjecture 5.16. Let A, G, Γ , and J be as in Lemma 5.5. Suppose X � AG is a sofic shift. Then ιJ(X) is a sofic shift.

6. Conclusions

At the end of our trek, we have seen how to get CA presentations of dynamical systems, and to construct new shift

subspaces and cellular automata by enlarging their underlying groups. We have then remarked the properties of old objects

inherited by the new ones, and taken note of some exceptions. Finally, we have observed how enlarging the group makes

the class of presentable dynamics grow.

There is still much unfinished work to do. In particular, much to our shame, we were not able to either prove or disprove

Conjectures 4.6 and 5.16, nor to determine whether they have found a solution. Also additional conditions on the discerning

action φ in the proof of Theorem 3.9, such to get a characterization of full CA dynamics, has been painfully missed.

Aside of looking ourselves for the answers to such questions, our hope is that our modest work can be of interest, or even

use, to researchers in the field.
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